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Simple Summary: Vitamin C is an indispensable micronutrient in the human diet due to the multiple
functions it carries out in the body. Reports of clinical studies have indicated that, when administered
at high dosage by the intravenous route, vitamin C may exert beneficial antitumor effects in patients
with advanced stage cancers, including those refractory to previous treatment with chemotherapy.
The aim of this article is to provide an overview of the current scientific evidence concerning the
different mechanisms of action by which high-dose vitamin C may kill tumor cells. A special focus
will be given to those mechanisms that provide the rationale basis for tailoring vitamin C treatment
according to specific molecular alterations present in the tumor and for the selection of the most
appropriate companion drugs.

Abstract: High-dose vitamin C has been proposed as a potential therapeutic approach for patients
with advanced tumors who failed previous treatment with chemotherapy. Due to vitamin C complex
pharmacokinetics, only intravenous administration allows reaching sufficiently high plasma con-
centrations required for most of the antitumor effects observed in preclinical studies (>0.250 mM).
Moreover, vitamin C entry into cells is tightly regulated by SVCT and GLUT transporters, and is cell
type-dependent. Importantly, besides its well-recognized pro-oxidant effects, vitamin C modulates
TET enzymes promoting DNA demethylation and acts as cofactor of HIF hydroxylases, whose
activity is required for HIF-1α proteasomal degradation. Furthermore, at pharmacological concentra-
tions lower than those required for its pro-oxidant activity (<1 mM), vitamin C in specific genetic
contexts may alter the DNA damage response by increasing 5-hydroxymethylcytosine levels. These
more recently described vitamin C mechanisms offer new treatment opportunities for tumors with
specific molecular defects (e.g., HIF-1α over-expression or TET2, IDH1/2, and WT1 alterations).
Moreover, vitamin C action at DNA levels may provide the rationale basis for combination therapies
with PARP inhibitors and hypomethylating agents. This review outlines the pharmacokinetic and
pharmacodynamic properties of vitamin C to be taken into account in designing clinical studies that
evaluate its potential use as anticancer agent.

Keywords: vitamin C; ascorbate; TET2; 5-hydroxymethylcytosine; PARP inhibitors; IDH1/2; WT1;
hypomethylating agents; ROS; DNA damage

1. Introduction

Vitamin C is an indispensable micronutrient in the human diet due to the multiple
functions it carries out in the body. In fact, humans are one of the few species unable to
synthesize vitamin C through the oxidation of glucose due to the lack of gulonolactone (L-)
oxidase. The importance of vitamin C in human diet was discovered in the 17th century,
when the British Royal Navy surgeon James Lind managed to reduce the onset of scurvy
(a disease consequent to a prolonged vitamin C deficiency) by introducing citrus fruits,
such as lemons and oranges, into the diet of British navy sailors [1]. It was around the
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1930s that Albert Szent-Györgyi (Nobel Prize for Medicine in 1937) and Charles Glen King
isolated vitamin C [2]. This vitamin participates as co-factor to the hydroxylation of proline
and lysine residues of type 1 collagen; thus, it is essential for the formation of collagen
and helps maintaining the integrity of the connective and bone tissues, as well as tooth
dentin [3]. When vitamin C intake is below 10 mg/d for long periods (>1 month), failure
of wound healing, small hemorrhages, bleeding gums, keratosis pilaris, and other systemic
and dermatological conditions occur [4–8].

Starting in the second half of the twentieth century, the pioneering studies of Pauling
and Cameron proposed vitamin C as a useful agent for the prevention and treatment
of cancer [9–11]. In these studies, vitamin C was administered first intravenously (I.V.)
and then orally as maintenance therapy. Conversely, Moertel and colleagues, showed no
positive effects of orally administered vitamin C in cancer patients [12,13]. The debate on
vitamin C antitumor efficacy is still ongoing and a number of studies are attempting to
establish its role in the treatment of cancer [14]. In this context, particularly interesting are
the results of a high number of in vitro studies showing that vitamin C exerts cytotoxic
activity on cancer cells, while it is devoid of toxic effects toward normal cells. A number of
issues, including the complexity of the biochemical mechanisms regulated by vitamin C
and the different experimental models utilized to evaluate its antitumor activity, make it
difficult to draw unequivocal conclusions from the preclinical studies carried out over the
years. Furthermore, the clinical studies performed in cancer patients in the last decades
have shown vitamin C efficacy only in some cases, but biomarkers for predicting patients’
response have not been identified, yet [11,13,15]. Based on the experimental evidence
accumulated so far, this review aims at summarizing the pharmacokinetic and pharmaco-
dynamic properties of vitamin C that should be taken into account when designing clinical
trials aimed at evaluating its use as anticancer agent.

