
RESEARCH ARTICLE National Science Review
8: nwaa231, 2021

https://doi.org/10.1093/nsr/nwaa231
Advance access publication 8 September 2020

MATERIALS SCIENCE

Light-driven directional ion transport for enhanced
osmotic energy harvesting
Kai Xiao 1,∗, Paolo Giusto1, Fengxiang Chen2,5,∗, Ruotian Chen3, Tobias Heil 1,
Shaowen Cao1,4, Lu Chen1,2, Fengtao Fan3 and Lei Jiang2

1Max Planck Institute
of Colloids and
Interfaces,
Department of Colloid
Chemistry, Potsdam
D-14476, Germany;
2Key Laboratory of
Bio-inspired Smart
Interfacial Science
and Technology of
Ministry of Education,
School of Chemistry,
Beihang University,
Beijing 100191, China;
3State Key Laboratory
of Catalysis,
2011-iChEM, Dalian
National Laboratory
for Clean Energy
(DNL), Dalian Institute
of Chemical Physics
(DICP), Chinese
Academy of Sciences,
Dalian 116023, China;
4State Key Laboratory
of Advanced
Technology for
Materials Synthesis
and Processing,
Wuhan University of
Technology, Wuhan
430070, China and
5State Key Laboratory
of New Textile
Materials and
Advanced Processing
Technologies, Wuhan
Textile University,
Wuhan 430200, China

∗Corresponding
authors. E-mails:
xiaokai@iccas.ac.cn;
fxchen czx@buaa.edu.cn

Received 2 June
2020; Revised 10
August 2020;
Accepted 11 August
2020

ABSTRACT
Light-driven ion (proton) transport is a crucial process both for photosynthesis of green plants and solar
energy harvesting of some archaea. Here, we describe use of a TiO2/C3N4 semiconductor heterojunction
nanotube membrane to realize similar light-driven directional ion transport performance to that of
biological systems.This heterojunction system can be fabricated by two simple deposition steps. Under
unilateral illumination, the TiO2/C3N4 heterojunction nanotube membrane can generate a photocurrent
of about 9μA/cm2, corresponding to a pumping stream of∼5500 ions per second per nanotube. By
changing the position of TiO2 and C3N4, a reverse equivalent ionic current can also be realized. Directional
transport of photogenerated electrons and holes results in a transmembrane potential, which is the basis of
the light-driven ion transport phenomenon. As a proof of concept, we also show that this system can be
used for enhanced osmotic energy generation.The artificial light-driven ion transport system proposed here
offers a further step forward on the roadmap for development of ionic photoelectric conversion and
integration into other applications, for example water desalination.
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INTRODUCTION
Nature’s biochemical machinery is a source of inspi-
ration fordevelopmentof artificialmolecular devices
or ion transport systems designed to emulate the
form and function of their biological counterparts.
A typical example is that the cellular metabolism
in living organisms depends on the compartmen-
talization of ions, small molecules and macro-
molecules beingmaintained andmanaged bymeans
of transmembrane active transport. Inspired by this,
artificial systems have been developed that are ca-
pable of transporting molecules against concen-
tration gradients, such as molecular motors [1,2]
and molecular pumps [3]. Photosynthesis by green
plants or archebacter is the most important bio-
chemical process in nature, providing most of the
energy we need and a comfortable environment
suitable for biological survival. With the develop-
ment of modern science, photosynthesis-inspired
light-driven physical and chemical processes have
attracted extraordinary attention. We mention, for

instance, photocatalytic chemical reactions [4] or
thephotovoltaic cell [5], bothofwhichoccupy thou-
sands of research groups globally and have already
created tremendous economic value. However, arti-
ficial photosynthesis involving complex physical and
chemical processes is still one of themost tough, but
also promising,missions in the field of bionics [6–9].

In terms of energy harvesting, artificial light-
driven ion transport is very attractive because the dif-
ferent photosynthetic processes of both green plants
and halobacteria involve a step during which pro-
tons/ions are pumped from low concentration to
high concentration to create an electrochemical po-
tential, which is then used for ATPase to produce
ATP.Consequently, the realization of artificial light-
driven ion transport is the key point for a new ‘ionic’
mode of solar energy harvesting and storage [10].

