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The complex and elaborate architecture of a neuron poses a great challenge to the
cellular machinery which localizes proteins and organelles, such as mitochondria,
to necessary locations. Proper mitochondrial localization in neurons is particularly
important as this organelle provides energy and metabolites essential to form and
maintain functional neural connections. Consequently, maintenance of a healthy pool
of mitochondria and removal of damaged organelles are essential for neuronal
homeostasis. Long distance transport of the organelle itself as well as components
necessary for maintaining mitochondria in distal compartments are important for a
constant supply of healthy mitochondria at the right time and place. Accordingly, many
neurodegenerative diseases have been associated with mitochondrial abnormalities.
Here, we review our current understanding on transport-dependent mechanisms that
regulate mitochondrial replenishment. We focus on axonal transport and import of
mRNAs and proteins destined for mitochondria as well as mitochondrial fusion and
fission to maintain mitochondrial homeostasis in distal compartments of the neuron.
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INTRODUCTION

Neurons have one of the largest and most complex architectures of all cells in the human body. The
peripheral arbors of a neuron can extend for extraordinary distances. In the substantia nigra, for
example, the sum total of the axonal arbor may span up to∼4.5 m (Bolam and Pissadaki, 2012). In
order to form and maintain such an enormous structure, active transport of mRNAs, proteins, and
organelles throughout the cell is essential. One organelle of critical importance is mitochondria, as
they play a central role in ATP generation, metabolite synthesis and calcium buffering among other
lesser known functions (Werth and Thayer, 1994; Misgeld and Schwarz, 2017). The importance of
mitochondria in neuronal health is exemplified by neurodegenerative diseases such as Alzheimer’s
Disease, Amyotrophic Lateral Sclerosis (ALS), and Parkinson’s disease among others (Table 1). In
these diseases, pathology often correlates with defects in mitochondrial localization or function
(Rui et al., 2006; De Vos et al., 2007; Chen and Chan, 2009; Schon and Przedborski, 2011;
Wang et al., 2011; Reddy et al., 2012) leading many to postulate that the proper distribution and
maintenance of a healthy pool of mitochondria is essential for the health of a neuron.

MITOCHONDRIAL TRANSPORT AND ANCHORING
MACHINERIES

Mitochondrial distribution throughout the neuron is coordinated by microtubule-based transport
machinery. This includes an array of motor proteins and adaptors to move these organelles along
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TABLE 1 | Neurodegenerative diseases with mitochondrial abnormalities.

Disease Clinical phenotypes Gene (s) Mitochondrial phenotypes References

Alzheimer’s disease Progressive cognitive
decline

APP, Tau, Presenilin-1,
Presenilin-2

Oxidative stress, mitochondrial dysfunction,
reduced mitochondrial motility

Pereira et al., 1998; Canevari et al.,
1999; Reddy et al., 2004

Amyotrophic lateral
sclerosis

Muscle weakness and
progressive paralysis

SOD1, TDP4, VAPB Defective Ca2+ buffering, increased Complex
I activity, mitochondrial transport arrest

Bowling et al., 1993; Fujita et al.,
1996; De Vos et al., 2007

Parkinson’s disease Tremor and involuntary
movements

Pink1, Park2, SNCA, Complex I deficiency, inhibition of
mitochondrial motility, failed mitophagy

Bindoff et al., 1989; Parker et al.,
1989; Schapira et al., 1989; Wang
et al., 2011

Charcot-Marie-Tooth Weakness largely in the
lower extremities

Mfn Impaired mitochondrial fusion, arrested
mitochondrial mobility

Kijima et al., 2005; Pedrola et al.,
2005

Huntington’s disease Involuntary and
uncoordinated movement

Htt Reduced Complex I activity and membrane
potential, impaired mitochondrial trafficking

Parker et al., 1990; Arenas et al.,
1998; Chang et al., 2006

Optic atrophy Visual dysfunction Opa1 Impaired mitochondrial fusion Zanna et al., 2008
Spastic paraplegia Spasticity and weakness

of the lower limbs
Paraplegin, HSP60 Oxidative phosphorylation dysfunction Casari et al., 1998

the microtubule tracks. In the axon, anterograde transport
(microtubule plus end directed, toward the axon terminal) of
mitochondria primarily utilizes the Kinesin-1 motor (Pilling
et al., 2006). The attachment of Kinesin-1 to mitochondria is
mediated by the membrane anchor proteins RhoT (a small
Rho GTPase) and its motor adaptors Trak1 and Trak2.
Originally discovered in Drosophila, these proteins are essential
for microtubule based transport of mitochondria into the
dendrite and axon (Stowers et al., 2002; Glater et al., 2006;
Russo et al., 2009).