2. Methods

Medline was searched via PubMed for relevant, English-written articles published
until February 2021. In the preliminary search the following inclusion criteria were applied
(in abstract and title): vitamin C or ascorbate or ascorbic and cancer; this search retrieved
3523 articles. By applying dietary, antioxidant, and prevention as exclusion criteria we
obtained 1664 articles, among which only 379 were actually relevant to vitamin C used
as pharmacological agent and regarded the following topics: pharmacokinetics, trans-
porters, high-dose and pharmacological, intravenous administration, antitumor activity,
pro-oxidant, TET, IDH, HIF, WT1, PARP inhibitors, hypomethylating agents, decitabine,
and azacytidine (Figure 1). Due to the large numbers of articles published on the therapeu-
tic potential of vitamin C in cancer, we apologize to those authors whose work was not
cited in this review.
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3. Chemical Forms of Vitamin C

Vitamin C is the common name of L-ascorbic acid, which can be found in different
chemical forms. Ascorbic acid (AscH2) (a Latin-derived word, meaning “without scurvy”)
is highly soluble in water, but the presence of two ionizable hydroxyl groups makes the
compound pH sensitive (pK1 = 4.2; pK2 = 11.6). In biological systems, ascorbic acid loses a
proton forming the ascorbate anion (AscH−), the reduced dominant form of vitamin C at
physiological pH. Thereafter, AscH− undergoes oxidation and this reaction is dependent
on pH and is accelerated by catalytic metals (e.g., iron). In particular, AscH− undergoes
one-electron oxidation to form the ascorbate radical (Asc•−). Donation of the second
electron gives rise to dehydroascorbic acid (DHA), the fully oxidized form of vitamin C
(Figure 2). The ascorbate radical is relatively unreactive since two ascorbate radical anions
(Asc•−) can form a dimer and further undergo a disproportionation reaction to form DHA
and AscH− [16,17]. These oxidation reactions are coupled with reactive oxygen species
(ROS) formation and metals reduction. Spontaneous autoxidation may also occur, but at
pH 7 this reaction is very slow.
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After transporter-mediated entry into the cell, the DHA form is reduced back to ascor-
bate. This reaction involves glutathione (GSH) and enzymatic activities like glutaredoxin
or other dehydroascorbate reductases with generation of the oxidized glutathione disulfide
form (GSSG). The subsequent reduction in GSSG is mediated by the NADPH-dependent
glutathione reductase [18]. Thus, cells like erythrocytes or astrocytes may efficiently re-
cycle extracellular DHA by taking it up through GLUT transporters (see also below) [19].
This process allows the recycling and reuse of ascorbate for cellular processes, allowing
the antioxidant activity of vitamin C to occur.

Ascorbate also donates electrons to metals such as copper and iron, regulating the
activity of enzymes belonging to the families of copper-containing monooxygenases and
Fe2+-dependent and α-ketoglutarate-dependent dioxygenases (αKGDD). The first family
includes the dopamine β-monooxygenase, necessary for the synthesis of norepinephrine,
and the peptidylglycine α-amidating monooxygenase, responsible for a post-translational
modification required for the full activation and stabilization of bioactive peptides (e.g.,
neuroendocrine peptides) [20]. The second and larger family includes several hydroxy-
lases involved in various functions such as type 1 collagen synthesis, carnitine synthesis,
tyrosine catabolism, stability of hypoxia-inducible factor α (HIF-1α) and epigenetic modifi-
cations [20–23]. The ability to donate one or two electrons makes ascorbate an excellent
reducing agent and antioxidant system in humans [20,24–26].

4. Vitamin C Transport into the Cells

In humans, vitamin C is obtained from the diet that contains both ascorbate and
DHA. Ascorbate entry into cells is mediated by sodium-dependent vitamin C transporters
(SVCT), which comprise two isoforms SVCT1 and SVCT2 (encoded by the SoLute Carrier
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family 23 member 1 and 2 genes, SLC23A1 and SLC23A2, respectively) that actively co-
transport sodium and ascorbate [17,27]. These transporters bind first one molecule of
Na+, then one molecule of ascorbate, and finally an additional Na+ [28]. Ascorbate entry
into tissues from blood vessels is mediated by a para-cellular movement of ascorbate
through gaps between endothelial cells, even though these cells express a large number
of SVCT2 [27,29]. SVCT1 is expressed at the apical level in the epithelial intestinal and
renal proximal tubules cells in addition to liver and lung [30–32]. SVCT1 is involved in
the intestinal absorption of vitamin C and in its renal re-absorption back to the blood [33].
On the other hand, SVCT2 is expressed throughout the body tissues (with the exception
of red blood cells), including the basolateral side of intestinal epithelial cells [17,31,34–36].
The uptake of ascorbate is very tightly controlled. In fact, these transporters are sensitive to
intracellular ascorbate concentrations, being upregulated or downregulated in the presence
of low or high ascorbate levels, respectively. Therefore, this uptake-pathway maintains the
homeostatic physiological concentration of vitamin C in the blood [37,38]. When Ca2+ and
Mg2+ are absent, the SVCT2 transport system is in an inactive conformation, despite the
presence of Na+ [28].

Another possibility for vitamin C entry into the cells is in its DHA form that is
transported through a facilitated diffusion mechanism by glucose transporters (GLUT) that
belong to the SLC2 family. GLUT2 and GLUT8 (encoded by the SLC2A2 and SLC2A8 genes,
respectively) are expressed only in the intestine and are used by DHA to enter into the
enterocytes [39]. Although, a diet rich in free sugars inhibits DHA gut absorption, complex
carbohydrates do not affect DHA transport due to the glucose release in jejunum [39].
In this way, DHA can be absorbed in the duodenum by GLUT2 and GLUT8 [39]. In all
other human tissues, DHA competes with glucose to be transported via GLUT1 and GLUT3
isoforms (encoded by the SLC2A1 and SLC2A3 genes, respectively) [40].

