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ABSTRACT 

Potassium-free artificial sea water causes a loss of cell potassium and a gain of cell 
sodium in Porphyra perforata, which is not attributable to an inhibition of respiration. 

On adding KC1 or RbCI to such low potassium, high sodium tissues, net accumula- 
tion of potassium or rubidium takes place, accompanied by net extrusion of sodium. 
Rates of potassium or rubidium accumulation and sodium extrusion are proportional 
to the amount of KCI or RbC1 added only at low concentrations. Saturation of rates 
is evident at KCI or RbC1 concentrations above 20-30 raM, suggesting the role of an 
ion carrier mechanism of transport. 

Evidence for and against mutually dependent sodium extrusion and potassium or 
rubidium accumulation is discussed. 

In nerve fibers, kidney tubules, and other special secretory tissues the im- 
portant role of active ion transport has been well demonstrated. In other cells, 
however, the significance of ion transport and the maintenance of a constant 
cellular ion constitution has not been fully appreciated. I t  is possible that the 
secretion of ions is of general physiological importance in cellular homeostasis, 
and with this in mind experiments on ion transport in Porphyra were under- 
taken with the hope that data of a comparative nature might be useful toward 
a general theory of active ion transport. 

Recently Harris (10), Hodgkin and Keynes (11), and Huf eta/ .  (12) have 
proposed sodium secretion mechanisms involving potassium. Coupled potas- 
sium accumulation and sodium extrusion are indicated in the first two cases, 
human erythrocytes and the squid giant axon, while potassium is not uni- 
directionally transported across the frog skin, as is sodium. 

In frog muscles (19) and mammalian liver slices (1), as well as in human 
erythrocytes (10) and the squid giant axon (11) potassium-free media result in 
a loss of potassium and gain of sodium. Separate measurements of influx and 
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efflux indicate that potassium lack reduces active sodium e~ux, as well as 
blocking potassium influx in squid nerve (11). 

Other workers have suggested independent mechanisms of sodium extrusion 
~nd potassium accumulation, however (3, 17). But in yeast, active sodium secre- 
tion independent of potassium accumulation was refuted by Foulkes (8). 

In this paper evidence will be presented for potassium-dependent sodium 
extrusion and concurrent potassium or rubidium accumulation in Porphyra. 
Experiments indicating coupling of these processes will also be described. 
Cellular ion constituents, evidence for active transport of sodium and potas- 
sium, and the advantages of Porphyra in permeability studies were reported 
earlier (4). 

Methods 

Porpkyra perforata was collected on rocks in the intertidal zone along the Monterey 
Peninsula, California, and was kept in the laboratory in running sea water before use. 
Sodium, potassium, and rubidium were determined by flame photometry in 5 per cent 
trichloracetic acid extracts of the sucrose-washed alga (4). Chloride was estimated by 
a modified colorimetric method (14) in hot water algal extracts. All experiments were 
performed in the dark and at room temperature (15-20°C.) unless otherwise indicated. 

The potassium-free artificial sea water contained NaC1 0.48 M, MgClz 0.027 M, 
MgSO4 0.027 rt, and CaCI~ 0.01 x~. 

Ion contents refer to total amounts in the tissue, not corrected for adsorption or 
apparent free space. 

RESULTS AND DISCUSSION 

Aerated potassium-free sea water induces a net loss of potassium in Porphyra 
(Fig. 1), although doubling the potassium content of sea water does not in- 
crease the potassium content (data not presented). The experimental points 
(Fig. 1) for loss of potassium best fit a first order reaction curve with rate con- 
stant approximately 0.029 hour-L Presumably the loss of potassium represents 
simple diffusion with the rate dependent upon the cellular potassium content. 
The half-time for the reaction, somewhat greater than that reported for frog 
muscle (19), is about 24 hours, suggesting a relatively low membrane permea- 
bility to potassium. Unlike myelinated nerves, it is not likely that potassium 
moving out of the cells is trapped in the extracellular material, thus allowing 
some potassium influx to continue. The potassium-free solutions were changed 
at 1 to 30 minutes, 4 hours, and 24 hours during the experiment, and a large 
volume of solution was used (about 200 ml. per gin. of tissue). 

Tissue sodium increased during the potassium-free treatment, but followed 
a different time course from potassium loss (Fig. 1). Gain of sodium was essen- 
tially complete in 24 hours, while loss of potassium continued throughout the 
experiments. 

The net gain of sodium is much less than the net potassium loss. A similar 
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unequal exchange was also observed during anoxia (4), in which case potassium 
effiux was accompanied by a small m o u n t  of chloride loss and sodium gain 
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FIo. 1. Sodium and potassium contents of Parphyra perforata tissues exposed to 
K-free artifidal sea water. Curve for potassium drawn from first order reaction with 
rate constant 0.029/hour. Curve for sodium drawn by eye. 

(Table I), but chloride loss plus sodium gain remains less than potassium loss. 
Several explanations may possibly apply, but none has been experimentally 
tested. I t  is not considered likely that cell shrinkage would occur to the extent 
necessary to explain the net difference between sodium gain and potassium loss 
since the osmotic value of the K-free artificial sea water is similar to that of 
normal sea water. Although Shaw el a/. (18) noted a lack of correlation between 
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the resting potential of Bufo marinus sartorii and potassium content, Hodgkin 
and Keynes (11) report that passive movements of ions in squid giant axons 
may vary with potential. Thus there seems to be a precedent for expecting 
excess potassium loss in Porphyra to be due to an alteration of potential, but the 
latter would be difficult to measure in this alga. I t  is also possible that another 
cation (Ca, Mg, or H) may replace cell potassium, or that the cells suffer a loss 
of organic anions during the potassium-free treatment without alteration of 
potential. 