Remarkable progress has also been achieved
toward realization of permselectivity of protons
or alkaline earth metal ions across membranes by
light-induced charge separation [11–13], photo-
isomerization [14,15] and solid-state nanochannels
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Figure 1. Fabrication process and characterization of TiO2/C3N4 semiconductor heterojunction nanotubes. (a) Simplified
schematic of light-driven ion transport system. (b) Fabrication process of TiO2/C3N4 heterojunction nanotubes including two
steps. Step 1: TiO2 layer deposition by ALD; Step 2: C3N4 layer deposition by CVD (scale bar, 0.5 cm). (c) SEM images of
TiO2/C3N4 heterojunction nanotube membrane from cross section and top view (scale bar, 200 nm). (d) TEM image of sig-
nal TiO2/C3N4 nanotube (scale bar, 100 nm) and enlarged wall surface (scale bar, 10 nm). (e) Elemental maps of TiO2/C3N4

heterojunction nanotube wall. Each pixel covers 1 nm2.

[16,17]. This ability raises a pertinent question for
artificial light-driven ion transport systems: is there
a way to drive ion transport by light in an easy and
universalmanner, and then realize an efficient ‘ionic’
energy harvesting as in nature? Herein, we report
development of an artificial light-driven ion trans-
port system via a semiconductor heterojunction
nanotube membrane that drives ion transport in a
specific direction under unidirectional illumination
for photocurrent generation (Fig. 1a). We demon-
strate that such semiconductor heterojunction
nanotubes consisting of titanium oxide (TiO2)
and polymeric carbon nitride (C3N4) enable
efficient light-driven ion transport and tunable
ion transport direction by controlling the hetero-
junction structure.

RESULTS AND DISCUSSION
Fabrication and characterization of
TiO2/C3N4 heterojunction nanotubes
Theheterojunction of the semiconductor nanotubes
used here is a TiO2/C3N4 heterojunction, which

was fabricated by two deposition steps (Fig. 1b and
Supplementary Fig. 1). In the first step, TiO2 nan-
otubes with various wall thicknesses were fabricated
by an atom layer deposition (ALD) method us-
ing porous anodic aluminum oxide (AAO) mem-
brane with pore diameter about 100 nm as the
substrate (Supplementary Fig. 2). Then, the amor-
phous TiO2 nanotubes were crystallized by ther-
mal annealing at 500◦C for 2 hours. In the second
step, the anatase TiO2 nanotubes (Supplementary
Fig. 3) were coated with a 10 nm layer of C3N4
(Supplementary Fig. 4) by chemical vapor deposi-
tion (CVD) [18]. In this way, a TiO2/C3N4 hetero-
junction nanotube was fabricated (Fig. 1c). For an-
alytical reasons, the carbon nitride nanotube can be
released by chemical etching of the AAO substrate
by 5 wt% phosphoric acid. Figure 1d shows a typical
TEM image of a TiO2/C3N4 heterojunction nan-
otube, with the enlarged wall section showing that
the wall is composed of an inner TiO2 layer and
outer C3N4 layer. High-resolution EDX measure-
ments of the partial wall section in Fig. 1e and Sup-
plementary Fig. 5 show that the inner TiO2 layer is
about 5nm thick,while theouterC3N4 layer is about
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Figure 2. Light-driven ion transport performance of TiO2/C3N4 semiconductor heterojunction nanotube membrane. (a) Mea-
sured cyclic constant zero-volt current with alternating illumination at 0.1 M KCl concentration. (b) Zero-volt current as a
function of light density of 54 mW/cm2, 128 mW/cm2 and 300 mW/cm2. (c) Zero-volt current as a function of TiO2 layer
thickness. (d) Zero-volt current as a function of monochromatic light (blue: 405 nm; green: 515 nm; yellow: 590 nm) with same
power density of 300 mW/cm2. The ionic current is consistent with the light absorbance of outer C3N4 layer. (e) Zero-volt
current as a function of pH. Error bars in (c–e) represent the standard deviations of five independent experiments.