The GLUTs affinity for DHA (Km ~1–3 mM) is lower than SVCTs affinity for ascor-
bate (Km ~20–100 µM) [17,36,41,42]. In normal conditions, the glucose concentration
(2–5 mM) in the blood is much higher than DHA (<2 µM); therefore, cell uptake of ascor-
bate through SVCT2 is preferred [17,30]. Moreover, cells may change their transporter
expression depending on vitamin C plasma and intracellular concentrations [17]. Glucose
blood concentration and receptor affinity markedly influence the uptake of DHA. Inter-
estingly, the rate of DHA uptake via GLUT1 and GLUT3 in cancer cells is faster than the
uptake of ascorbate through SVCT2, even in the presence of glucose [27,43]. In tumor
microenvironment oxidizing conditions, the prominent extracellular form of vitamin C is
likely DHA that is taken up by the cells and rapidly reduced back to ascorbate, creating
a steep gradient across the cell membrane. Furthermore, due to the high requirement
of glucose by cancer cells for their metabolism, the GLUT transporters are up-regulated,
contributing to DHA intake [44–47].

5. Vitamin C Dose-Dependent Pharmacokinetics

The main factors that affect the bioavailability of vitamin C are the absorption rate
at the intestinal level (in the case of oral formulations or dietary intake) and renal re-
absorption. Vitamin C plasma levels show a dose-dependent pharmacokinetics and a
first order kinetics of elimination [48–51]. Studies in humans have revealed that oral
doses exceeding 250 mg/day produce plateau plasma concentrations that never exceed
100 µM [4,52]. Phase 1 studies identified 3 g of vitamin C orally administered every 4 h
(12 g/day) as the maximum tolerated dose, with maximum plasma concentrations of
220 µM [53]. When plasma ascorbate levels are lower than physiological plasma concentra-
tions (oral doses 0.1 g/d) (i.e., in deficient intake periods), the kidney actively re-absorbs
ascorbate back into the bloodstream, preventing the occurrence of acute scurvy [52]. In this
condition, the half-life of plasma ascorbate is long (days). In contrast, when the plasma
ascorbate levels are higher than 70–80 µM (oral doses >100 g/d), renal excretion increases
because of saturated tubular re-absorption at the kidney level and the ascorbate plasma
half-life is very short (~30 min) [48,54–56].
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On the contrary, studies performed in cancer patient have demonstrated that after I.V.
administration, the tight control mechanisms of intestinal absorption are by-passed and
the observed vitamin C plasma concentrations are in the millimolar range (around 100-fold
higher than those detected after oral doses). In particular, vitamin C reaches a plasma peak
higher than 20 mM and shows a half-life of 2 h (1.7 h–2.5 h) [50,57]. Moreover, the elevated
inflammation and oxidative stress presents in cancer patients results in increased vitamin
C utilization and lower plasma levels comparing to healthy people [58–60]. Overall, since
vitamin C pharmacokinetic properties depend on the route of administration used, the
results of studies with oral or intravenous doses are not directly comparable [53]. Table 1
indicates the different plasma concentrations obtained after oral or I.V. administration of
different doses of vitamin C.

Table 1. Vitamin C plasma concentrations under different conditions and route of administrations.

Vitamin C Dose Plasma Concentration References

µM

0.075–0.125 g/d Normal intake
~0.030 g/d Depletion
0.010 g/d Deficiency

40–80
11.4–28.4

<11.4
[4–7,53,61]

Oral route

Dietary intake 0.2–0.3 g/d
(fruits and vegetables) 70–85 [53]

Single dose 0.2–1.25–3 g/d 90–157–206 [53]

Maximum tolerated dose 18 g/d (3 g every 4 h) ≤220 [53]

Oral daily dose:

[4]
0.03 g 8.7 ± 0.8
0.1 g 55.9 ± 3.6
0.2 g 65.7 ± 3.8
0.4 g 70.0 ± 4.4

I.V. route mM

1.25 g 0.9 ± 0.2

[4,53]

3 g 1.8
5 g 2.9

10 g 5.6
50 g 13.4
100 g 15.4

30 g/m2 23 ± 9
[57]70 g/m2 49 ± 8

90 g/m2 49 ± 14

0.1 g/kg (~3.7 g/m2) 2.4 ± 0.3

[62]

0.2 g/kg (~7.4 g/m2) 4.7 ± 0.5
0.4 g/kg (~14.8 g/m2) 8.5 ± 0.6
0.6 g/kg (~22.2 g/m2) 11.3 ± 2.4
0.9 g/kg (~33.3 g/m2) 17.0 ± 3.6
1.5 g/kg (~55.5 g/m2) 26.2 ± 4.9

I.V. infusion (grams/wk) plus oral dose (0.5 g/d)

5 g week 1 1.9 ± 0.4

[50,63,64]
30 g week 2 12.6 ± 3.4
60 g week 3 19.6 ± 6.8
60 g week 4 21.1 ± 5.0
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6. Mechanisms of Vitamin C Anticancer Action

The antitumor effects of vitamin C have been consistently demonstrated by using
in vitro cultures of cancer cell lines of different tissue origin (e.g., ovarian, pancreatic
adenocarcinoma, lymphoma) and in vivo murine models [65–74].

