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Abstract: Chronic inflammatory demyelinating polyneuropathy (CIDP) is the most common form of
autoimmune polyneuropathy. It is a chronic disease and may be monophasic, progressive or recurrent
with exacerbations and incomplete remissions, causing accumulating disability. In recent years, there
has been rapid progress in understanding the background of CIDP, which allowed us to distinguish
specific phenotypes of this disease. This in turn allowed us to better understand the mechanism
of response or non-response to various forms of therapy. On the basis of a review of the relevant
literature, the authors present the current state of knowledge concerning the pathophysiology of the
different clinical phenotypes of CIDP as well as ongoing research in this field, with reference to key
points of immune-mediated processes involved in the background of CIDP.
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1. Introduction

Chronic inflammatory demyelinating polyneuropathy (CIDP) is the most common
form of autoimmune polyneuropathy. It is a chronic disease and may be monophasic,
progressive or recurrent. Patients with CIDP were first described by Hermann Eichhorst, a
German neurologist working in Switzerland, in 1890 [1]. In the 1950s, a clinical concept
of inflammatory polyneuropathies responding to treatment with corticosteroids was de-
veloped. In the 1970s, chronic recurrent inflammatory polyneuropathy was described as a
separate disease entity, the present name was given in the 1980s [2,3], and the English name
of CIDP was introduced by Dyck et al. [4]. Dyck et al. also introduced the basic clinical
features of the disease. Since then, many descriptions of varieties of this neuropathy have
appeared, as well as numerous proposals of diagnostic criteria [5,6].

The prevalence of CIDP is estimated at 1.2–8.9 per 100,000 people. The disease can
appear at any age, more often around the age of 50; 10% of CIDP cases are children (rarely
under the age of 1) [7]. Pre-symptoms, such as immunization with a foreign protein (e.g.,
vaccination), infectious diseases, are much less common than in Guillain-Barré syndrome [8].

Clinically, CIDP presents as a progressive symmetrical limbs’ paresis that affects both
the distal and proximal parts. The essence of CIDP is a selective involvement of peripheral
nerves, plexuses or nerve roots. Limb weakness is accompanied by paraesthesia and a
decreased sense of touch, pain and temperature. Impairment of deep sensation can lead
to imbalance. Occasionally, cranial nerve involvement is observed. Tendon reflexes are
weakened or suppressed in all limbs [6–8]. CIDP symptoms develop fully, usually within
2 months. In some patients, the course may be more rapid (acute—onset CIDP)—the full
clinical picture may develop within a few weeks, which may resemble the course of the
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Guillain-Barre syndrome [6,9]. The disease may be monophasic, progress continuously or
periodically regress and recur [10,11].

The current criteria for the diagnosis of CIDP have been developed by the European
Federation of Neurological Societies (EFNS) in cooperation with the Peripheral Nerve
Society (PNS) in 2021 [6]. According to these criteria, CIDP should be suspected in any
case of progressive, symmetrical or asymmetric polyradiculoneuropathy, the symptoms
of which recur or worsen within 2 months. Symptoms strongly suggesting CIDP include:
paresis of the distal limbs, abolition of tendon reflexes, sensory disturbances, and decreased
vibration sensation. In patients with such suspicion, it is necessary to perform a nerve
conduction test. The examination should include at least four peripheral nerves [6,7,9].
According to the criteria mentioned above, stimulation of the median, ulnar, peroneal and
sural nerves should be performed on the same side. If the criteria are not met, the same
nerves should be examined on both sides [6].

The electrodiagnostic examinations may be supplemented by examination of the
cerebrospinal fluid and Magnetic Resonance Imaging (MRI) of the roots and nerve plexuses.
Peripheral nerve biopsy does not give a definite confirmation/exclusion of the CIDP
diagnosis [6,12,13].