Retrograde transport (microtubule minus-end directed in
axon, toward the cell body) employs a single motor protein
complex, Cytoplasmic dynein (hereafter refered to as dynein;
Schnapp and Reese, 1989). The detailed mechanism of how the
dynein motor binds to mitochondria for retrograde transport
is still largely unknown. Trak2 appears to participate in this
process as disruption of Trak2 in hippocampal neurons resulted
in a significant decrease in the percentage of dynein-mediated
mitochondrial movement into dendrites (Loss and Stephenson,
2017). Additionally, recent work from our lab has established
Actr10 (Arp11/Arp10p) as an important mediator for retrograde
mitochondrial transport. Loss of Actr10 leads to mitochondrial
accumulation in axon terminals due to selective impairment of
retrograde transport. Meanwhile, localization and transport of
other dynein cargos, such as lysosomes and peroxisomes, are
not disrupted (Drerup et al., 2017). A complete and detailed
understanding of the mechanistic regulation of both anterograde
and retrograde mitochondrial motility are still lacking and, thus,
warrant further examination.

During development, mitochondrial transport in the
anterograde and retrograde directions is frequent, with few
mitochondria pausing for extended periods of time in the axon in
particular. However, as the neuron ages, mitochondrial transport
becomes less frequent (Morsci et al., 2016). Real time imaging of
mitochondrial movement in axons of cultured neurons at 28 days
in vitro suggests that 95% of mitochondria are stationery at this
point over a period of 30 min of imaging (Lewis et al., 2016).
Studies done in vivo in exposed mouse sciatic nerve have shown
approximately 22% of mitochondria are motile in adult animals
at 45 days of age (Magrane et al., 2014). Studies in zebrafish axons

at various developmental time-points match more closely with
that seen in mouse sciatic nerve imaging, with approximately
50% of mitochondria motile at 5 days post-fertilization (Mandal
et al., 2018). These studies, however, have been done over a period
of minutes. The temporal dynamics of mitochondrial transport
and docking over longer periods of time are largely unknown.

Movement of mitochondria needs to be coupled with docking
of the organelle for proper distribution throughout the neuron.
This docking is regulated by local environmental cues and the
use of docking proteins which anchor mitochondria at specific
locations (Cai and Sheng, 2009). Stationary mitochondria are
often found in areas of high ATP demand (Spillane et al.,
2013). This local ATP source is important for axonal branching,
local protein translation, sodium/potassium pump activity
necessary for maintaining the neuron’s polarization, and synaptic
transmission (Erecinska and Dagani, 1990; Spillane et al., 2013;
Cioni et al., 2019; Rangaraju et al., 2019). For example, a previous
study found that in the presence of nerve growth factor (NGF)
axonal branching occurs at a site of stalled mitochondria.
Inhibition of respiration prevented the branching, indicating that
ATP produced from the stalled mitochondria is important for this
phenomenon (Spillane et al., 2013). Additionally, mitochondria
function to buffer calcium in neurons. Stationary mitochondria
at synapses can act as a buffering chamber to take up excess
cytosolic calcium, which is necessary to regulate calcium-
dependent synaptic activity (Yi et al., 2004; Zhang et al., 2010).
Mitochondrial anchoring at areas of high calcium, like the
synapse, is accomplished by the ion itself. High levels of calcium
effect the conformation of the EF-hand structural domain on
RhoT. This modulates the affinity of the anterograde motor
kinesin for microtubules, regulating anterograde movement.
Interestingly, elevation of calcium stops all mitochondrial
movement, implicating this ion in the regulation of retrograde
movement as well (Saotome et al., 2008). This effect could also be
through RhoT or another calcium sensitive protein.

