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Abstract

In this paper, we discuss a multi-period portfolio optimization problem based on uncertainty

theory and prospect theory. We propose an uncertain multi-period portfolio selection model,

in which the return utility and risk of investment are measured by prospect theory utility func-

tion and uncertain semivariance. More realistically, the influence of transaction costs and

bankruptcy of investor are also considered. Moreover, to solve the portfolio model, this

paper designs a new artificial bee colony algorithm by combining sine cosine search

method. Finally, a numerical experiment is presented to demonstrate the proposed model

and the effectiveness of the designed algorithm.

Introduction

Portfolio selection discusses the problem of how to allocate a certain amount of investors’

wealth among different assets and form a satisfying portfolio. Markowitz [1] developed the

classical mean-variance (M-V) model, which laid the foundation of modern portfolio analysis.

By quantifying the investment return as expected value and quantifying the investment risk as

variance, the investors seek a portfolio to strike a balance between maximizing the return and

minimizing the risk. The conventional M-V model, on the other hand, is a single-period

model that makes a single choice at the beginning of the period and adheres to it until the con-

clusion of the period. As we know, in real financial market, investor needs to timely adjust the

investment decision according to financial market environment changes. Thus, expanding

portfolio selection from a single time to many periods is essential. Numerous scholars have

explored multiperiod portfolio selection issues so far. For example, Sun [2] shows that multi-

period portfolio problems can be accomplished, essentially by means of a dynamic program-

ming approach. Liu [3] proposed a hybrid particle swarm optimization algorithm to solve the

multi-period portfolio selection model. Calafiore The model provided by [4] determines

multi-period optimum portfolio changes with the goal of reducing a cumulative risk measure

across the investment horizon. More literatures are as follows [5–7].

Using the framework of probability theory, the preceding portfolio models represent the

returns of securities as random variables. The fundamental assumption among them is that

security market conditions in the future may be accurately mirrored by security data from the

past. However, in real life, due to the fact that there are often unexpected events in the securi-

ties market, historical data cannot represent future trends, and there are many new securities
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that have no historical data as a reference. In this situation, security returns can be obtained

by the experts’ subjective estimations instead of historical data. At present, there are two

approaches to deal with the experts’ subjective estimations: first, fuzzy set theory, proposed by

Zadeh [8], and second, uncertainty theory developed by Liu [9]. However, existing studies

have shown that, contradictions will arise if fuzzy variables are used to describe the security

returns. For instance, we should have a membership function to describe a fuzzy variable, such

as the security return rate. Assume it is a triangular fuzzy variable ξ = (−0.2, 0.4, 1.0). From the

membership function, we know from possibility theory (or credibility theory) that Pos ξ =

0.4 = 1 (or Cr ξ = 0.4 = 0.5), which indicates that the return rate is precisely 0.4 with a belief

degree of 1 in the possibility measure (or 0.5 in credibility measure). This conclusion is illogi-

cal, though. Liu suggested an uncertain measure and unknown variable to address these issues.

(see Liu [10, 11], Qin [12]).

In the meantime, uncertain portfolio selection problems also have been widely concerned

in two directions. The former direction focused on single-period portfolio selections. For

example, Huang [13, 14] demonstrates that uncertain variable should be reflected upon the

experts’ individualized assessments of security returns. Torre et al. [15] proposed a stock port-

folio selection model with set-valued analysis in an uncertain environment. Zhang [16]

explores single-period portfolio selection problem in uncertain environment in which security

returns cannot be well reflected by historical data, but can be assessed by the experts. More lit-

eratures are as follows [13, 17, 18]. While, the latter direction concentrated on multi-period

portfolio selections. Zhou [19] studied a time consistent multi-period rolling portfolio optimi-

zation problem under fuzzy environment. Li et al. [20] examined an uncertain multi-period

portfolio selection problem in three steps with the influence of transaction cost and bank-

ruptcy of investor being considered. Chen et al. [21] presented a novel uncertain multi-period

multi-objective mean-variance-skewness model by taking into account multiple realistic

investment constraints, such as transaction cost, bounds on holdings, and cardinality etc. To

our knowledge, except for the researches mentioned hereinbefore, uncertainty theory has been

rarely used for multi-period portfolio selections. The lack of work and the growing interest of

the scientific community in uncertainty theory has motivated this work.

Markowitz’s portfolio theory is based on the rationality of investors. However, investors in

real life are not always completely rational when making investment decisions. In most cases,

people are bounded rational, they may incorporate their preferences when making decisions.

Their decisions may be based more on subjective factors. The widely accepted theory of the

irrational behavior of investors is the Prospect Theory proposed by Kahnemann and Tversky

[22, 23]. The theory effectively combines psychology and economics through experimental

research and studies various types of irrational decision-making behaviors. Shefrin and Stat-

man created a behavioral portfolio theory based on the principles of SP/A theory and prospect

theory. There is a substantial body of literature on behavioral portfolio theory since the

groundbreaking work of Shefrin and Statman [24]. In order to capture investors’ behavioral

characteristics in defined contribution pension planning, Blake et al. [25] also developed an

asset allocation model that makes use of the prospect theory value function.