10 nm thick (The pixel intensity represents the con-
centrationof the related elements, respectively. Each
pixel covers 1 nm2). This is a representative of sam-
ples used in this work, but the thickness of the C3N4
and TiO2 layers can be well controlled (see below).
The length of all samples is the same, about 60 μm.
The obtained heterojunction nanotubes were in-
vestigated by X-ray diffraction (XRD) measure-
ments, FT-IR spectroscopy andX-rayphotoelectron
spectroscopy (XPS) (Supplementary Figs 6–8). All
of the results indicate formation of TiO2/C3N4
heterojunction nanotubes.

Light-driven ion transport phenomenon
The light-driven ion transport properties were mea-
sured using a home-made electrolyte cell, as we
have reported previously [19,20]. The TiO2/C3N4
heterojunction nanotube membrane was symmet-
rically placed in contact with a 0.1 M KCl solu-
tions and initially illuminated from one side. Fig-
ure 2a shows the cycle-constant zero-volt current
across the nanotube membrane by simulated so-
lar illumination of 300 mW/cm2. Without illumi-
nation, the zero-volt current is almost zero, while
it increased to about 9 μA/cm2 with illumination,
indicating that light provides an external force to
drive ions to move. By calculation, the changed cur-
rent translates into the fact that a single nanotube
actively transports ∼5500 ions per second, an un-
precedented breakthrough for artificial light-driven

ion transport systems and much closer to values
for the bacteriorhodopsin sodium pump [21] or
halorhodopsin Cl ion pump [22]. The directional
photo-driven ion transport phenomenon can be di-
rectly confirmed by the change of ion concentration
in the twocells (SupplementaryFig. 9),which canbe
monitored in real time with a scanning ion-selective
electrode technique (SIET). In addition, the mem-
brane shows an instantaneous stable and fully re-
peatable response to illumination.The ionic current
is still stable even at longer illumination (Supple-
mentary Fig. 10). Further measurements show that
the ion transport is closely connected to the illumi-
nation power density. The dependence can be con-
firmed by the ionic current shown in Fig. 2b. With
decrease of power density from 300 mW/cm2 to
54 mW/cm2, the ionic current decreases gradually
from 9 μA/cm2 to 0.8 μA/cm2. It is worth men-
tioning that the photo-induced voltage is also pos-
itively correlated with light power density (Supple-
mentary Fig. 9), while it is only dozens of millivolts
andmuch smaller than that for pure C3N4 nanotube
membrane [20].

The wall thickness of TiO2 nanotube has an ob-
vious effect on the light-driven ion transport prop-
erties (Fig. 2c). With increase of wall thickness
from 5 nm to 15 nm (Supplementary Fig. 2), the
ionic current decreases from about 9 μA/cm2 to
2.5 μA/cm2. This could be ascribed to a less ef-
ficient photochemical charge separation and more
interfacial recombination of electrons and holes in
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Figure 3.Mechanism of light-driven ion transport phenomenon. (a) Schematic of the surface charge distribution on the nanotube before illumination,
in which condition low density negative charge is homogeneously distributed over the nanotube. (b) Light-induced separation of electrons and holes
of C3N4. The holes transfer from C3N4 to TiO2. (c) Schematic of the surface charge distribution on the nanotube after unilateral illumination, in which
condition the separation of electrons and holes results in heterogeneous negative charge distribution. (d) Fluorescent mapping of C3N4 (left) and
TiO2/C3N4 (right) nanotube membranes. (e) KPFM image of the TiO2/C3N4 nanotube membranes. Scale bar, 200 nm. (f) Surface potential (CPD) evolution
with light on and off in pore area and wall area of the TiO2/C3N4 nanotube.

thicker case [23].The light-driven ion transport sys-
tem also shows an obvious relationship with the
light wavelength (Fig. 2d). When applying various
monochromatic light with the same power density
(300 mW/cm2), white light and high-energy blue
light have a comparable high ‘power’ to drive ion
transport, while low-energy green and yellow light
showamuchweaker effect (Supplementary Fig. 11).
This is consistent with the light absorbance of the
exposed C3N4 layer (Supplementary Fig. 12) [24].
In general, the isoelectric point of C3N4 fabricated
by different precursors is in the range of 3.5 to 5
[25], while the light-driven ion transport system is
universal and works constantly in a wider pH value
range from 1.9 to 9.5 (Fig. 2e). In strong alkali solu-
tion with a pH value of 12.5 it shows a different phe-
nomenon as C3N4 is surface-hydrolyzed under such
conditions (Supplementary Fig. 13) [26,27].Mean-
while, the ionic current shows a positive correla-
tion with electrolyte concentration (Supplementary
Fig. 14).