Mitochondrial docking is facilitated by anchoring proteins
such as the neuron-specific protein Syntaphilin (Snph). Snph
acts on the mitochondrial outer membrane (OM) and keeps
the organelle stationary by bridging it with the microtubule
cytoskeleton. Mice lacking Snph show a significant increase in
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the motile mitochondrial population (Kang et al., 2008). This
interaction appears to also require members of the retrograde
transport apparatus as the dynein light chain LC8 can facilitate
the Snph–microtubule interaction to immobilize mitochondria
(Chen et al., 2009).

Mutations in several motor proteins important for mitochon-
drial transport have been associated with neurodegenerative
diseases. A missense mutation in the N-terminal motor domain
of the Kinesin-1 (Conventional Kinesin) was found in patients
with hereditary spastic paraplegia (HSP), an axonal degeneration
disorder of motor and sensory neurons (Reid et al., 2002).
Additionally, Kinesin-1 mutations have been associated with
ALS in patient populations. Recent genome wide analysis and
exome sequencing have found mutations in the C-terminal cargo
binding domain of Kif5A (Kinesin-1 isoform) in ALS patients
(Brenner et al., 2018; Nicolas et al., 2018). Loss of function
mutation in KIF1Bβ (Kinesin-3 motor) is associated with
Charcot-Marie-Tooth Disease Type 2A (CMT2A), a peripheral
neuropathy with progressive loss of muscle function (Zhao
et al., 2001). Additionally, mutations is motor associated proteins
have been associated with disease states. Mutation of the
mitochondrial fusion protein 2 (Mfn2) gene is one of the most
common causes of CMT2A. Expression of disease-associated
Mfn2 mutations in vitro results in severe mitochondrial transport
defects (Baloh et al., 2007). Mutations in p150(glued), a subunit of
the dynein activator dynactin, have been associated with motor
neuron degeneration and ALS (Levy et al., 2006). Despite the
correlative evidence pointing to a relationship between transport
of mitochondria and disease, a causative link between the two
is still lacking.

Mitochondrial transport is well-studied in the field of
mitochondrial biology and has been elegantly reviewed
previously (MacAskill and Kittler, 2010; Saxton and Hollenbeck,
2012; Sheng and Cai, 2012; Schwarz, 2013; Maday et al.,
2014; Misgeld and Schwarz, 2017). Instead of focusing on a
well-covered topic, we will review recent developments in two
mechanisms important for maintenance of this organelle in
the neuron which require axonal transport: replenishment
of mitochondrial proteins through active transport of
proteins and their precursor mRNAs and mitochondrial
dynamics. We will discuss in detail the role of mitochondria
in axonal protein synthesis and mitochondrial protein import
machinery as well as the role of mitochondrial dynamics in
mitochondrial maintenance.

LOCAL MITOCHONDRIAL PROTEIN
SYNTHESIS: MITOCHONDRIA AS A
FUEL SOURCE AND PLATFORM FOR
LOCAL TRANSLATION

Since the somatodendritic compartment contains the majority of
ribosomes and the nucleus, for many years it was an attractive
hypothesis that protein synthesis occurs exclusively in or near
the cell body, with proteins transported to their functional
target. This necessitates an efficient mechanism for bringing

these proteins to the organelle no matter where it is. Although
significant protein synthesis does happen in the soma, relying
solely on their long-distance transport is energy expensive for the
complicated and extended geometry of neurons and limits the
speed with which cells can react to local cues. Research in the
past 20–30 years has shown the presence of local translation far
from the neuronal cell body in the distal dendrite and axon and,
specifically, in pre- and post-synaptic terminals. Local axonal
translation is now known to be critical for axonal guidance,
synaptic plasticity, growth cone formation, axon branching and
maintenance of mitochondrial membrane potential (Campbell
and Holt, 2001; Verma et al., 2005; Aschrafi et al., 2008;
Natera-Naranjo et al., 2012; Younts et al., 2016; Wong et al.,
2017). In addition, it is thought that local translation provides
the flexibility needed in remote subcellular compartments to
modulate their proteome in order to keep up with local demand
and external cues.