The typical form of CIDP is a sensorimotor form with a chronic onset, symmetrical
symptoms distribution, usually more proximal than distal [14]. In approximately 16% of pa-
tients with typical CIDP, the onset is sudden (acute-onset CIDP), with the greatest intensity
of symptoms in less than 2 months [12,14]. The atypical forms of CIDP or CIDP variants
include: the form with predominant sensory symptoms (sensory), including the chronic
immune sensory polyradiculopathy (CISP) form, the form with the predominance of motor
symptoms (motor CIDP), including the axonal motor form (MAMA, multifocal acquired
motor axonopathy), with predominance of symptoms in the distal segments (DADS, distal
acquired demyelinating symmetric neuropathy), asymmetric form (multifocal acquired
sensory-motor neuropathy [MADSAM, multifocal acquired demyelinating sensors and
motor neuropathy]) and focal (with the involvement of one or more nerves in one limb,
with symptoms of involvement of the brachial or lumbosacral plexuses) [6,7,13]. Currently,
it is assumed that the phenotypes of CIDP may change, that is, asymmetric forms may
transform into the more typical symmetrical form of CIDP (Table 1) [6].

Table 1. Phenotypes of CIDP [6].

Typical CIDP CIDP Variants

All the following:

• Progressive or relapsing, symmetric,
proximal and distal muscle weakness of
upper and lower limbs, and sensory
involvement of at least two limbs

• Developing over at least 8 weeks
• Absent or reduced tendon reflexes in all

limbs

One of the following, but otherwise as in typical
CIDP (tendon reflexes may be normal in
unaffected limbs):

• Distal CIDP: distal sensory loss and muscle
weakness predominantly in lower limbs

• Multifocal CIDP: sensory loss and muscle
weakness in a multifocal pattern, usually
asymmetric, upper limb predominant, in
more than one limb

• Focal CIDP: sensory loss and muscle
weakness in only one limb

• Motor CIDP: motor symptoms and signs
without sensory involvement

• Sensory CIDP: sensory symptoms and signs
without motor involvement

Abbreviation: CIDP, chronic inflammatory demyelinating polyradiculoneuropathy.

2. Methods
2.1. Search Strategy

The authors conducted a literature search focused on the topic of immunological
characteristic of various phenotypes of CIDP. The search engines PubMed via MEDLINE
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and Google Scholar were used from the beginning of 2010, until 31 October 2021. Re-
views and research studies, classified according to their relevance, were initially included,
with subsequent exclusion of conference abstracts and papers written in languages other
than English. In addition, reference lists from the eligible publications were searched for
their relevance to the topic. With the uses of keywords as follows: chronic inflammatory
demyelinating polyneuropathy, CIDP, anatomy, physiology, phenotypes, immunology,
inflammatory process, demyelination process, nodal and paranodal antibodies, and atypi-
cal form. In addition to using singular key words, to find the most relevant records, the
authors used PubMed Advanced Search Builder as well. The advanced queries used were
as follows: (((CIDP) AND (phenotypes)) AND (immunology))); ((chronic inflammatory
demyelinating polyneuropathy) OR (CIDP)) AND (((inflammatory process) OR (immunol-
ogy)) OR (atypical form))). To find the most relevant paper, two analysts (ED and MWP)
were working separately by screening the search engines.

2.2. Data Extraction

As a result, 743 records were identified and screened separately by ED and MWP.
Each of the analysts prepared their own list of records identified as relevant to the study.
Then, these record lists were double read by both of them, and 110 abstracts were found
to be relevant. Then, full text manuscripts were acquired. Then, all articles were read
independently by both analysts.

2.3. Qualitive Analysis and Synthesis

Each analyst worked independently and prepared their own list of relevant full-text
manuscripts. Both lists were compered, and by discussion, 83 publications were found to
be the most relevant to the study and included in this review.