The objective of this paper is to discuss a multi-period portfolio selection problem under

assumption that the security returns are assumed as uncertain variables. The main contribu-

tions of this work can be summarized as follows: (1) This paper proposes an uncertain multi-

period portfolio optimization model, in which the utility of investment returns is measured by

a utility function in prospect theory. (2) The investment risk is measured by uncertain semi-

variance instead of uncertain variance. Also, the proposed model simultaneously considers

transaction costs and bankruptcy constraint. (3) This paper proposes a new artificial bee
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colony algorithm by combining sine cosine search method to improve the efficiency and preci-

sion of solving the portfolio model.

The remainder of the paper is structured as follows: In Section 2, we cover fundamental

uncertainty theory ideas and findings. In Section 3, we provide a multi-period utility-semi-

variance model for portfolio selection under uncertainty. In Section 4, we provide a modi-

fied method for an artificial bee colony to solve the given problem. The section concludes

with an illustration of the usefulness of the Section 5 recommendations. Section 6 gives

conclusions.

Preliminaries

The following introduces some fundamental concepts related to uncertainty theory.

Definition 1 [9]. Assume that Γ is a nonempty set and Z is a σ-algebra on Γ. If a set func-

tion M is called an uncertain measure, then the following axioms hold:

Axiom 1: (Normality) M{Γ} = 1;

Axiom 2: (Duality) M{Λ} + M{Λc} = 1 for any event Λ 2 L;

Axiom 3: (Subadditivity) For any given countable sequence Λ1, Λ2, . . ., we have

M
[1

i¼1

Li

( )

�
X1

i¼1

fLig:

Axiom 4: (Product) Assume that (Γk, Lk, Mk) is an uncertainty space for all k = 1, 2, . . .,1.

Then, the product uncertain measure M satisfies the following relation

M
Y1

k¼1

Lk

( )

¼

1̂

k¼1

MkfLkg:

Here, ΛK is randomly chosen events from Lk for k = 1, 2, . . ..

An uncertain variable ξ is defined by Liu [9] as a measurable function from an uncertainty

space ðG;L;MÞ to the set of real numbers, i.e., for any Borel set B of real numbers, the set

fx 2 Bg ¼ fg 2 G j xðgÞ 2 Bg:

is an event.

Lemma 1 [10]. Any uncertain measure M is increasing, i.e. for any events ^1� ^2, we

have

Mf^1g �Mf^2g:

Definition 2 [9]. The uncertainty distribution F : R! ½0; 1� of an uncertain variable ξ is

defined by

FðtÞ ¼Mfx � tg;

for any real number t.

Definition 3 [9]. Let ξ be an uncertain variable. Then the expected value of uncertain vari-

able ξ is defined by

E½x� ¼
Z þ1

0

Mfx � rgdr �
Z 0

� 1

Mfx � rgdr:

Provided that at least one of the two integrals is finite.
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Definition 4 [9]. An uncertainty distribution F(x) is said to be regular if it is a continuous

and strictly increasing function with respect to x at which 0< F(x)<1, and

lim
x!� 1

FðxÞ ¼ 0; lim
x!þ1

FðxÞ ¼ 1:

An uncertain variable ξ is called zigzag if it has a zigzag uncertainty distribution

FðxÞ ¼

0; x � a;

x � a
2ðb � aÞ

; a � x � b;

xþ c � 2b
2ðc � bÞ

; b � x � c;

1; x � c:

8
>>>>>>>>>><

>>>>>>>>>>:

ð1Þ

Defined by x � Zða; b; cÞ, where a, b and c are real numbers with a< b< c. The inverse

uncertainty distribution of zigzag uncertain variable Zða; b; cÞ is

F� 1ðaÞ ¼
ð1 � 2aÞaþ 2ab; 0 < a < 0:5;

ð2 � 2aÞbþ ð2a � 1Þc; 0:5 � a < 1:

(

ð2Þ

Lemma 2. [9]. Let ξ be an uncertain variable. Then for any given numbers a> 0 and p> 0,

we have

Mfjxj > ag �
E½jxjp�
ap

: ð3Þ

Lemma 3. [10]. Let ξ be an uncertain variable with regular uncertainty distribution F. If the

expected value exists, then

E½x� ¼
Z 1

0

F� 1ðaÞda: ð4Þ

Definition 5 [14]. Let ξ be an uncertain variable with finite expected value e. Then the semi-

variance of ξ is demonstrated by

SV½x� ¼ E½½ðx � eÞ� �2�;

where

ðx � eÞ� ¼
x � e; if x � e;

0; if x > e:

(
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When the uncertain variable ξ has continuous uncertainty distribution F(r), consequently

SV½x� ¼
Z þ1

0

Mfððx � eÞ� Þ2 � rgdr

¼

Z þ1

0

Mfx � e �
ffiffi
r
p
gdr

¼

Z e

� 1

2ðe � rÞFðrÞdr:

Multi-period uncertain portfolio model with utility function

In this part, we offer a multi-period uncertain portfolio model that uses the prospect theory

utility function to describe investors’ behavior elements in the multi-period portfolio by com-

bining uncertainty theory and prospect theory. And the investment risk is measured by uncer-

tain semivariance instead of uncertain variance. At the same time, we consider the portfolio

model in the case of bankruptcy constraints. For the sake of clarity, we first define all of the

notations that will be used in the following sections. For i = 1, 2, . . ., n, and t = 1, 2, . . ., T, we

let

rt,i, the uncertain return rate of ith risk security at period t;

dt,i, the transaction cost of security i at period t;

Wt, the available wealth at the end of period t;

εt,i, the lower bound of security i at period t;

δt,i, the upper bound of security i at period t;

mt, the maximum number of securities hold in the portfolio at period t, 1�mt� n;

zt,i, the binary variable, is 1 if zi = 1, 0 otherwise.