6.1. Vitamin C as Pro-Oxidant Agent

The first mechanism described to explain vitamin C antitumor activity relies on the pro-
oxidant effects observed following high-dose administration. The pro-oxidant properties
have been attributed to the ability of ascorbate to reduce Fe3+ to Fe2+ with consequent
generation of ROS through the Fenton reaction (Figure 3). In fact, tumor cells contain
higher levels of labile iron (Fe2+) compared to normal cells and this favors higher ROS
generation [75]. Moreover, when administered at high dosage, ascorbate may induce the
release of Fe2+ from storage proteins [76]. Vitamin C-induced ROS production is further
potentiated by the presence of O2 [77].
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Figure 3. Pro-oxidant effects of intravenously administered high-dose vitamin C. Intravenous administration (I.V.) of
high-dose vitamin C (plasma ascorbate levels >1 mM) induces cytotoxic effects against cancer cells through different
mechanisms of action. Ascorbate reacts with Fe3+ via Fenton reaction leading to the formation of Fe2+ that, by reacting
with H2O2, produces highly damaging hydroxyl radicals. In the blood, H2O2 is eliminated by ROS scavenger systems [e.g.,
the glutathione peroxidase (GPx) and catalase] present on the erythrocyte membrane. In the extracellular matrix of the
tumor microenvironment, hydroxyl radical accumulation can induce direct damage to cell membrane by lipid peroxidation;
H2O2 can also enter into the cell by diffusion. Vitamin C enters into the cell by using different transporters: (1) via SVCT2 as
ascorbate; (2) via GLUTs as DHA produced by ascorbate oxidation. Inside the cells, DHA is converted back to ascorbate
decreasing GSH activity and NADPH. Tumor cells contain higher levels of labile iron (Fe2+) due to altered iron metabolism
and high intracellular concentrations of ascorbate may favor the release of Fe2+ from ferritin. Tumors may also secrete in
the extracellular matrix high amounts of ferritin from which Fe2+ can be released either directly by ascorbate or indirectly
through the production of O2. ROS accumulation induces ATP depletion and causes cancer cell death as a consequence of
DNA damage, GAPDH inhibition and NAD+ depletion, metabolism alteration due to glycolysis blockade, tricarboxylic
acid cycle (TCA) disruption and shift toward the pentose phosphate pathway (PPP).
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In particular, a study on human Burkitt’s lymphoma cells reported that, at 2 mM con-
centration, vitamin C is oxidized to the ascorbate radical with production of H2O2 [65]. In a
rat model, it was found that parenteral administration of vitamin C induced H2O2 produc-
tion depending on the dose. Furthermore, high-dose ascorbate may induce H2O2 formation
through induction of members of the NADPH oxidase family (DUOX1 and 2) [78]. When
plasma ascorbate levels are higher than 1 mM, in the interstitial (extracellular) fluids the
ascorbate radical concentration exceeds 100 nM [66,67]. In the blood, H2O2 is rapidly re-
duced back to H2O by the glutathione peroxidase (GPx) and catalase reduction systems on
the erythrocytes plasma membrane. In this way, H2O2 is undetectable in the blood [65,66].
On the contrary, in the extracellular matrix, H2O2 undergoes accumulation and, in the tu-
mor microenvironment, by interaction with Fe2+ can generate hydroxyl radicals that induce
cell damage externally, through membrane lipid peroxidation [65,66]. After entering into
the cells, H2O2 reacts with intracellular Fe2+ leading to a continuous production of highly
damaging hydroxyl radicals. This ROS accumulation directly damages mitochondria and
DNA with consequent poly(ADP-ribose) polymerase (PARP) overactivation and NAD+
depletion [79]. In the presence of DHA, the consumption of NADPH used to generate GSH
from GSSG eventually results in blockade of glycolysis [46,80]. Ascorbate also induces
metabolic shift toward pentose phosphate pathway (PPP), glycerol synthesis and disrup-
tion of the tricarboxylic acid cycle (TCA) [81]. Moreover, ROS production leads to inhibition
of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and this contributes to glycolytic
blockage. In a KRAS/BRAF mutated colorectal cancer cell model, a reversible oxidation
of GAPDH was observed after vitamin C treatment [46]. On the other hand, in a neurob-
lastoma cell line, vitamin C-induced cell death was prevented by the addition of NAD+,
demonstrating that GAPDH was inhibited as a consequence of NAD+ depletion [73]. These
effects cumulatively lead to ATP depletion and cell death [46,68,81–83].

Depending on their levels, ROS have been shown to exert both beneficial and deleteri-
ous effects [84]. It is recognized that, compared to normal cells, cancer cells have a greater
amount of basal intracellular ROS that promote tumor progression [85–88]. Tumor cells
can tolerate elevated ROS levels, which derive, at least in part, from the glucose-dependent
cancer cell metabolism (Warburg effect), by increasing the expression of GSH system.
High-dose vitamin C may kill tumor cells either because it alters important cell signaling
pathways regulated by ROS (e.g., cell proliferation, migration, neovessel formation) or
because it further increases ROS levels causing cellular damage beyond the available de-
fenses systems [89]. Moreover, vitamin C may decrease the antioxidant cellular defenses
by selectively reducing the GSH content in tumor cells and not in normal cells [90–92].
These aspects have been thoroughly discussed in a recently published review [18].