Local translation of proteins is likely especially important for
mitochondria. This organelle relies on its own mitochondrial
DNA (mtDNA) as well as nuclear DNA for proteins that
are essential for its function and maintenance. The majority
of mitochondrial proteins (∼99%) are nuclear encoded and
only ∼1% of them are transcribed from a relatively small,
16.6 Kb circular mtDNA genome in humans (Taanman,
1999). Interestingly, this mtDNA specifically encodes thirteen
hydrophobic inner membrane proteins which are all important
components of the oxidative phosphorylation system (Pagliarini
et al., 2008). Thus, any mutation in the mitochondrial
genome would significantly affect ATP production. Recent data
suggests crosstalk exists between the nuclear and mitochondrial
translation machinery. For example, translation defects in
nuclear encoded Cytochrome C oxidase, an essential electron
transport chain protein, leads to a halt in translation of
mtDNA encoded Cox1 in mitochondria. This is likely through
a direct interaction between the RNA and protein in the
organelle (Richter-Dennerlein et al., 2016). An important and
understudied question is how mitochondrial proteins derived
from the nuclear genome arrive at the organelle. It is
likely that active mRNA transport and protein transport to
distal sites accomplishes at least a portion of mitochondrial
protein renewal.

One mechanism of mitochondrial protein replenishment
involves the active transport of mRNAs in RNA granules to
mitochondria for local translation. Global gene expression
analysis revealed more than one hundred nuclear encoded
mitochondrial mRNAs are enriched in axons and pre-
synaptic nerve terminals (Aschrafi et al., 2016). Heterogeneous
populations of transcripts and polyribosomes including the
mRNA for nuclear encoded mitochondrial chaperone HSP70
have been found in the pre-synaptic nerve terminals of
photoreceptor neurons (Figure 1C). Some of these mRNAs,
such as COXIV, ATP5GI, and ATP synthase, are critical for
mitochondrial function and neuronal survival (Aschrafi et al.,
2016). Furthermore, there is evidence of local translation in
direct association with mitochondria. Studies in yeast have
shown that nuclear encoded mRNA as well as cytoplasmic
ribosomes associate with the mitochondrial OM. This suggests

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 August 2019 | Volume 13 | Article 373

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00373 August 8, 2019 Time: 16:48 # 4

Mandal and Drerup Mitochondria and Neuronal Health

FIGURE 1 | Transport-dependent mechanisms of mitochondrial maintenance. (1) mRNAs are transported to various regions of the neuron for local translation of
mitochondrial proteins. (A) mRNA transported to mitochondria can be translated for local use, such as in dendritic spines during synaptic remodeling. Mitochondria
are thought to generate energy for local translation. (B) Local translation of mitochondrial proteins from mRNA transported on late endosomes (LE) that pause on a
mitochondria in axons has been demonstrated. (C) Polyribosomes containing mRNAs important for mitochondrial function are found in the pre-synaptic

(Continued)
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FIGURE 1 | Continued
terminal of photoreceptors, indicating active transport of the mRNAs to this site. (2) After either local protein synthesis from transported mRNAs or protein transport
to mitochondria, proteins must be imported into the organelle. Four major types of mitochondrial protein import exist: Pre-sequence pathway (red) primarily for matrix
proteins; Intermembrane space (IMS) protein transport pathway (blue) important for cysteine-rich IMS proteins; Carrier protein pathway (green) for transmembrane
proteins in the inner membrane; and the Outer membrane (OM) β-barrel protein import pathway (brown) for transmembrane proteins destined for the OM. TOM,
translocase of the outer membrane; TIM, translocase of the inner membrane; SAM, sorting and assembly machinery; PAM, pre-sequence translocase associated
motor; MIA, mitochondrial intermembrane space import and assembly machinery; OM, Outer membrane; IM, Inner membrane; IMS, Inner membrane space.
Yellow-red shaded line indicates microtubule in panels A,B. (3) Mitochondria undergo continuous cycles of fusion and fission to help replenish the organelle. Fusion
with younger mitochondria (green) which move in the anterograde direction from the cell body is thought to replenish proteins and lipids important for mitochondrial
survival. Mitochondrial fission has been postulated to remove damaged mitochondrial components for degradation (red). Mitochondria are targeted for mitophagy
after fission through phosphorylation (P) dependent events.

the local translation apparatus is present in the vicinity of the
organelle (Corral-Debrinski et al., 2000). Using high resolution
microscopy, Cioni et al. (2019) have recently shown strong
co-localization among RNA granules, mitochondria, and late
endosomes in cultured mammalian neurons. Furthermore, this
study has also found mitochondrial proteins are synthesized
on the late endosomes which share close physical proximity
to mitochondria (Cioni et al., 2019). This data supports local
translation of mitochondrial proteins on the surface of the
organelle which could support the maintenance of the organelle.