Mechanism of light-driven ion transport
The surface charge redistribution of the heterojunc-
tion nanotube resulting from photo-induced sepa-
ration of electrons and holes is thought to be key

to the light-driven ion transport phenomenon. As il-
lustrated in Fig. 3a, the initial TiO2/C3N4 nanotube
has a symmetric weakly negative charge because of
the acidity of the inner C3N4 layer [28]. In this con-
dition, there is no ionic current in the external circuit.
When illuminated from one side of the H-cell, the
surface charge density on the irradiated side of the
TiO2/C3N4 nanotube increases because the built-in
potential in the heterojunction resulting from band
bending will drive photogenerated holes to move
from theC3N4 layer to theTiO2 layer (Fig. 3b).This
results in a positively chargedTiO2 layer and a nega-
tively charged C3N4 layer. As the asymmetric nega-
tive surface charge is created, cations will move from
the non-illuminated side to the illuminated side,
while anions move oppositely (Fig. 3c). In this way,
a light-driven ion transport system develops. Previ-
ouswork has already shown that a single phaseC3N4
nanotube exhibits similar, but weaker, light-driven
ion transport properties [20,29], caused by less effi-
cient photocharge separation [30,31]. In the present
system, the nanoscopic TiO2/C3N4 heterojunction
structure provides two different phases for each
charge. The proposed mechanism is further con-
firmed by fluorescent mapping. As shown in Fig. 3d,
the fluorescent mapping of the C3N4 nanotube
system (left) exhibited fluorescence signals, which
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Figure 4. Fabrication of C3N4/TiO2 heterojunction nanotubes and their performance. (a) Schematic fabrication process of the C3N4/TiO2 heterojunction
nanotube. Step 1: C3N4 layer deposition by CVD; Step 2: TiO2 layer deposition by ALD. (b) TEM image of signal C3N4/TiO2 nanotube (scale bar, 100 nm)
and enlarged wall surface (scale bar, 10 nm). (c) Light-induced separation of electrons and holes of C3N4. The holes will transfer from C3N4 to TiO2.
(d) Schematic of surface charge distribution and ion transport in the nanotube after unilateral illumination. (e) Measured cyclic constant zero-volt current
with alternating illumination. (f) CPD evolution with light on and off in pore area and wall area of C3N4/TiO2 nanotube.

represent recombination of photo-generated elec-
trons andholes; whereas for theTiO2/C3N4 hetero-
junction system (right), the fluorescence is negligi-
ble (Supplementary Fig. 15), which means that ra-
diative recombination is effectively suppressed in the
heterojunction structure.

To directly observe the charge distribution, we
mapped the surface potential by Kelvin probe force
microscopy (KPFM) under unilateral illumination.
For the C3N4 nanotube, the potential of the pore
area is 40 mV lower than that of the wall area, in-
dicating upward band bending and electron cap-
ture by theC3N4 nanotube surface.Meanwhile, light
irradiation increased the surface potential in both
areas, indicating the n-type semiconductor prop-
erty of C3N4 (Supplementary Fig. 16). As for the
TiO2/C3N4 heterojunction structure, the surface
potential of the pore area exceeds that of the wall
area by 10 mV (Fig. 3e and Supplementary Fig. 17),
indicating band bending and generation of built-in
electrical field in the heterojunction. After light ir-
radiation, the surface potentials of both the pore
area and the wall area decreased, giving direct ev-
idence for directional transport of photogenerated
electrons (to the outerC3N4 layer) andholes (to the
inner TiO2 layer) (Fig. 3f). The observed electron
accumulation at the illuminated sidebothon thewall
and in the pore coincides with the measured cation

migration towards the illuminated surface (Fig. 3c),
thus indicating that the light-induced charge redis-
tribution is responsible for the driving force of ion
migration [32].