6.2. Vitamin C as Enzymatic Regulator of TET Enzymes

Vitamin C has recently been found to be an epigenetic modulator through its effects
on Ten Eleven Translocation (TET) enzymes, a family of αKGDD enzymes involved in
active DNA demethylation (direct removal of a methyl group independently of DNA
replication) [93,94]. TET enzymes catalyze the oxidation of 5-methylcytosine (5mC) to
5-hydroxymethylcytosine (5hmC), 5-carboxylcytosine (5fC) and 5-formylcytosine (5cC),
followed by conversion to cytosine by the base excision repair (BER). An altered regulation
of these enzymes is implicated in tumor development and maintenance. TET mutations
(mostly TET2) result in nonfunctional forms of the enzyme, leading to gene promoter hy-
permethylation. Vitamin C acts as a co-factor for TET enzymes through a direct interaction
with their C-terminal catalytic domain and, to a lesser extent, by reducing Fe3+ to Fe2+,
making the latter available for TET activity [94,95]. TET function and intracellular vitamin
C are both involved in reprogramming and maintaining self-renewal of stem cells [96–98].

The three TET1, TET2, and TET3 members have a different tissue distribution and
appear to be altered in certain tumors. In particular, TET2 is frequently mutated in both
myeloid and lymphoid hematological malignancies and restoration of TET2 blocks aberrant
self-renewal of pre-leukemic stem cells [99–102]. Consistently, in acute myeloid leukemia
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(AML) cells with TET2 mutations, treatment with vitamin C mimicked TET2 restoration by
increasing TET activity (Figure 4) and blocked leukemia progression in patient-derived
tumor xenograft models [102]. However, the ability of vitamin C to restore TET2 activity
seems to depend on N- and C-terminal lysine acetylation and type of TET2 mutations [103].
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Figure 4. Activity of high-dose vitamin C in tumors with TETs, IDH1/2 or WT1 altered pathways.
TETs are a family of αKGDD enzymes involved in active DNA demethylation that catalyze the
oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). TET mutations (mostly
TET2) result in nonfunctional forms of the enzyme leading to hypermethylation gene promoters.
IDH1/2 enzymes catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (αKG) that is
required for the activity of multiple dioxygenases, including TETs. Gain-of-function mutations of
IDH1/2 result in the overproduction of the oncometabolite 2-hydroxyglutarate (2-HG) that inhibits
TET activity. WT1 interacts with TET2 and recruits it to the promoter of WT1-target genes stimulating
their demethylation and expression. WT1 mutations hamper the ability of TET2 to bind to and induce
transcriptional activation of WT1-target genes. High-dose vitamin C mimics TET demethylating
activity and restores the normal DNA methylation pattern inhibiting tumor progression. See the text
for further details.

TET2 mutations are mutually exclusive to isocitrate dehydrogenase (IDH) 1/2 or Wilms
tumor protein 1 (WT1) mutations that can also be detected in AML and myelodysplastic
syndromes [104]. IDH1/2 enzymes catalyze the oxidative decarboxylation of isocitrate
to α-ketoglutarate (αKG) that is required for the activity of multiple dioxygenases, in-
cluding TETs. Gain-of-function mutations of IDH1/2 result in the overproduction of the
oncometabolite 2-hydroxyglutarate (2-HG) that is able to inhibit TET2 through a competi-
tive mechanism (Figure 4) [105–107]. In IDH1 mutant mouse bone marrow cells, vitamin
C (added daily at 100 µg/mL corresponding to 0.325 mM, in the form of 2-phosphate
L-ascorbic acid) was found to overcome the effects of IDH1 mutations, promoting DNA
demethylation and epigenetic remodeling of transcription factor-binding sites through stim-
ulation of TET2 activity with consequent induction of leukemia cell differentiation [108].
Of interest, 2-phosphate L-ascorbic acid is a compound that is stable in cell culture and
does not induce the production of extracellular H2O2, allowing to study only the activity
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of vitamin C as enzymatic regulator [108,109]. IDH1/2 mutations are also detected in solid
tumors (e.g., glioma, colorectal, breast, renal cancers) and in an IDH1 mutated colorectal
cancer cell line, treatment with vitamin C synergized with an IHD1 inhibitor by rescuing
TET activity [110].

Prolonged exposure to vitamin C, at concentrations capable of regulating αKGDDs
enzymatic activity, may induce epigenomic remodeling. In blast cells of leukemia patients
with TET2 mutations, aberrant promoter methylation and reduction in 5hmC at the level of
gene enhancers were detected [111]. In human kidney cancer cells lines, restoration of DNA
5hmC levels after protracted vitamin C exposure was also observed [112]. Furthermore, in
IDH1 mutant mouse bone marrow cells, vitamin C induced differentiation and maturation
of myeloid progenitor cells [108]. Through this mechanism, vitamin C may counteract
the epigenetic dysregulation associated with cancer development and progression, which
leads to aberrant gene expression and genomic instability.

Pharmacological doses of vitamin C were reported to reduce DNA methylation and
to restore 5hmC DNA levels via TET2 activity even in tumors with functional loss of
TET2 unrelated to gene mutations or transcriptional inactivation. Recently, low levels of
5hmC have been proposed as an independent adverse prognostic marker in tumors such
as cutaneous T-cell lymphoma and clear cell renal cell carcinoma [113–115]. The latter
tumor shows DNA cytosine hypermethylation, especially at the level of tumor-suppressor
genes, that has been attributed to low expression of L-2-hydroxyglutarate dehydrogenase
(L2HGDH) with consequent overproduction of the 2HG oncometabolite (the L isoform)
that in turn causes functional inactivation of TET2. Treatment with vitamin C reduced
DNA methylation and restored 5hmC levels via TET activation and inhibited tumor growth
in vitro and in vivo [115].