Proper intracellular transport of the newly transcribed mRNA
and the ribosome machinery is essential for local translation.
RNA binding proteins help to guide the newly transcribed mRNA
to its local translation site in axons and dendrites. Nascent
mRNA associate with the RNA binding proteins to form RNA
granules. Subsequently the RNA granule is transported along
the microtubule track by motor proteins to reach their destined
subcellular compartment. In yeast, the RNA binding protein
Puf3 was found to interact selectively with nuclear encoded
mRNAs for mitochondrial proteins that localize to mitochondria
for translation (Saint-Georges et al., 2008). In mammalian cell
culture the RNA binding protein, Splicing Factor Proline and
glutamine rich (SFPQ) colocalizes with ribosomes in close
proximity to mitochondria. One of the target RNAs for SFPQ is
Lamin B2, local translation of which is critical for mitochondria.
Inhibition of local axonal synthesis of Lamin B2 leads to
mitochondrial dysfunction followed by axon degeneration (Yoon
et al., 2012; Cosker et al., 2016).

Together, the current evidence supports mRNA transport
and local translation of at least a subset of mitochondrial
proteins in distal regions of the neuron. With the advent of
sensitive techniques to study cell type specific local translation
in vivo the precise function of this process in the biogenesis
and maintenance of existing organelles promises to provide
exciting advances to our understanding of mitochondrial
biology in neurons.

While evidence exists for the local translation of mitochon-
drial proteins, whether this organelle plays a passive or active
role in local protein synthesis is a current topic of investigation.
One potential role of mitochondria in local protein synthesis,
for mitochondrial and potentially non-mitochondrial proteins,
is to act as a fuel source. A recent study by Rangaraju et al.
(2019) demonstrated that docked mitochondria act as a local
fuel source for translation at synapses in spatially confined

dendritic pockets (Figure 1A). Inhibition of this regional power
source by overexpressing mitochondrial fission factor (MFF;
enhances mitochondrial fission) perturbs local translation. This
data suggests that both mitochondrial form and function are
under tight regulation which is necessary for local protein
synthesis at the synapse (Rangaraju et al., 2019).

Mitochondria may also serve as a platform for local translation
(Figure 1B). Cioni et al. (2019), recently provided evidence
that RNA granules trafficked with late endosomes often stall on
mitochondria for local protein synthesis. Additionally, they were
able to show that this local synthesis is critical for mitochondrial
function: expression of mutant forms of the late endosome
protein Rab7a, which are responsible for Charcot-Marie-Tooth
Disease type 2B, caused compromised axonal protein synthesis
on mitochondria, impairment of axonal viability along with
dysmorphic mitochondria and altered trafficking of the organelle.
This study suggests mitochondria can serve as a ‘translational
hotspot’ for protein synthesis important for the neuronal
integrity and mitochondrial function (Cioni et al., 2019).

PROTEIN IMPORT MACHINERY

Mitochondrial proteins encoded by the nuclear genome which
are synthesized in the cytoplasm must be imported into the
organelle. This is regulated, at least partially, by a targeting signal
in the pre-protein sequence which directs them to the correct
subcompartment. There are four well-defined major categories
of protein import pathways for different subcompartments of
mitochondria (Figure 1, panel 2). The classical protein import
mechanism is the Pre-sequence pathway (Kunkele et al., 1998;
Neupert and Herrmann, 2007). Most matrix targeted and inner
membrane proteins are imported via this route. The protein
precursors (pre-proteins) carry a N-terminal positively charged
amphipathic helix sequence which are recognized by the surface
receptor TOM20 of the OM. Next the cleavable precursor protein
moves to the inner membrane translocase TIM23 (Brix et al.,
1997; van Wilpe et al., 1999; Abe et al., 2000; Meisinger et al., 2001;
Saitoh et al., 2007). The negative membrane potential across the
inner membrane helps generate the electromotive force required
to carry the positively charged pre-protein to the TIM23 (Martin
et al., 1991). The ATP driven pre-sequence translocase associated
motor (PAM) along with the heat shock protein 70 (mtHsp70)
then helps transfer the protein into the mitochondrial matrix
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(Chacinska et al., 2005; Mapa et al., 2010). The pre-proteins are
proteolytically cleaved inside the matrix by the mitochondrial
processing peptidase (MPP). Alternatively, pre-proteins destined
to the inner mitochondrial membrane enter via two routes. In
the ‘stop transfer’ pathway a hydrophobic segment after the pre-
sequence arrests the protein at the translocase TIM23 followed
by lateral insertion in to the inner membrane (Glick et al., 1992;
Meier et al., 2005). In the conservative pathway, proteins are
partially or completely transferred to the matrix then inserted
back to the inner membrane via the oxidase assembly translocase
machinery which is conserved across species (He and Fox, 1997;
Hell et al., 1998).