Dynamic prospect theory utility function

Prospect theory defines how investors assess assets through comparing them to a reference

value, where results falling below the reference value are considered losses and results rising

beyond the reference value are considered gains. Additionally, investors exhibit loss aversion,

which is the tendency to be more sensitive to losses than profits. The incorporation of loss

aversion into the multi-period portfolio model, which incorporates a crucial behavioral trait in

investors’ decision-making, is one of our key foci in this work. The utility function is expressed

by weighting formula and value formula, which is expressed by

V ¼
XT

t¼1

ðoðpÞvðE½Rt;N �ÞÞ: ð5Þ

Three essential traits define the value function. (1) Reference dependence: People compare

assets to a particular reference value while evaluating them. (2) Loss aversion: People are less

tolerant of profits than losses. (3) Decreasing sensitivity: People are often risk-averse when it

comes to profits and risk-seeking when it comes to losses. In this paper we will employ the

PLOS ONE Multi-period uncertain portfolio selection model with prospect utility function

PLOS ONE | https://doi.org/10.1371/journal.pone.0274625 September 14, 2022 5 / 17

https://doi.org/10.1371/journal.pone.0274625


piecewise value function of Tversky and Kahneman [26], which can be formulated as

vðE½Rt;N �Þ ¼

ðE½Rt;N � � yÞ
a
; E½Rt;N � � y;

� lðy � E½Rt;N �Þ
b
; E½Rt;N �� < y;

t ¼ 1; . . . ;T

8
<

:
ð6Þ

where θ denotes the given reference return. λ denotes the loss aversion ratio, and λ> 1, indi-

cating loss aversion. α and β denote the curvature parameters for gains and losses respectively,

the greater the α and β values, the greater the risk preference of investors. According to

Tversky and Kahneman [23], λ = 2.25, α = β = 0.88.

We will use Tversky and Kahneman’s original probability weighting function [23], which

can be expressed as,

oðpÞ ¼
pg

ðpg þ ð1 � pÞgÞ

1

g

;
ð7Þ

with 0< γ� 1. According to Tversky and Kahneman’s experiments [23], the median value for

gamma is 0.65.

The security returns rt,i (i = 1, 2, . . ., n; t = 1, 2, . . ., T) are supposed as zigzag uncertain vari-

ables, defined by Zðat;i; bt;i; ct;iÞ, where at,i, bt,i and ct,i are real numbers with at,i< bt,i< ct,i.
Moreover, the transaction costs are considered. The net return of the portfolio xt at period t is

Rt;N ¼
Xn

i¼1

rt;ixt;i � Dt

¼
Xn

i¼1

ðrt;ixt;i � dt;ijxt;i � xt� 1;ijÞ:

ð8Þ

According to Liu [9], we can obtain the expected value of rt,i as follows,

Eðrt;iÞ ¼
at;i þ 2bt;i þ ct;i

4
: ð9Þ

Therefore, the expected value of net return is

E½Rt;N � ¼
Xn

i¼1

at;i þ 2bt;i þ ct;i
4

xt;i � dt;ijxt;i � xt� 1;ij

� �

: ð10Þ

The cumulative risk

To overcome the shortcoming of variance risk measure, semivariance was proposed by Marko-

witz [27]. Semivariance more closely approximates investors’ intuitive sense of risk than vari-

ance since it only evaluates the variability of returns below the mean and ignores any

variability of returns above the mean. Therefore, in this paper, by considering the security

returns as uncertain variables, an uncertain semivariance is introduced, and then its’ crisp

form is derived.
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The risk of the portfolio xt = (xt,1, xt,2, . . ., xt,n) at period t is expressed as

SV½Rt;N � ¼ SV
Xn

i¼1

�

rt;ixt;i � dt;ijxt;i � xt� 1;ij

�" #

¼ SV
Xn

i¼1

x2

t;irt;i

" #

:

ð11Þ

According to Definition 5, we can obtain

SV½rt;i� ¼
Z

at;i þ 2bt;i þ ct;i
4

� 1

2
at;i þ 2bt;i þ ct;i

4
� r

� �

FðrÞdr:

Since F(r) is a piecewise function, we can obtain the following results from two cases:

if at,i + ct,i� 2bt,i, then

SV½rt;i� ¼
Z

at;i þ 2bt;i þ ct;i
4

at;i

2
at;i þ 2bt;i þ ct;i

4
� r

� �
r � at;i

2ðbt;i � at;iÞ

 !

dr

¼
ð2bt;i þ ct;i � 3at;iÞ

3

384ðbt;i � at;iÞ
:

ð12Þ

If at,i+ ct,i> 2bt,i, then

SV½rt;i� ¼
Z bt;i

at;i

2
at;i þ 2bt;i þ ct;i

4
� r

� �
r � at;i

2ðbt;i � at;iÞ

 !

dr

þ

Z
at;i þ 2bt;i þ ct;i

4

bt;i

2
at;i þ 2bt;i þ ct;i

4
� r

� �
r þ ct;i � 2bt;i
2ðct;i � bt;iÞ

 !

dr

¼
1

24
ðat;i � bt;iÞðat;i þ 2bt;i � 3ct;iÞ þ

ðat;i � 2bt;i þ ct;iÞ
2
ðat;i � 14bt;i þ 13ct;iÞ

384ðct;i � bt;iÞ
:

ð13Þ

Furthermore, the cumulative investment risk over T period is expressed as follows:

XT

t¼1

SV½Rt;N � ¼

PT
t¼1

Pn
i¼1

x2
t;i

ð2bt;i þ ct;i � 3at;iÞ
3

384ðbt;i � at;iÞ
; at;i þ ct;i � 2bt;i;

PT
t¼1

Pn
i¼1

x2
t;i

�
1

24
ðat;i � bt;iÞðat;i þ 2bt;i � 3ct;iÞ

þ
ðat;i � 2bt;i þ ct;iÞ

2
ðat;i � 14bt;i þ 13ct;iÞ

384ðct;i � bt;iÞ

�

; at;i þ ct;i > 2bt;i:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð14Þ

Bankruptcy constraint

The occurrence of bankruptcy refers to the investor’s wealth below a certain value during the

investment period or the end of the investment. The value is called the bankruptcy level, βt is
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used to indicate the bankruptcy level at time t, and BRt is used to indicate the bankruptcy

event at time t. For the portfolio, the belief degree of bankruptcy at time t is:

MfBRtg ¼MfWt < bt;Ws > bs; s ¼ 1; 2; . . . ; t � 1g; t ¼ 1; 2; . . . ;T: ð15Þ

Proposition 1. Assume that E[Wt]> βt, and
E½ððWt � E½Wt �Þ

� Þ2 �

½E½Wt �� bt �
2 � εt . Then MfBRtg � εt .

Proof. Let |ξ| = |(Wt − E[Wt])
−|, μ = E[Wt] − βt and p = 2 in Lemma 2. Since E[Wt]> βt and

E½ jðWt � E½Wt �Þ
� j �

E½Wt �� bt
� εt , the following inequality holds

Mf jðWt � E½Wt�Þ
�
j � E½Wt� � btg �

E½ððWt � E½Wt�Þ
�
Þ

2
�

½E½Wt� � bt�
2

� εt: ð16Þ

Therefore,

MfBRtg ¼MfWt < bt;Ws > bs; s ¼ 1; 2; . . . ; t � 1g

�MfWt < btg

�Mf jðWt � EðWtÞÞ
�
j � EðWt � btÞg

�
E½ððWt � E½Wt�Þ

�
Þ

2
�

½E½Wt� � bt�
2

� εt:

ð17Þ

The proof is completed.

The wealth at the end of period t is given by

Wt ¼Wt� 1ð1þ Rt;NÞ

¼Wt� 1

 

1þ
Xn

i¼1

 

rt;ixt;i � dt;ijxt;i � xt� 1;ij

!!

:
ð18Þ

Assume that the initial wealth is W0, solving Eq (18), we can get the terminal wealth at the

end of period T,

WT ¼W0

YT

t¼1

 

1þ
Xn

i¼1

 

rt;ixt;i � dt;ijxt;i � xt� 1;ij

!!

: ð19Þ

Thus, the expected value of the terminal wealth can be expressed as

E½WT� ¼W0

YT

t¼1

"

1þ
Xn

i¼1

 

xt;iEðrt;iÞ � dt;ijxt;i � xðt� 1Þ;ij

!#

¼W0

YT

t¼1

1þ
1

4

Xn

i¼1

at;ixt;i þ 2
Xn

i¼1

bt;ixt;i þ
Xn

i¼1

ct;ixt;i

 !

�
Xn

i¼1

dt;ijxt;i � xðt� 1Þ;ij

" #

:

ð20Þ

From the Eq (19), we can obtain

SV½WT� ¼W2
0

YT

t¼1

SV½Rt;N �: ð21Þ
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In this paper, we let the expected wealth and semivariance wealth at period t to be equal to

the expected value of the terminal wealth at T = t, that is,

E½Wt� ¼W0

Yt

k¼1

1þ
1

4

Xn

i¼1

ak;ixk;i þ 2
Xn

i¼1

bk;ixk;i þ
Xn

i¼1

ck;ixk;i

 !