WT1 is a transcription factor that regulates many cellular pathways, including WNT
and MAPK signaling, and is involved in processes like cell differentiation and tumor
suppression. This transcription factor interacts with TET2 and recruits it to the promoter of
genes regulated by WT1 favoring their demethylation and expression [104,116]. Mutations
of WT1 hamper the ability of TET2 to bind to and induce transcriptional activation of
WT1-target genes (Figure 4). A clinical study on WT1-mutated AML refractory to induction
chemotherapy suggested the use of vitamin C as adjunct therapy, based on the evidence
that WT1 mutant leukemia cells show low 5hmC levels that in turn indicate reduced TET2
activity [15]. Since WT1 mutations are present in a large number of tumors, it is likely that
vitamin C treatment might be useful also in other clinical settings besides AML [104].

6.3. Vitamin C as Enzymatic Regulator of Others αKGDDs

HIF hydroxylases are another class of αKGDDs enzymes that are affected by vita-
min C. In human melanoma cell lines, vitamin C was found to act as cofactor of HIF
hydroxylases, which induces recognition of HIF-1α by the von Hippel–Lindau tumor sup-
pressor protein (VHL) with consequent ubiquitination and proteasomal degradation [117].
The heterodimeric transcription factor HIF1 comprises a cytosolic, O2 sensitive subunit
(HIF-1α) and a constitutively expressed subunit (HIF-1β). Under oxygen deficiency con-
ditions (e.g., ischemia, tumors), HIF-1α undergoes hydroxylation on specific proline and
asparagine residues and proteasomal degradation is prevented. In this way, HIF-1α can
translocate to the nucleus, dimerize with HIF-1β and activate target genes involved in
the regulation of many cellular functions such as proliferation, apoptosis, cell migration,
angiogenesis, glucose transport, and metabolism [118]. In various tumors, HIF-1α is
constitutively activated and high levels of expression seem to correlate with vitamin C
cytotoxicity [119–121]. Moreover, loss of function mutations in succinate dehydrogenase
and fumarate dehydrogenase can increase succinate and fumarate levels, which, in turn,
may lead to competitive inhibition of HIF hydroxylases and HIF-1α constitutive acti-
vation [18,119]. In several human cancers (endometrial, colorectal, breast, and thyroid
cancer), an inverse correlation between HIF-1α and intracellular vitamin C levels was also
found [122–124]. In AML patients, high expression levels of HIF-1α and GLUT1 were
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associated with lack of response to chemotherapy, probably due to the higher glycolytic
metabolism of resistant tumor cells [125]. Moreover, high HIF-1α activity has been re-
ported to inhibit TET2 expression [126]. Therefore, in tumors with HIF1 overexpression
or overactivation, vitamin C treatment may increase the activity of HIF hydroxylases,
with consequent HIF1α degradation and inhibition of the tumor promoting effects of this
transcription factor [18,127–130]. However, in patients with clear-cell renal cell carcinomas
with mutations in the VHL gene that prevent the degradation of hydroxylated HIF-α with
consequent accumulation of the transcription factor, there was no association between
HIF activity and ascorbate content [131]. These data suggest that vitamin C treatment
is unlikely to be effective in VHL-defective tumors. Conversely, in VHL-proficient tu-
mors with increased HIF activity due to hypoxic conditions, high-dose vitamin C might
prove beneficial by enhancing HIF-α degradation through stimulation of HIF hydroxylase
enzyme activity [131]. Nevertheless, since HIF positively regulates GLUT1 expression,
this might favor the entry of DHA into VHL-defective cells sensitizing them to vitamin
C cytotoxic effects [119,132]. Interestingly, administration of ascorbate by intravenous
infusion to colon cancer patients resulted in increased ascorbate content within the tumor
and reduced expression of HIF-dependent proteins [133].

Other epigenetic regulators belonging to the αKGDDs class are the Jumonji C-domain-
containing histone demethylases (JHDM). These enzymes catalyze the histone demethylation
at arginine and lysine residues regulating chromatin-dependent processes. Some evidence
demonstrated that vitamin C may modulate JHDM activity affecting their role in embryonic
stem cell reprogramming [134]. However, further studies are required to clarify the ability
of vitamin C to modulate JHDM activity in cancer [40].

6.4. Vitamin C may Favor DNA Damage by Increasing 5-Hydroxymethylcytosine Levels

DNA damage induced by vitamin C can occur at in vitro pro-oxidant concentrations
(>1 mM), as well as at concentrations capable of regulating αKGDDs enzymatic activity
(0.25–1 mM) [102,108,112,135,136]. In the latter case, vitamin C-induced DNA damage
derives from its ability to increase 5hmC levels.

In recent years, several studies have demonstrated a fundamental role of 5hmC
as the most stable oxidized 5mC intermediate in the DNA demethylation process [137].
As described above, low 5hmC levels were reported as marker of TET dysregulation and
vitamin C was found to enhance TET activity mimicking the action of hypomethylating
agents [94,102,114,135,138–147]. In tumor tissues, lower 5hmC levels are generally detected
compared to normal tissues that have been attributed to down-regulation of TET activity by
tumor hypoxic conditions since O2 is required for TET function [148,149]. Other pathways
that can explain the low amount of 5hmC in tumor DNA include: (a) passive dilution by
cell division in the presence of defective activity of DNA methyltransferase 1 (DNMT1);
(b) changes in TET activity as a consequence of gene mutations (see Section 6.2) or TET
protein “de-localization” [150,151].