The hydrophobic inner membrane proteins such as the ADP/
ATP carriers or phosphate carriers are transferred by the Carrier
pathway. Rather than the N-terminal pre-sequence they have
internal target sequence. These proteins use the TOM70 surface
receptor to pass the OM. Next, they bind with the small TIM
chaperons in the inner membrane space followed by insertion in
the inner membrane by the carrier translocase TIM22. Insertion
to the inner membrane is driven by the membrane potential
(Endres et al., 1999; Curran et al., 2002; Rehling et al., 2003).

The third type of precursor proteins are cysteine rich
intermembrane space (IMS) proteins which are imported by the
mitochondrial IMS import and mitochondrial intermembrane
space assembly (MIA) machinery. The MIA40 channel in the
inner membrane catalyzes the formation of an intramolecular
disulfide bond with the incoming pre-protein which is essential
for substrate release in the IMS, stable folding and prevention of
reshuffling of the protein back to the cytoplasm (Chacinska et al.,
2004; Naoe et al., 2004; Banci et al., 2009).

Finally, there are two types of mitochondrial OM proteins
which are imported in specific manners: β-barrel and α-helical
OM proteins. The β-barrel proteins are transferred to the
OM by the standard TOM translocase and small TIM chape-
rones. Following transfer, the sorting and assembly machinery
(SAM) facilitates insertion to the OM. The detailed molecular
mechanism of α-helical protein import is not fully understood
yet, but previous work suggests at least some α-helical proteins
skip the classic TOM translocase and utilize some yet undefined
route to the mitochondrial OM (not depicted in Figure 1;
Paschen et al., 2003; Wiedemann et al., 2003; Kutik et al., 2008).

Evidence for how proteins arrive at mitochondria prior to
import in distal neuronal compartments is still largely lacking
as it has not been a focus of active investigation. Therefore,
we do not know the degree to which local protein import
into mitochondria actually occurs in axons or dendrites. Given
the relationship between proteome stability and mitochondrial
health, this is an area that deserves active investigation.

PROTEIN IMPORT, DYNAMICS AND
QUALITY CONTROL

Defective protein import in general is, perhaps not surprisingly,
detrimental to mitochondrial and organismal health. Mitophagy,
i.e., selective degradation of damaged mitochondria via
autophagy, is important for mitochondrial quality control.

Protein import and mitophagy are inextricably linked processes
in cells as import of Pink1 plays a key role in Pink1/Parkin
mediated mitophagy. In a healthy mitochondria Pink1 is
partially imported to the inner membrane via the TOM and the
TIM23 translocases. Next the transmembrane domain of Pink1
is cleaved by the inner membrane rhomboid protease PAR which
destabilizes Pink1. In a depolarized mitochondrion, due to the
loss of membrane potential, Pink1 is not internalized and it
accumulates on the OM and recruits the ubiquitin ligase Parkin.
Parkin and accessory factors including p62 phosphorylate and
ubiquitinate several mitochondrial proteins which marks the
damaged mitochondria to be engulfed by an autophagosome
for retrograde transport and degradation (Clark et al., 2006;
Jin et al., 2010; Narendra and Youle, 2011; Lazarou et al.,
2012; Yamano and Youle, 2013). Homozygous or compound
heterozygous mutations in Pink/Parkin are associated with
autosomal recessive early onset Parkinson’s disease (Narendra
and Youle, 2011; Corti and Brice, 2013; Pickrell and Youle,
2015). Pink1 deficient mice show age dependent protein import
defects in non-neuronal cells (Gispert et al., 2009). What is
still not known is how much mitophagy happens in a neuron
in non-pathological situations. Interestingly, Pink1 and Parkin
deficient mice do not have any neurodegeneration phenotype.
Thus, it is possible other quality control pathways are at play to
maintain neuronal mitostasis such as mitochondrial proteases,
mitochondria-derived vesicles, and macroautophagy.