3. Anatomy
3.1. The Structure of Myelin Sheaths

Two critical physical parameters influence the speed of conduction in the nervous
system: the axon’s diameter and the axon membrane’s resistance to ion leakage out of the
cell. The larger the axon diameter or the more leak-resistant the membrane, the faster an
action potential will move. The myelin sheath, the greatly extended and modified plasma
membrane, is wrapped around the nerves’ axons, isolating them. The ion channels are
clustered in Ranvier nodes, holding the action potential in the nodes regions. It reduces the
space and time requirements for the action potential propagation continuous to saltatory
conduction. Structures located in nodes and paranodal region are important in numerous
pathologies of the peripheral nervous system, which are associated with dysfunction of
nodal gangliosides 170,171 [15,16], neurofascin family, Caspr1, and contactin1 [17].

The formation of Ranvier’s node is associated with the clustering of sodium chan-
nels near the edge of the forming myelin sheath. This process has been observed in the
peripheral nervous system, studying Schwann cells [18] and in the central nervous system,
where oligodendrocytes are involved in myelin formation [19]. Clustering of channels
is mainly dependent on direct contact with glial cells, or probably with different factors
secreted by various subpopulations of glial cells [20–22]. The structure of Ranvier’s node
in the peripheral system may differentiate following the contact with Schwann cells via
microvilli [23]. In the central nervous system, this role is more likely played by astrocytes
and processes of glial progenitor cells [24,25].

Schwann cell microvilli surround an area that can be divided into the node of Ranvier
(NOR), the paranodal junction (PNJ), and the juxtaparanodal region (JXP). All of them are
covered by the basal lamina (BL) [26]. The integrity of these domains depends on specific
cell adhesion molecules (CAMs), and the integrity of neighboring domains.

In turn, structures relevant to the pathophysiology of CIDP can be distinguished in
each of these regions (for NOR region and PNJ—Figure 1) [26].
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Figure 1. Schematic representation of the proteins that make up the Ranvier’s node and paranodal
junction. On the axonal side, the Ranvier’s node consist of sodium channels (NaCh) and diverse
(mechanically and voltage-gated) potassium channels (K channels), which are associated with ankyrin
G and ankyrin R proteins—linking membrane proteins to the spectrin-actin complex cytoskeleton—
and at the same time with neurofascin 186 (NF186) or neurofascin 140 (NF 140). Adhesion complex in
paranodal region composes of contactin and contactin associated protein-1 (Caspr 1), which bind to
protein 4.1B. Schwann cells express in Ranvier’s node several transmembrane proteins such as protein
belonging to the immunoglobulin superfamily (NrCAM), dystroglycan (αDG and βDG), syndecan
3 and 4 (Syn3 and Syn4) and protein M6B. In paranodal junction, myelin-associated glycoprotein
(MAG) and neurofascin 155 (NF 155) are expressed [26].

3.2. The Structure of Ranvier’s Node and Paranodal Region

Ranvier’s node is an area enriched in sodium channels (NaCh) and diverse potassium
channels (TRAAK, TREK, Kv7.2/Kv7.3 and Kv3.1b) [27–29]. These channels are associated
with ankyrin G and ankyrin R proteins, which belong to a family of proteins that link
membrane proteins to the spectrin-actin complex cytoskeleton [28,30]. In addition, through
the ankyrin proteins, these channels are associated with neurofascin 186 (NF186) and
with a protein belonging to the immunoglobulin superfamily—NrCAM [31]. The other
neurofascin isoform (NF140) is expressed mainly during the formation of the node of
Ranvier, NF186 is involved in sodium channel clustering. The expression of the NF140 is
also found in demyelinated white matter of the brain in multiple sclerosis [32].

Several transmembrane proteins of Schwann cells are expressed in the node of Ranvier,
such as NrCAM, gliomedin, dystroglycan (αDG and βDG), syndecan 3 and 4 (Syn3 and
Syn4) and protein M6B [33–36].