�
Xn

i¼1

dk;ijxk;i � xðk� 1Þ;ij

" #

: ð22Þ

SV½Wt� ¼W2
0

Yt

k¼1

SV½Rk;N�: ð23Þ

Based on the above, the Eq (17) is equal to

E½ððWt � E½Wt�Þ
�
Þ

2
�

½E½Wt� � bt�
2

¼
SV½Wt�

½E½Wt� � bt�
2
� εt: ð24Þ

Model formulation

On the basis of the above analysis, an investor’s investing objective is to maximize the prospect

theory utility value and minimize the semivariance of their portfolio. Following the preceding

description, the multi-period portfolio model may be expressed as follows:

max
XT

t¼1

ðoðpÞvðE½Rt;N �ÞÞ

s:t:
XT

t¼1

SV½Rt;N � � a; ð25aÞ

E½ððWt � E½Wt�Þ
�
Þ

2
�

½E½Wt� � bt�
2

� εt; ð25bÞ

Xn

i¼1

xt;i ¼ 1; ð25cÞ

i ¼ 1; 2; . . . ; n; t ¼ 1; 2; . . . ;T:

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð25Þ

Where α is the maximum risk tolerance level, Eq (25a) confirms the semivariance of the

portfolio can not surpass the specified minimal risk α at each period. Eq (25b) ensures that the

sum of the weight associated with each security is equal to one, i.e., all the available money is

invested in one portfolio. Eq (25c) represents the desired number of securities in the portfolio

must not surpass the given value mt at each period.

Then, the model (25) can be equivalently translated into the following portfolio selection

problems.
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1. If at,i+ ct,i� 2bt,i, the model (25) equals

max
XT

t¼1

ðoðpÞvðE½Rt;N �ÞÞ

s:t:
XT

t¼1

Xn

i¼1

x2

t;i

ð2bt;i þ ct;i � 3at;iÞ
3

384ðbt;i � at;iÞ
� a;

W2
0

Qt
k¼1

SV½Rk;N�

½E½Wt� � bt�
2
� εt;

Xn

i¼1

xt;i ¼ 1;

i ¼ 1; 2; . . . ; n; t ¼ 1; 2; . . . ;T:

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

ð26Þ

2. If at,i+ ct,i� 2bt,i, the model (25) equals

max
XT

t¼1

ðoðpÞvðE½Rt;N �ÞÞ

s:t:
XT

t¼1

Xn

i¼1

x2

t;i

�
1

24
ðat;i � bt;iÞðat;i þ 2bt;i � 3ct;iÞ

þ
ðat;i � 2bt;i þ ct;iÞ

2
ðat;i � 14bt;i þ 13ct;iÞ

384ðct;i � bt;iÞ

�

� a;

W2
0

Qt
k¼1

SV½Rk;N �

½E½Wt� � bt�
2
� εt;

Xn

i¼1

xt;i ¼ 1;

i ¼ 1; 2; . . . ; n; t ¼ 1; 2; . . . ;T:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð27Þ

Solution algorithm

Notably, the model (25) presented in the preceding section is a multi-period optimization

issue for which conventional optimization approaches may not provide the best solution.

Therefore, we design a new artificial bee colony algorithm hybrid sine cosine search method to

solve the portfolio model effectively.

The artificial bee colony (ABC) algorithm, which includes three types of bees: employed

workers, observer bees, and scouts, was first put out by [28]. Equal numbers of bees are

employed and observers, which together make up half of the colony. A food source’s location

offers a potential solution to the optimization issue, and the quantity of nectar it produces indi-

cates the appropriate fitness value. It should be remembered that only one hired bee has access

to a given food source. ABC has been compared favorably to other evolutionary algorithms

due to its basic structure and straightforward implementation [29]. In addition, many heuristic
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techniques often used a randomization procedure to perturb a given solution ordered to create

a diversified range of solutions. If these answers are not diverse, the solution process will get

stale very quickly. On the other hand, too diverse answers would lead to a fully random search

process. The ABC heuristic is an example of an approach that combines diversity with

intensification.

Thus, many issues in the real world have been addressed [30]. For instance, multi-objective

optimization problems [31], binary optimization problems [32], data clustering problems [33].

Especially, ABC algorithm is widely used in portfolio selection. For portfolio selection with

cardinality constraints and investment limit constraints, Kumar and Mishra [34] proposed a

potent co-variance guided ABC. Kalayci et al. [35] proposed an enhanced technique built on

the ABC algorithm, showcasing its better performance on benchmark data sets with proce-

dures that effectively manage boundary constraints and cardinality constraints as well as pro-

cesses that enforce feasibility and tolerate infeasibility. Therefore, this paper improves the ABC

algorithm to solve the multi-period portfolio problems.

However, the ABC method will ultimately have poor convergence since the search equation

performs better in exploration but worse in exploitation. To remedy the issue, researchers

have created a plethora of diverse strategies. For example, Zeng et al. [36] suggested an efficient

ABC based on an adaptive search method and a random grouping mechanism. Liu et al. [37]

introduced an improved ABC that enhances the exploration ability by modifying the behaviors

of bees. Bayraktar et al. [38] improved the exploitation and exploration ability of the ABC by

ultilizing memory mechanisms and genetic operators to produce three imporved ABC algo-

rithms. Singh and Sundar [39] employed two neighbourhood strategies that help ABC algo-

rithm in faster convergence towards finding high quality solutions. Besides this, there are

other studies [40, 41]. In this paper, to solve the issue of poor performance of the search equa-

tion in exploitation, we propose a new artificial bee colony algorithm by combining sine cosine

search method, in which the population of the employed bee be changed to balance between

the global and local searches.