Vitamin C is known to induce single strand breaks and to activate the BER pathway
via TET-mediated DNA oxidation [102,152]. Moreover, the presence of 5hmC at stalled
replication forks acts as a recruitment marker for the BER component apurinic and apyrim-
idinic endonuclease 1 (APE1) [153]. In a BRCA2-deficient murine cellular model, Kharat
and colleagues demonstrated that low levels of 5hmC and TET2 expression were associated
with increased stability of stalled replication forks and resistance to PARP inhibitors [153].
PARP inhibitors are a class of anticancer drugs approved for the treatment of tumors with
defective DNA repair due to germline and somatic mutations or epigenetic alterations of
essential components (e.g., BRCA1 or BRCA2) of the homologous recombination system
that is involved in the repair of DNA double strand breaks [154]. PARP inhibitor-induced
trapping of PARP1 at DNA damage site impairs the progression of the replication fork and
the repair/restarting of stalled replication fork requires a fully active homologous recombi-
nation. In homologous recombination-deficient cells, the intervention of error-prone DNA
repair processes (e.g., non-homologous end-joining) can induce genomic instability and
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rearrangements, which eventually lead to tumor cell death and synthetic lethality [155,156].
Moreover, PARP1 trapping triggers excessive fork degradation of stalled replication forks
resulting in fork collapse and DNA double strand breaks [157]. On this basis, in BRCA-
deficient tumors, protection of stalled replication forks may contribute to the development
of resistance to PARP inhibitors. In the presence of TET2 functional defects and consequent
low 5hmC levels, the recruitment of APE1 on the stalled replication fork is impaired and
this impedes the degradation of stalled replication forks [153]. In this context, exposure
to vitamin C was found to increase 5hmC via TET2 activity, by restoring the recruitment
of APE1 on stalled replication forks and inducing their degradation [153,158]. However,
additional studies are required to establish whether vitamin C, by increasing 5hmC lev-
els, might contribute to restore the sensitivity of tumors resistant to PARPi or to other
chemotherapeutic agents that induce a DNA damage response involving the homologous
recombination system (e.g., cisplatin).

7. High-Dose Vitamin C Exerts Preferential Cytotoxic Activity against Cancer Cells

What makes vitamin C interesting as antitumor agent is that it selectively kills can-
cer cells, without harming normal cells [46,65,67,68,91,159,160]. This is confirmed by
the results of clinical studies indicating that high-doses of vitamin C are generally well
tolerated [57,60,62,64,133,161].

Mechanisms involved in the preferential sensitivity to tumor cells to high-dose vita-
min C, include high levels of Fe2+ in the tumor microenvironment as well as intracellularly,
with consequent higher production of H2O2 and damaging hydroxyl radicals compared to
normal cells. Although H2O2 is regarded as a major ROS involved in vitamin C pro-oxidant
activity, cell damage is mainly mediated by hydroxyl radicals that are generated via Fenton
reaction through the interaction of Fe2+ with H2O2 [84,162]. Cancer cells may show alter-
ations in iron metabolism due to up-regulation of transferrin receptor or down-regulation of
iron export (ferroportin 1) with consequent increase in iron intracellularly [163]. Moreover,
certain tumors secrete in the extracellular matrix high amounts of ferritin from which Fe2+

can be released either directly by ascorbate or indirectly through the production of O2
•−

(Figure 3) [164]. Extracellular H2O2 may also favor the oxidation of ascorbate to DHA that
is then rapidly transported into tumor cells expressing high levels of GLUT1, generating
oxidative stress [18]. To this regard, vitamin C has been recently shown to increase GLUT1
expression in cancer cells and to induce the opposite effects in normal cells [165]. Finally,
specific molecular defects present in cancer cells may render them more vulnerable to
vitamin C-mediated antitumor effects (see Section 6.2).

In the majority of cases, patients with hematological malignances or solid tumors such as
melanoma, lung, head and neck squamous carcinoma, hepatocellular carcinoma, and breast
cancer, have lower plasma levels of vitamin C compared to healthy people [58,166–176].
More complex is the quantification of vitamin C inside the cells. Vitamin C cell content
in the tissues of healthy subjects (blood, neurons, glial cells; 1–10 mM range) exceeds
the plasma concentration (equivalent to 0.04–0.08 mM) except in the case of erythro-
cytes, in which vitamin C intracellular concentration corresponds to that detected in
plasma [4,17,52,177]. Particularly high is the concentration of vitamin C in lymphocytes,
monocytes, and platelets, which are considered reservoirs of vitamin C. On the other hand,
high-grade endometrial tumor tissues, colorectal, and breast cancer showed lower levels of
vitamin C compared to lower grade tumors or adjacent normal tissues [119,122,123]. In the
latter case, ascorbate tumor content directly correlated with disease-free survival [122].
In breast cancer, the vitamin C content was instead higher than in the non-neoplastic
surrounding tissue [178,179]. However, to our knowledge, limited information is currently
available on vitamin C levels present in tumors vs. normal tissues and data are not always
easily comparable.

The different vitamin C content reported in the tumor vs. normal cells might depend
on the expression pattern of transporters. Indeed, in several tumors (e.g., KRAS/BRAF
mutated colorectal, gastric, or breast cancer) the sensitivity to vitamin C correlated with
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the expression of GLUT1 and DHA adsorption [44–47,180,181]. Interestingly, the activity
of vitamin C against KRAS/BRAF mutated colorectal cancer might be useful to counteract
tumor resistance to anti-epidermal growth factor receptor (EGFR) monoclonal antibodies
(i.e., cetuximab, panitumumab) [182].