In the PNJ in the central and peripheral nervous systems, the neurofascin protein
(NF155) and myelin-associated glycoprotein (MAG) are staged on the glial cell side. In
Schwann cells NF 155 binds, with the help of protein 4.1G, to the ankyrin B (AnkB) and
further to the proteins of the cytoskeleton: spectrin β2 and α2 [37]. Axonal adhesion
complex composed of contactin and Caspr1 (Contactin associated protein-1) participates in
junction formation on the axon side. Through Caspr1, which binds to protein 4.1B, contact
with spectrins is provided.
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The paranodal region full of axo-glial junctions play a role in stabilization of nodes
probably by acting as diffusion barriers, segregating ion channels at the node from those in
the juxtaparanodes [38] and limiting the lateral diffusion of the nodal complex [39,40].

The axonal membrane contains several isoforms of voltage-gated potassium channels
(Kv1) at the JXP [41]. Potassium channels associate with Caspr2, and Caspr2/K+ channel
complexes are formated. On both the axon and glial cell sides in juxtaparanodes the pres-
ence of TAG-1 (a cell adhesion molecule, also named Contactin2/TAG-1) was stated [42,43].
The localization of Kv1 channels at the JXP strongly depends on both Caspr2 and TAG-1
presence [44].

Protein 4.1 families also play a crucial role in the integrity of the JXP, e.g., 4.1G targets
and stabilizes the glial cell adhesion molecules (Necl1, Necl2, Necl4) [45]. Transmembrane
receptors ADAM22 and ADAM23 integrate with LGI family proteins and recruit PSD-93
(postsynaptic density protein 93) and PSD-95 (postsynaptic density protein 95) [46,47]. The
last one is a member of the membrane-associated guanylate kinase (MAGUK) family and
bind to Kv1 channels, without the Caspr2 [47].

3.3. Nodal and Paranodal Associated Antibodies

Antibodies against nodal and paranodal proteins: NF155, NF140, NF186, CNTN1, and
Caspr1 have been described in CIDP [48–51]. They belong to immunoglobulin G4 (IgG4),
G3 (IgG3) or G1 (IgG1) classes [49–51]. They are thought to be responsible for differences
in the clinical picture and response to treatment in CIDP patients.

The standard treatment, considered an autoimmune origin of CIDP, is based on the
administration of corticosteroids, immunoglobulins, plasma exchange and immunosup-
pressive therapy [6]. The subgroup of patients with disruption of axoglial junctions in the
node/paranode region tends to show tremor, ataxia, cranial nerve involvement and poor
response to intravenous immunoglobulin (IVIg) [19,51–53].

Patients without defined presence of antibodies (seronegative) CIDP respond to im-
munotherapy in 60–80% of cases, while as much as 80% of patients with nodal/paranodal
antibodies have poor response to the therapy [50,52]. IVIg in seronegative CIDP patients
might inhibit the complement pathway and modulate the Fc receptors on macrophages,
promoting remyelination, although some data are contrary to this theory [54].

The exact mechanism of nodal and paranodal antibodies remains unclear, and probably
there are some discrepancies among distinct classes [52]. The poor response to IVIg in
some IgG4 positive patients (seropositive CIDP) may be due to the lack of complement-
mediated inflammatory cascade and macrophage-mediated demyelination [55,56]. In this
case, rituximab, a monoclonal antibody against CD20, important in the B cell depletion
process, seems to be more effective [57]. The latest observations show that rituximab has
good effects in seropositive CIDP patients, although effectiveness decreases with the disease
duration and degree of axonal damage [58–60]. Randomized clinical trials to determine
the effectiveness and safety of rituximab in CIDP patients, especially in the subgroup with
nodal/paranodal antibodies are postulated. Patients with nodal and paranodal antibodies
tend to present atypical forms of CIDP (Table 2).

Table 2. IgG4 antibodies against nodal/paranodal proteins and reaction to treatment [13,61].