Presuming that the initial population, consisting of SN solutions with D-dimensional vector

Xi = (xi,1, xi,2, . . ., xi,D) is randomly produced as follows:

xi;j ¼ xmin
j þ randð0; 1Þðxmax

j � xmin
j Þ; ð28Þ

where i 2 {1, 2, . . ., SN}, j 2 {1, 2, . . ., D}. xmin
j and xmax

j demonstrate the lower and upper

bounds of jth dimension, respectively. rand(0,1) demonstrates a random parameter uniformly

distributed in (0,1).

As in employed bee period, bee motions are determined by the original ABC’s randomness.

This may impact the balance between the global and local searches. Therefore, in this paper,

we changed the population of the employed bee into two, one population uses the original for-

mula (29) to search for new solutions, and the other population searches for new solutions

according to Eq (30). Then compare the new solutions generated by the two methods, leaving

the better solution.

vi;j ¼ xi;j þ �i;jðxi;j � xk;jÞ; ð29Þ

vi;j ¼
xi;j þ r1sinðr2Þjr3xmax

i � xi;jj; if r4 < 0:5;

xi:j þ r1cosðr2Þjr3xmax
i � xi;jj; if r4 � 0:5:

8
<

:
ð30Þ

In Eq (29), i 2 {1, 2, . . ., SN} and j 2 {1, 2, . . ., D} are randomly selected indexes; ϕi,j is a uni-

formly random value in [-1, 1].
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In Eq (30), the parameter r1 is a random vector that may determine the region of the search

space surrounding the current solution. In addition to aiding in the exploration and exploita-

tion of a search space, this parameter encourages a good balance between the two processes.

The vector r1 can be defined r1 ¼ a � t a
T (t is the current iteration, T is the maximum number

of iterations, and a is a constant.) The parameter r2 is a random number in [0,2π], which is

used to decide the direction of a current solution. The parameter r3 is a random number in

[0, 2], which provides a weight to xmax
i , it emphasizes the exploration (r3 > 1) and exploitation

(r3 < 1). r4 is a random number in the range [0, 1] that facilitates the transformation from sine

to cosine operations and conversely.

Then, a greedy selection method based on nectar amount quality is used to choose the supe-

rior option between the candidate solution and the original solution. Then, the hired bees use

dance to alert observer bees about food supplies.

While observers update similarly to employed bees throughout this phase, the primary dis-

tinction between them is that observers choose possible food sources to exploit based on prob-

abilities determined by fitness values. The probability pi and fitness value fiti of the solution Xi

are computed as follows, assuming a minimization problem:

pi ¼
fiti

PSN
i¼1

fiti
; ð31Þ

fiti ¼

1

1þ fi
; if fi � 0;

fi; if fi < 0;

8
><

>:
ð32Þ

where fi denotes the objective function value.

During the scout phase, in the original ABC algorithm, the scout bee searches for a new

food source through the Eq (29). The method’s neighborhood search does not have the global

ideal value, as can be observed from the search formula. As a result, the algorithm has poor

searching capabilities close to the global optimal value, which causes the algorithm to converge

slowly. Therefore, in the modified ABC algorithm, the scout bee searches for the new food

source by the following:

xnewi;j ¼ xi;j þ �i;jðxmax
j � xi;jÞ � ci;jðxmin

j � xi;jÞ; ð33Þ

where ϕi,j and ψi,j are two different random numbers in the range [0, 1]. The term �i;jðxmax
j �

xi;jÞ expoeses the tendency of the solution to move toward the best solution, while the term

� ci;jðxmin
j � xi;jÞ exposes the tendency of the solution to avoid the worst possible solution.

Given the above, we utilize ABC algorithm to address the two models (26) and (27), where

the processes of the ABC algorithm are outlined as following:

Step 1: Set parameters: swarm size pop_size, boundaries of variables bound and maximum gen-

eration number MAXGEN;

Step 2: Using the constraint-handling techniques, randomly produce N initial people and turn

them into matching feasible persons;

Step 3: Calculate the fitness levels of each people;

Step 4: Perform employed bee phase by Eqs (29) and (30);

Step 5: Select potential food sources by Eq (31), compare the fitness values of the offspring by

Eq (32);
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Step 6: Perform scout phase by Eq (33);

Step 7: Verify the stopping standard. If the stopping requirement is met, the iteration process

should be terminated, and the best person should be reported as the best solution. Other-

wise, go back to Step 3.

Numerical example

In this part, we demonstrate the suggested methods using a numerical example. In this exam-

ple, we suppose that the investor wishes to invest in the 10 securities for three consecutive peri-

ods, that is, N = 10 and T = 3. Here, the initial wealth W0 = 10, 000 RMB. And we assume that

the return rates are characterized by zigzag uncertain variables with

rt;i � Zðat;i; bt;i; ct;iÞ ðt ¼ 1; 2; 3; i ¼ 1; 2; . . . ; 10Þ, as shown in Table 1.