Reverse ion transport by C3N4/TiO2
heterojunction nanotubes
The light-driven ion transport can also be easily re-
versed by changing the position of C3N4 and TiO2.
We fabricated a secondC3N4/TiO2 nanotubemem-
brane by the same deposition methods but with re-
verse order (Fig. 4a). Now, C3N4 is placed in the
inner layer and TiO2 in the outer layer. Figure 4b
shows a typical TEM image of the C3N4/TiO2 het-
erojunction nanotube and the enlarged wall section
shows clearly that the wall is composited by an in-
ner C3N4 layer and an outer TiO2 layer, both of
which have a thickness of about 7 nm (a repre-
sentative sample). With the unilateral illumination,
the outer TiO2 layer should be positively charged
from the directional movement of photogenerated
holes (Fig. 4c). In this way, the anions will move
from the non-illuminated side to the illuminated
side (Fig. 4d). Figure 4e shows the cyclic constant
zero-volt current across thenanotubemembraneun-
der a simulated solar illumination of 300 mW/cm2.
Without illumination, the zero-volt current is almost
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Figure 5. Potential application of photo-driven ion trans-
port for enhanced osmotic energy generation. The typical
current–voltage curves before and after light (300 mW/cm2)
irradiation at 100-fold (CH = 0.1 M; CL = 0.001 M) KCl
concentration gradient.

zero, while it increased to about −9 μA/cm2

under illumination, which indicates that light pro-
vides an opposite external force for ion pumping.
Figure 4f shows clearly that the reverse C3N4/TiO2
combination yields an opposite transmembrane
photovoltage compared to the TiO2/C3N4 combi-
nation (Fig. 3f), in agreement with the reversed ion
transport performance and further confirming the
mechanism of light-driven ion transport. We can as-
sume that not only can the ion transport direction
be directly controlled using different semiconduc-
tor heterojunction combinations, but also the pho-
tocurrent value can be adjusted by combining dif-
ferent semiconductors with suitable band gaps.This
suggests that semiconductor heterojunction nan-
otubes are a universal way to realize light-driven ion
transport.

Photo-enhanced blue energy generation
Beyond providing a novel method for photoelec-
trical energy conversion, this ion transport system
can be potentially integrated into other energy har-
vesting approaches, for example to harvest salinity
gradient energy, also called ‘blue energy’ [33–35].
Blue energy is a sustainable, abundant and inexpen-
sive source of clean energy that is mainly stored in
the sheer amount of available fresh and salty wa-
ter being mixed (e.g. at the Yangtze river muzzle)
[36]. The recently developed nanofluidic reverse-
electrodialysis (NRED) method provides a very ap-
pealing way to harvest this energy and works again
by a charged nanochannel or porous nanochannel
membranes [10,37]. In the NRED process, sur-
face charge density plays a crucial role. Generally
speaking, high surface charge density will boost
the blue energy power density. The weakly charged

TiO2/C3N4 heterojunction nanotube membrane
already can be used to harvest blue energy, but
creates an osmotic current of only 21 μA/cm2 em-
ploying a 100-fold (0.1 M-0.001 M) concentration
gradient (Fig. 5). With 300 mW/cm2 light irradia-
tion from the low concentration side, the osmotic
current increased to about 28 μA/cm2. This en-
hanced osmotic current is ascribed to the increased
surface charge density induced by light irradiation,
but also to the pumping flux being of the order of the
current increase. The present light-driven ion trans-
port system thereby provides an opportunity to inte-
grate solar energy and salinity gradient energy [32],
potentially overcoming the disadvantages of low en-
ergy efficiency and poor power density currently
associated with blue energy.

CONCLUSION
In summary, we report that semiconductor hetero-
junction nanotubes, herein using TiO2/C3N4 het-
erojunction nanotubes as an example, can be used
for constructing an artificial light-driven ion trans-
port system, which can then be used for ionic energy
generation. The light-driven ionic current can reach
up to about 9μA/cm2, three times that ofC3N4 nan-
otubes.The ionic transport direction can easily be re-
versed by modifying the semiconductor deposition
sequence. The enhanced and flexible light-driven
ionic current can be ascribed to redistribution of sur-
face charge across nanotubes. In addition, we may
expect that other semiconductor or semiconductor
heterojunction nanostructures, which are currently
used for photocurrent generation, for example two-
dimensional van der Waals semiconductors [38] or
2D MOF [39], will exhibit similar light-driven ion
transport performance. Most importantly, not only
ions but also specific charged organic molecules up
to small peptides are expected to be transportedwith
the aid of this novel approach for directedmolecular
movement.
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