Antibodies Frequency in
CIDP Patients Localisation IvIg Corticosteroids Plasma Exchange Rituximab

NF155 1–21% [19,62,63] Paranodal Poor response Partial response Potentially good
response

Potentially good
response

CNTN1 0.7–8% [19,52,62] Paranodal Poor response Partial response Partial response Potentially good
response

NF140/NF186 2–5%
[48,49] Nodal Partial response Partial response Potentially good

response
Potentially good

response

Caspr1 0.2–3% [19,64] Paranodal Poor response Partial response Partial response Potentially good
response
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4. Pathogenesis
4.1. Inflammatory Process

CIDP is a form of chronic neuropathy that is presumably caused by heterogeneous
immune-mediated processes. The exact mechanisms of neuropathy in classical macrophage-
induced demyelination remain unclear despite the long-standing recognition of this process
in CIDP [1–4].

Classical macrophage-induced demyelination is basic in the pathogenesis of CIDP
and is found in some patients in every major subtype, including typical CIDP, DADS,
MADSAM and purely sensory subtypes. Early ultrastructural studies using biopsy speci-
mens from patients with CIDP have demonstrated the stripping of morphologically normal
myelin lamellae by cytoplasmic processes of macrophages [65,66]. Myelin damage is
mainly provoked by complement—depended antibodies’ activation. The recent studies
have shed light on antibody-dependent phagocytosis by macrophages without participa-
tion of complements. However, direct association between specific autoantibodies and
macrophage-induced demyelination has not been reported. Electron microscopic examina-
tion of longitudinal sections of sural nerve biopsy specimens suggested that macrophages
recognize specific sites of myelinated fibers as the initial target of demyelination. The
site that macrophages select to initiate myelin breakdown is located around the nodal or
internode regions. Hence, it seems that the components system distinguishing between
the nodal and paranodal regions plays a pivotal role in the behavior of macrophages that
initiate phagocytosis of myelin [67].

4.2. Demyelination Process

Recent studies have led to the concept of nodopathy or paranodopathy. The mecha-
nisms initiated by autoantibodies against paranodal junction proteins (neurofascin 155 and
contactin 1) have been demonstrated. Paranodal dissection resulting from the attachment of
immunoglobulin G4 (IgG4) at paranodal junctions and the absence of macrophage-induced
demyelination are characteristic pathologic features in patients with such antibodies [67].
Antibodies against proteins of the node of Ranvier and the paranodal regions have been
demonstrated in approximately 10% of patients diagnosed with CIDP, showing atypical
clinical phenotypes and inadequate response to standard CIDP treatment. Antibodies, are
directed against various cellular adhesion proteins located in or adjacent to the node of
Ranvier [13,68].

Differences in lesion distribution and repair processes by Schwann cells may determine
differences between subtypes. It is suggested that in typical CIDP there is preferential
involvement of proximal and distal nerve segments, whereas in MADSAM there is a
marked involvement of central nerve segments. These findings suggest that humoral rather
than cellular immunity predominates in the former, as the nerve roots and neuromuscular
junctions are devoid of the blood-nerve barrier [1,13,59].

Studies have also compared the immunological profile of CIDP patients with IgG4
anti-neurofascin 155 (NF155) antibodies (NF155+ CIDP) with patients lacking anti-NF155 an-
tibodies (NF155- CIDP). A macrophage-induced demyelination was not observed in NF155+