In addition, we assume that the transaction costs of securities at the three periods are set as

d1,i = 0.001, d2,i = 0.002, and d3,i = 0.003, respectively. The reference return θ = W0. The proba-

bility of weighting function is set as p = 0.5. α = 0.15 is the highest risk tolerance threshold for

the portfolios. We suppose bankruptcy will occur when the wealth of the investor reaches zero,

i.e., βt = 0, t = 1, 2, 3, and set εt = {0.2, 0.2, 0.2} as the level of insolvency belief for each of the

three investment periods. Moreover, the following parameters are set for the solution algo-

rithm: Population size is 20 and the maximum number of generations is 1000. The parameters

xmin and xmax are set to 0 and 0.6, respectively.

Following the completion of one thousand cycles of the defined algorithm being applied to

the model, and has gone through 20 independent experiments, we take their average value as

our experimental results, and the respective investing methods are shown in Table 2, we can

find that when the investor utilizes the model (25) to make his portfolio decision, he should

follow the investment strategies listed in lines Table 2 to adjust his wealth at the beginning of

each period. Namely, at the start of period 1, the investor needs to assign his initial wealth

among Security 1, 2, 3, 4, 5, 6, 8, 9 and 10 by the investment proportions of 0.1532, 0.0089,

0.0725, 0.0810, 0.0832, 0.0995, 0.1254, 0.1398, 0.0781 and 0.1583, respectively. At the start of

Table 1. The zigzag uncertain returns of 10 securities.

T Security i 1 2 3 4 5 6 7 8 9 10

t = 1 a1,i -0.4 -0.8 -0.5 -0.7 -0.6 -0.3 -0.8 -0.5 -0.7 -0.6

b1,i 0.1 -0.2 -0.1 0.1 0.3 -0.1 0.1 0.3 0.2 0.002

c1,i 0.5 0.2 0.3 0.6 0.9 0.4 0.9 0.7 0.6 0.8

t = 2 a2,i -0.3 -0.7 -0.5 -0.6 -0.5 -0.5 -0.8 -0.5 -0.7 -0.5

b2,i 0.2 -0.1 -0.2 0.1 0.3 0.1 0.1 0.3 0.2 0.2

c2,i 0.5 0.3 0.5 0.5 0.8 0.4 0.9 0.7 0.6 0.9

t = 3 a3,i -0.4 -0.8 -0.5 -0.8 -0.6 -0.6 -0.9 -0.5 -0.6 -0.6

b3,i 0.1 -0.2 -0.1 0.2 0.4 -0.2 -0.1 0.3 0.3 0.003

c3,i 0.5 0.2 0.3 0.7 0.7 0.7 0.8 0.6 0.7 0.8

https://doi.org/10.1371/journal.pone.0274625.t001

Table 2. Proportion of each security in the optimal portfolio.

Security i 1 2 3 4 5 6 7 8 9 10

t = 1 0.1532 0.0089 0.0725 0.0810 0.0832 0.0995 0.1254 0.1398 0.0781 0.1583

t = 2 0.1615 0.1038 0.1118 0.1439 0.0443 0.0935 0.0683 0.1108 0.0261 0.1361

t = 3 0.0277 0.0000 0.0112 0.0404 0.4928 0.0360 0.0083 0.1533 0.2302 0.0000

https://doi.org/10.1371/journal.pone.0274625.t002
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period 2, the investor must once again alter his fortune. Following modification, he holds

Security 1, 2, 3, 4, 5, 6, 8, 9 and 10 by the investment proportions of 0.1615, 0.1038, 0.1118,

0.1439, 0.0443, 0.0935, 0.0683, 0.1108, 0.0261 and 0.1361, respectively. At the start of period 3,

the investor must alter his fortune once again. During the investing period, he develops a port-

folio consisting of Securities 1, 2, 3, 4, 5, 6, 8, 9 and 10 in the proportions 0.0277, 0, 0.0112,

0.0404, 0.4928, 0.0360, 0.0083, 0.1533, 0.2302 and 0.0, respectively. From Table 2 we can see

that investor mainly invest his wealth in Security 5, 8 and 9, finally we get the crisp value of

return utility is 0.1130.

To demonstrate the impact of cumulative risk and bankruptcy constraint on return utility,

we use different risk tolerance and belief degree of bankruptcy to reflect return utility. Under

each different case, 1000 generations of the developed algorithm indicate that the investor’s

capital should be allocated according to the investment methods stated in Tables 3 and 4.

Suppose the investor invests his or her money in accordance with optimum investment

plan in Tables 3 and 4. From Table 3, when the cumulative risk is 0.10, the return utility is

0.0931, when the cumulative risk is 0.15, the return utility is 0.1065, and when the cumulative

risk is 0.20, the return utility is 0.1260. In addition, under different cumulative risks, the opti-

mal investment proportion of securities will change accordingly. For example, the optimal

investment proportion of the first security will decrease with the increase of cumulative risks,

and the optimal investment proportion of the seventh security will gradually increase with the

increase of cumulative risks. Obviously, the bigger value of the cumulative risk α, the bigger

the value of the return utility will become. But often people are not willing to take a big risk,

and they tend to a moderate risk value. Similarly, we derive from Table 4, when the belief

Table 3. Proportion of each security under different risk tolerance.