Liu and collaborators recently showed a lower expression of the SLC2A3 gene (GLUT3),
but not of the SLC2A1 gene (GLUT1), in leukemia blasts compared with normal hematopoi-
etic cells [183]. Moreover, exposure to vitamin C of the OCI-AML3 cell line, which does not
express GLUT3, did not result in increased cytoplasmic levels of the vitamin and did not
affect leukemia cell survival [183]. Additionally, in breast cancer cells, SVCT2 expression
led to a higher uptake of vitamin C, increased ROS production and cytotoxicity [184].
Furthermore, the cytotoxic effects exerted by ascorbate in acute and chronic myeloid
leukemia cell lines are dose-dependent and already evident at in vitro concentrations of
250 µM that do not induce significant production of H2O2 [102,159,183].

Concerning normal cells, neutrophils have been reported to accumulate vitamin C via
SVCT2, showing intracellular levels of 1–2 mM [185]. Interestingly, neutrophils isolated
from healthy individuals did not show additional uptake of ascorbate likely due to satura-
tion of its transporters (0.35 nmol/106 cells), but they were able to rapidly absorb DHA
that, however, did not induce any cytotoxic effect [186,187]. Moreover, single nucleotide
polymorphisms of SLC23As (SVCT) genes, identified in several tumors (e.g., gastric cancer)
may affect vitamin C plasma concentration and intracellular content [188–190].

Overall, these studies indicate that substantial differences may exist among the various
cell histotypes in terms of receptors and absorption rate of vitamin C. Therefore, future
studies aimed at understanding the preferential uptake of vitamin C by cancer cells should
not only include analysis of the expression of GLUT1, GLUT3, and SVCT2 transporters but
also measurement of vitamin C content inside the cells after treatment.

8. Conclusions

Most of the reported cytotoxic effects induced by vitamin C are observed at concentra-
tions that can only be reached after I.V. administration of high doses. However, due to the
short half-life detected after I.V. injection, these concentrations cannot be maintained for
a prolonged time. Indeed, weekly I.V. administration of high-dose vitamin C to prostate
cancer patients did not induce tumor regression [50,64]. Thus, it has been suggested that in
patients with an intact kidney function, a bolus loading dose followed by a maintenance
continuous infusion is likely required to achieve a steady-state plasma concentration of
vitamin C in the millimolar range [50].

In clinical trials, intravenous vitamin C is generally tested as adjunct treatment to
chemotherapy, since vitamin C as monotherapy often failed to meet efficacy
endpoints [18,60,62,64,191,192]. However, it should be noted that many of the first studies
testing vitamin C as single agent were done in terminal patients without tumors strati-
fication and a clear definition of efficacy endpoints [10,11,193]. Based on the results of
preclinical studies, future randomized clinical trials should be designed to evaluate vitamin
C activity in specific tumor molecular subtypes, such as those characterized by HIF-1α
over-expression and TET2, L2HGDH, IDH1/2, or WT1 altered pathways [194]. To this
regard, a recent study has demonstrated that intravenous treatment with ascorbate induced
clinical remission in a patient with AML carrying TET2 and WT1 mutations in separate
clones, after failure of induction chemotherapy [15].

For combinations therapies, clinical studies should be planned taking into account the
different molecular mechanisms involved in vitamin C antitumor activity that can be ob-
served even at lower concentrations, such as induction of DNA demethylation [167,195,196].
In particular, the conversion of 5mC to 5hmC deriving from vitamin C-mediated activation
of TETs may synergize with passive DNA demethylation (i.e., absence of methylation of
newly synthesized DNA strands) obtained by azacytidine or decitabine that are inhibitors
of DNMT1 [197–199]. Indeed, I.V. administration of low-dose vitamin C in combination
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with decitabine to elderly AML patients resulted in enhanced TET2 activity and improved
clinical response [200].

As described above, vitamin C might have a role in modulating the BER pathway
and has been shown to enhance the activity of PARP inhibitors reducing the viability of
human AML and promyelocytic leukemia cell lines [102,201]. Indeed, a case study on
eight cancer patients with advanced stage malignancies characterized by defects in the
homologous recombination repair system showed that I.V. vitamin C in combination with
PARP inhibitors (niraparib or olaparib or talazoparib) induced 37.5% complete remissions
(3 patients out of 8) and 62.5% (5 patients out 8) partial responses [202]. Despite the positive
results, further clinical studies on a larger number of patients are required to better clarify
the clinical efficacy of vitamin C in combination with these agents.

Overall, intravenously administered high-dose vitamin C is generally safe [203,204];
however, in some patients severe adverse effects may be observed. In particular, toxi-
city includes oxalate nephropathy in patients with renal impairment due to increased
urinary excretion of oxalate as end-product of vitamin C metabolism, severe hemolysis in
patients with paroxysmal nocturnal hemoglobinuria or with glucose-6-phosphate dehydro-
genase deficiency due to erythrocyte inability to maintain glutathione in its reduced form,
increased risk of thrombosis in cancer patients due to procoagulant activation of erythro-
cytes [205,206]. Thus, vitamin C treatment should also take into account patient-specific
risk factors for these adverse effects.
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