CIDP [68]. In NF155+ CIDP, the downregulation of IL1β is consistent with the absence of
macrophage-mediated demyelination. Lymphocytes Th2 and IL 13 cytokines downregulate
IL1β. Thus, it is possible that overrepresented Th2 (type 2 helper T cell) cytokines play a
critical role in inducing IgG4 autoantibodies via the effects on IL4/IL13/IL10 and spinal
root inflammation or by downregulation of IL1β and macrophage functions [8,69]. A de-
crease in anti-inflammatory cytokine, IL-1 receptor antagonist (IL-1ra) was common in both
NF155+ and NF155− CIDP, but more marked in NF155+ CIDP. IL-1ra is a representative
anti-inflammatory cytokine. Pronounced decrease in IL-1ra levels in NF155+ CIDP patients
may also contribute to severe spinal root inflammation. Intrathecal upregulation Th2 cell
cytokines is characteristic for IgG4 NF155+ CIDP, while type 1 helper T cell (Th1) cytokines
are increased in CIDP regardless of the presence or absence of anti-NF155 antibodies. The
findings suggest that overproduction of Th2 cell cytokines is unique to NF155+ CIDP [69].
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Based on the recent studies, CIDP may be related to immunoglobulin G4 (IgG4) reac-
tivity. Immunoglobulin IgG4 is not capable of activating the classical complement pathway
or forming immune complexes. Subclasses lacking the ability to activate complement can
interact with other immunoglobulin subclasses and activate complement via the lectin
pathway in the mouse models. IgG4 can also act as a neutralizing or blocking antibody,
protecting the organism from severe allergic reactions caused by food or environmental
allergens. In the response to Th2-dependent cytokines such as interleukins (IL)-4, -5, -10
and -13 and transforming growth factor β (TGF-β) eosinophilia activation can occur, IgG4
and IgE levels increase and fibrosis progresses. These cytokines, especially IL-10, are re-
sponsible for allergic symptoms, eosinophilia, and increased IgE and IgG4 levels. It seems
that the overexpression of Th2 lymphocytes and Treg lymphocytes and their dependent
cytokines plays a major role in the pathogenesis of IgG4-mediated diseases. The role of
innate immunity in the pathogenesis of IgG4-RD is also under consideration. Peripheral
blood innate immune cells, such as plasmacytoid dendritic cells and monocytes isolated
from patients with IgG4-RD, promote IgG4 production by B cells. Activation of the innate
immune response by microbe- and/or damage-associated molecular patterns stimulates
production of type I interferon and B cell-activating factor by innate immune cells and
results in IgG4 production by B cells. Macrophage and basophil cell dysfunction and over-
expression of various cytokines including BAFF (TNF superfamily member) and APRIL
(a proliferation-inducing ligand) have been demonstrated [70–72].

4.2.1. The Role of Autoantibodies against Nodal or Paranodal Proteins

Neurofascin is crucial in constructing and maintaining the nodes of Ranvier. The
mature nervous system predominantly expresses a neuronal isoform, NF186, and a glial
isoform, NF155, whereas immature neurons express NF180 and NF166. Glial NF155 is
expressed at paranodal loops of Schwann cells in the PNS and in oligodendrocytes in the
CNS. Glial NF155 acts as a cell adhesion molecule, interacting with axonal CNTN1 and
CASPR1 [61,73–77]. Individual autoantibodies are implicated in unique features; conse-
quently, CIDP associated with these nodal/paranodal autoantibodies is now recognized as
an autoimmune nodopathy or paranodopathy.

The CNTN1-Caspr1-NF155 complex is required to maintain paranodal architecture
and to maintain myelin insulation of the axon for nerve impulses propagation along
myelinated axons. In patients with CIDP IgG1 and IgG4 subclasses autoantibodies are
directed against CNTN1, and they can alter the paranodal architecture. IgG4 antibodies
have a potential to block the NF155-CNTN1 interaction. Autoantibodies against NF155
(as well as against CNTN1 and possibly Caspr1) cause demyelinating lesions in both the
CNS and PNS, termed combined central and peripheral demyelination (CCPD). However,
there are some differences between individual patients. Patients with NF155 antibody-
positive CIDP have a distinct clinical phenotype, which is defined by low-frequency,
high-amplitude tremor, sensory ataxia and poor response to IVIG. Additionally, the anti-
NF155 antibody-positive form of CIDP is exceptional in that it is associated with a high
incidence of subclinical demyelinating lesions in the central nervous system [75,78,79]. At
least two pathogenetic mechanisms have been proposed for NF155-IgG4 CIDP: a blocking
mechanism that prevents the interaction between CNTN1-/Caspr1 and NF155 and disrupts
the paranodal structure, and a second induction of NF155 clustering and removal from
the cell surface by an unidentified mechanisms, in the apparent absence of a blocking
function [62,63,78,79].