The inner membrane fusion protein Opa1 is an additional
example of how mitochondrial protein import is intricately
related to mitochondrial dynamics and quality control of the
organelle. In yeast, after successful import, Opa1 exists as a
short isoform in the IMS as well as a long isoform inserted
in the inner membrane. The proper balance between the two
isoforms is important for mitochondrial fusion. ATP driven
motor function is necessary for the formation of the two isoforms
of Opa1 in yeast and mammals (Song et al., 2007; Ehses
et al., 2009). Mutations in both the motor and opa1 have been
implicated in neurodegenerative disorders (Zanna et al., 2008;
Quiros et al., 2012). More work is needed to understand the
complexity and interdependence of protein import with other
mitochondrial properties.

MITOCHONDRIAL DYNAMICS AND
NEURONAL HEALTH

Mitochondrial fusion and fission are mediated by dynamin-
related GTPases which are conserved across eukaryotes, from
yeast to humans (Figure 1, panel 3). Fusion is an important
stress response pathway in which mitochondria can exchange
material. This is thought to complement mitochondrial protein
and lipid content in order to overcome detrimental effects of
environmental or metabolic stress (Tondera et al., 2009; Gomes
et al., 2011; Rambold et al., 2011). OM fusion is mediated by
Mitofusin 1 (Mfn1) and Mitofusin 2 (Mfn2) while the inner
membrane fusion utilizes Opa1, among other proteins (Hermann
et al., 1998; Rapaport et al., 1998; Wong et al., 2000, 2003;
Santel and Fuller, 2001; Eura et al., 2003; Santel et al., 2003;
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Sesaki et al., 2003; Friedman and Nunnari, 2014). Mitochondrial
OM fusion is almost always accompanied by the inner membrane
fusion; although, in cases of loss of inner membrane potential or
mutation of opa1, OM fusion still occurs without corresponding
inner membrane fusion (Olichon et al., 2003).

Fission utilizes the cytosolic dynamin-like GTPase Drp1. Drp1
is recruited to the mitochondrial OM by the receptors Fis1 and
Mff, most often at endoplasmic reticulum contact sites. Next,
Drp1 oligomerizes in a GTP hydrolysis dependent manner which
leads to mitochondrial division (Friedman et al., 2011; Mears
et al., 2011; Friedman and Nunnari, 2014). A number of other
Drp1 receptors on mitochondrial OM such as Mid49, Mid51, and
GDAP1 have also been reported, suggesting there are multiple
ways to regulate fission (Loson et al., 2013). Mitochondrial
fission can be regulated by different protein modifications, most
importantly phosphorylation of Drp1 at selected serine residues.
For example, phosphorylation at the S616 site activates fission
while phosphorylation at S637 impairs the GTPase activity
and fission (Chang and Blackstone, 2007; Cribbs and Strack,
2007; Taguchi et al., 2007). Calcium signaling can also affect
mitochondrial dynamics by regulating Drp1 phosphorylation.
Calcium influx via the voltage dependent calcium channel
promotes phosphorylation at the S600 site of Drp1 via activation
of calcium/calmodulin dependent protein kinase Iα (Han et al.,
2008). This phosphorylation leads to Drp1 recruitment to
mitochondria followed by fission. Additionally, hyperglycemia
induced mitochondrial fission has been found to be mediated
by Drp1 phosphorylation at S600 residue via Rho-associated
coiled coil-containing protein kinase 1 (ROCK1; Wang et al.,
2012). Other important post-translational modifications of
Drp1 includes glycosylation, sumoylation, S-nitrosylation and
ubiquitination (Chang and Blackstone, 2010; Otera et al., 2013).
Together, this data points to Drp1 as nexus for regulating
mitochondrial form and function in response to cellular and
extracellular cues.