α Utility Optimal investment proportions

0.10 0.0931 x1,i = {0.1571, 0.0272, 0.0797, 0.0659, 0.0907, 0.0752, 0.0908, 0.1768, 0.0602, 0.1764}

x2,i = {0.1067, 0.0476, 0.0960, 0.0393, 0.1758, 0.1057, 0.0223, 0.1860, 0.0442, 0.1765}

x3,i = {0.1047, 0.0211, 0.1484, 0.0504, 0.2401, 0.0111, 0.0549, 0.0415, 0.1413, 0.1865}

0.15 0.1065 x1,i = {0.1532, 0.0089, 0.0725, 0.0810, 0.0832, 0.0995, 0.1254, 0.1398, 0.0781, 0.1583}

x2,i = {0.1615, 0.1038, 0.1118, 0.1439, 0.0443, 0.0935, 0.0683, 0.1108, 0.0261, 0.1361}

x3,i = {0.0341, 0.0000, 0.0138, 0.0513, 0.3733, 0.0573, 0.0102, 0.1885, 0.2714, 0.0000}

0.20 0.1260 x1,i = {0.0493, 0.0369, 0.0469, 0.0324, 0.1316, 0.0005, 0.1984, 0.1869, 0.1984, 0.1188}

x2,i = {0.0450, 0.0046, 0.0531, 0.0918, 0.0960, 0.0620, 0.1383, 0.1590, 0.1776, 0.1725}

x3,i = {0.0709, 0.0334, 0.0000, 0.0917, 0.0478, 0.0396, 0.0000, 0.5510, 0.1656, 0.0000}

https://doi.org/10.1371/journal.pone.0274625.t003

Table 4. Proportion of each security under different belief degree of bankruptcy.

εt Utility Optimal investment proportions

{0.1, 0.1, 0.1} 0.0952 x1,i = {0.1573, 0.1283, 0.0707, 0.0250, 0.1634, 0.1322, 0.10545, 0.1631, 0.0352, 0.0192}

x2,i = {0.2318, 0.0710, 0.0325, 0.0644, 0.0818, 0.0672, 0.0770, 0.2515, 0.0388, 0.0840}

x3,i = {0.1518, 0.0600, 0.0064, 0.0372, 0.2563, 0.0000, 0.1237, 0.2504, 0.1142, 0.0000}

{0.2, 0.2, 0.2} 0.1229 x1,i = {0.1573, 0.1283, 0.0707, 0.0250, 0.1634, 0.1322, 0.1055, 0.1631, 0.0352, 0.0192}

x2,i = {0.2318, 0.0710, 0.03245, 0.0644, 0.0818, 0.0672, 0.0770, 0.2515, 0.0388, 0.0840}

x3,i = {0.0157, 0.01994, 0.0000, 0.0000, 0.4979, 0.0000, 0.0734, 0.3202, 0.0729, 0.0000}

{0.3, 0.3, 0.3} 0.1024 x1,i = {0.1573, 0.1283, 0.0707, 0.0250, 0.1634, 0.1322, 0.1054, 0.1631, 0.0352, 0.0192}

x2,i = {0.2318, 0.0710, 0.0325, 0.0644, 0.0818, 0.0672, 0.0770, 0.2515, 0.0388, 0.0840}

x3,i = {0.1328, 0.0528, 0.0056, 0.0000, 0.2949, 0.0000, 0.1088, 0.3046, 0.1005, 0.0000}

https://doi.org/10.1371/journal.pone.0274625.t004
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degree of bankruptcy is {0.1, 0.1, 0.1}, the return utility is 0.0952, when the belief degree of

bankruptcy is {0.2, 0.2, 0.2}, the return utility is 0.1229, and when the belief degree of bank-

ruptcy is {0.3, 0.3, 0.3}, the return utility is 0.1024. It can be seen that under different belief

degree of bankruptcy, the results of the third period has changed, and the consequences of

bankruptcy constraint and risk constraint on return utility are different. Not the bigger the

bankruptcy value, the bigger the return utility. But different belief degree of bankruptcy also

cause different return utility. Consequently, we may infer that both the cumulative risk and the

bankruptcy restriction influence the optimum portfolio composition.

Conclusion

In this study, we looked into an uncertain multi-period portfolio selection problem that took

into account transaction costs and investor bankruptcies. The return utility and risk of an

investment were determined by the utility function from prospect theory and the uncertain

semivariance, respectively. The suggested model is a multiperiod programming problem

whose aims are to maximize the terminal return utility. At the same time, minimize the value

of cumulative risk and belief degree of bankruptcy over the whole investment horizon. In addi-

tion, a revised method for an artificial bee colony is devised to solve the stated programming

challenge. A numerical example is provided to explain the concept of our model and show the

efficacy of the algorithm’s design. The calculation results demonstrate that the suggested

model may convey investors’ intentions by adjusting the satisfaction degree parameter values.

In future work, we are able to apply the suggested approach to a hybrid portfolio selection

issue using actual market data. In addition, the novel artificial bee colony technique suggested

in this study may be used to various optimization issues, including vehicle scheduling and

optimum route planning. Finally, we would choose assets using machine learning approaches

[42, 43], then incorprate the selected assets into the portfolio selection model.
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