Neurofascins -140 and -186 (NF140, NF186), also expressed on motoneuron paran-
odes, seem to be the main target of autoantibodies in some CIDP patients [73–77]. Kira
et al. presented a hypothetical model of mechanism of NF155+ CIDP and combined
central and peripheral demyelination (CCPD). NF155 peptides are presented by the
DRB1*15:01/DRB1*15:02 and/or DQA1*01:02-DQB1*06:02/DQA1*01:03-DQB1*06:01 com-
plex to naive T cells, initiating Tfh2/Th1 cell differentiation. Tfh2 (follicular helper T
type 2) cells produce interleukins IL4/IL13/IL10, which induce IgG4 class switching. IgG4
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anti-NF155 antibodies penetrate the nerve terminal and nerve roots where the blood-nerve
barrier is absent or leaky. Anti-NF155 antibodies disrupt the interaction between NF155 and
the CNTN-1/Caspr1 complex in the paraganglia, leading to the detachment of Schwann
cell terminal loop from axons. Activated Th2 and Th1 cells induce inflammation in spinal
roots, leading to nerve root hypertrophy and sometimes to oval periventricular lesions
in the central nervous system. Overproduction of IL13 decreases IL1β production, which
inhibits macrophage activation and recruitment. Cranial nerves such as the optic nerve,
oculomotor nerve, trigeminal nerve and facial nerve are also damaged by anti-NF155
antibodies and probably by activated Th2/Th1 cells (Figure 2) [69,74].
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Figure 2. Chronic inflammatory demyelinating polyneuropathy (CIDP) with anti-NF155 antibodies—
the possible mechanism of peripheral and central lesion. After a presentation of NF155 peptides
by HLA-DR15 or HLA-DQA1 complex to naive T cells, the differentiation of Tfh2/Th1 cells starts.
Tfh2 cells produce interleukins such as IL4/IL10/IL13, which induce IgG4 class switching. IgG4
anti-NF155 antibodies move into places where the blood–nerve barrier is absent or leaky, such a nerve
terminal and nerve roots. They disrupt the interaction between NF155 and the CNTN-1/Caspr1
complex at the paranode. Activated Th1 and Th2 cells induce inflammation at the spinal roots,
causing nerve roots hypertrophy, affection of the cranial nerves and/or periventricular ovoid lesions
in the central nervous system.Scale bar of the MRI images is 1:6.

4.2.2. The Role of Antibodies against the Hemi-Node-Type Region

Motor neurons have heterogeneous axon initial segments (AISs), which underlie
different spiking properties. Duflocq et al. identified a hemi-node-type organization in all
α-motor neurons, with a contact-related protein (Caspr)+ paranode and a Caspr2+ and
Kv1+ paranode compartment, identified as para-AIS and juxtapara (JXP)-AIS, adjacent
to the AIS where the myelin sheath begins, which might limit some AIS plasticity [64].
Protein 4.1B plays a key role in ensuring the proper molecular compartmentalization of
this hemi-node-type region [64,80,81].
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There are only a few publications on CIDP patients with IgG4 subclass antibodies
against Caspr1, therefore antibodies against other protein located on motoneuron paranodes
or complexed Caspr1/CNTN1 should be considered [62,63,79].

5. Conclusions

CIDP is an acquired autoimmune neuropathy the pathogenesis that is not yet well
understood. The involvement of autoreactive T lymphocytes, B lymphocytes, complement
components, inflammatory chemokines and cytokines, antibodies to various glycoprotein
and glycolipid nerve structures has been confirmed in the development of CIDP. The
discovery of autoantibodies against the proteins of the node of Ranvier and the paranodal
region in patients with atypical CIDP confirms the pathogenetic variety. The patients
with these antibodies are mostly young, and the course of the disease is sudden, with the
development of significant disability and a poor response to immunoglobulin treatment,
but a potentially positive response to rituximab.

Advances in research into the immunopathogenesis of CIDP will contribute to the
correct diagnosis of this neuropathy and the application of the effective treatment.
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