The fusion/fission genes are important for an organism’s
survival as knockout mice for (Mfn1, Mfn2, and Drp1) are
embryonic lethal (Chen et al., 2003; Ishihara et al., 2009;
Wakabayashi et al., 2009). In humans, pathogenic mutations in
Mfn2 cause Charcot-Marie-Tooth type 2A (CMT2A) disease,
characterized by progressive distal sensory and motor neuron
abnormalities and distal muscular atrophy (Zuchner et al., 2004).
Mutation of Opa1 is associated with optic atrophy defects
(Alexander et al., 2000; Delettre et al., 2000). Drp1 knockout
mice have severe neurological defects including abnormal brain
development and neonatal lethality. This suggests that Drp1
is important for both embryogenesis and neurogenesis almost
certainly due to its role in mitochondrial fission (Ishihara et al.,
2009). A list of neurodegenerative diseases with mitochondrial
phenotypes are listed in Table 1.

MITOCHONDRIAL DYNAMICS AND
TRANSPORT

The close relationship between mitochondrial fusion/
fission machinery and transport is noteworthy. Mitofusins

(Mfn1 and Mfn2) physically interact with the RhoT/Trak
complex. Inhibition of Mfns in cultured neurons and in vivo
markedly reduce both the anterograde and retrograde transport
(Misko et al., 2010). The fission protein Drp1 has also been
implicated in mitochondrial transport. Inhibition of Drp1
function disrupts mitochondrial transport to dendrites in
Purkinje cells both in vitro and in vivo (Fukumitsu et al.,
2016). In another study Drp1 was shown to be important
for distribution of mitochondria in the nerve terminals of
dopamine neurons (Berthet et al., 2014). Recent work has
shown Drp1 modulates dynein-based retrograde transport
through interaction with the dynein–dynactin complex (Drerup
et al., 2017). Although we now know a great deal about the
fusion and fission machineries, there are still outstanding
questions that need to be addressed. Since fusion and fission
are oftentimes both regulated by and directly influence other
cellular organelles (endoplasmic reticulum, peroxisomes,
etc.) as well as mitochondrial transport and function, it is
still not clear if the pathological consequences of disrupted
dynamics are causal in disease or merely a downstream
consequence. With the advent of novel sensors, in vivo
imaging platforms, and advanced microscopy techniques
we will be able to separate each of these mitochondrial
properties to gain insights into the mechanisms and function of
mitochondrial dynamics.

CONCLUDING REMARKS

Protein synthesis in neurons can occur both at the
somatodendritic compartment and at the distal regions of
axons and dendrites. Proteins synthesized in the soma need
to be faithfully transported through the long length of neuron
to the target region or organelle. Additionally, mRNAs can
be transported with local translation occurring in distal
neuronal compartments. Both mechanisms are utilized by
mitochondria and evidence of local translation of mitochondrial
transcripts in distal axon has reliably been shown. In either
of the above-mentioned scenarios proper axonal transport
of these components is essential for mitochondrial survival
in neurons. Thus, intracellular transport machinery plays an
important role in maintaining the mitochondrial pool along the
extended neuronal arbor.

Although the majority of mitochondria are considered to
be stationery in mature neurons, at least on time scales
of minutes, in order to maintain a healthy pool of the
organelle in distal regions, mitochondria rely on active transport.
Evidence for this is shown in Drosophila motor axons where
inhibition of Kinesin-1 stops mitochondrial movement in both
direction and leads to a dramatic decrease in the density of
the organelle (Pilling et al., 2006). Mutations of dynein or
dynein accessory proteins can cause specific defects in the
mitochondrial population moving toward the cell body (Pilling
et al., 2006; Drerup et al., 2017). This implies that movement
of components or the organelle itself is essential for both
mitochondrial and neuronal health. Although transport defects
have been associated with neurodegenerative disorders, to date
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no therapeutic interventions have been reported which includes
manipulation of mitochondrial transport specifically; however,
the possibility of mitochondria as a therapeutic target is
of great interest. Defects in the localization, health, and
function of this organelle are a commonality in numerous
disease states (Reddy and Reddy, 2011). Thus, fundamental
knowledge about mitochondrial transport dynamics in vivo
may aid in the development of effective therapeutics for
diseases involving transport defects of this organelle. Future
in vivo studies with longer time frames will provide
critical insight in to the transport dynamics along the
entirety of a neuron.
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