In any case, potassium lack partially blocks sodium extrusion in Porpkyra. 
When potassium-deficient tissues are exposed to artificial sea water contain- 

ing KC1, sodium extrusion and potassium accumulation take place. Both 
processes are stimulated by light, inhibited by cyanide and dinitrophenol, 
and occur against concentration gradients. Sodium extrusion is nearly complete 

TABLE I 
Variation of Sodium, Chloride, and Potassium Contents of Porpkyra perforata 

Tissues during Anoxia (m.eq./kg. FW) 

Time under N~ Na C1 K 

kr$° 

0 
4 

24 
48 
95 

6O 
62 

87 
97 

3O 
26 

17 
9 

160 

159 
121 

102 

34 

in 2 to 4 hours (Fig. 2), while potassium accumulation may continue as long 
as 12 to 16 hours (Fig. 3). In each case the final levels attained are similar 
to the original untreated values. 

If coupling occurred between sodium extrusion and potassium accumulation, 
on exposure to potassium, one might expect to find a constant ratio of sodium 
extruded to potassium accumulated during the initial period. This ratio aver- 
ages 2.3 with standard deviation 1.7 for 18 determinations. Such variability of 
the ratio suggests a "loose coupling" such as appears to be the case in squid 
nerve sodium and potassium transport (11). However, one sodium ion per 
potassium is actively transported in that tissue, thus the mechanism transports 
no net charge and is independent of potential. Until separate efltux and influx 
values are obtained for Porphyra it will not be clear whether this condition is 
met. 

Inhibition of sodium extrusion in frog skin (12) and in Porphyra is not due 
to a fall in respiratory rate. Oxygen consumption of tissues exposed to potas- 
sium-free sea water is slightly higher than that of controls in sea water with 
normal potassium content (Table II). Addition of KCI to potassium-deficient 
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tissues stimulates respiration, however (data not presented). Epstein (5), 
Oberholzer (15), and others have previously reported potassium-stimulated 
respiration in both plant and animal tissues. Quantitative measurements of 
the amount of respiratory stimulation are now in progress so that ratios of 
ions transported per molecule of oxygen consumed may be determined, as 
Leaf and Renshaw have done for frog skin (13). The values they obtained may 
require a modification of Conway's redox theory (2) as an explanation of sodium 
transport in that tissue (12). 

When rubidium chloride, instead of potassium chloride, is added to potas- 
sium-deficient tissues, rubidium is accumulated (Table III). The amount ac- 
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FIG. 2. Amounts of sodium extruded by potassium-deficient Porphyra perfarata 
tissues on exposure to artificial sea water containing 5 rr~ @ @, 10 n ~  G~----~, 
20 to 30 mM • e, or 40 to 60 n ~  O oKCI. 

cumulated does not appear significantly different from the amount of potas- 
sium lost, thus an exchange of rubidium for potassium may be involved. Un- 
fortunately the data are not of sufficient precision to determine whether all 
rubidium accumulation may be thus accounted for. 

In spite of the loss of potassium, sodium extrusion proceeds when RbC1 is 
added. Both the rate of sodium extrusion and the time course are similar to 
those observed on adding KC1. Apparently rubidium can substitute for potas- 
sium as a requirement for sodium extrusion. 

Because the rate of sodium extrusion is dependent upon the concentration of 
potassium or rubidium in the medium (Fig. 2, Table III),  it might be suspected 
that the rate of potassium or rubidium accumulation, and not their external 
concentration, determines the rate of sodium extrusion. However, Hodgkin 
and Keynes (11) found potassium influx to be largely passive when outside 
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potassium was 52 m ~  while it  was chiefly an active process when outside 
potassium was 10.4 m~.  Sodium efllux was increased only about  40 per cent 
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Fro. 3. Amounts of potassium taken up by K-deficient Porpkyra perforata tissues 
on exposure to artifidal sea water containing varying amounts of Kel .  Symbols as in 
Fig. 2. 

TABLE II 
Rates oJ Oxygen Consumption of Porphyra perforata Tissues in Sea Water and 

after Long Exposure to K-Free Artificial Sea Water 
Units Qo=:microliters/gm. fresh weight]hr, sodium and potassium contents in m.eq./kg. 

FW. 

Experiment  K content Na content Qos -4- s.v. No. samples 

Sea water 180 60 177 -4- 27 7 

K-free sea water 
1 
2 
3 
4 

89 
60 
67 
54 

98 
134 
129 
96 

232 ~ 3 
179 -4- 15 
244 -4- 29 
191 -4- 8 

when external potassium was 52 mM as compared with 10.4 ro~. Thus, if potas- 
sium or rubidium accumulation in Porphyra does not  represent an active process 
at  high external potassium or rubidium concentrations, then it  seems more 
likely tha t  variat ion in sodium extrusion with external potassium or rubidium 
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may be a surface effect. Hodgkin and Keynes (11) found addition of potassium 
to have an immediate effect on sodium efflux rate, consistent with this inter- 
pretation. 

That  rates of transport are linear with increasing potassium or rubidium 
concentration in the medium only at low concentrations, and appear saturated 
at high concentrations, may argue for the existence of an ion carrier mecha- 
nism of transport (6, 16). If such is the case potassium and rubidium are 

TABLE III  
Sodium, Potassium, and Rubidium Conterts of Porphyra perforata Tissues Rendered Low in 
Potassium and High in Sodium by Pre~ious Treatment with K-Free Sea Water, Then Ex- 

posed to Artificial Sea Waters Containing Var3qng Amounts of Potassium and Rubidium 
Contents in m.eq . /kg.  FW. 

Time KCI RbCI K Rb Na 

kf$. 

0 

3.8 
8.2 

11.2 

3.8 
8.2 

11.2 

3.8 
8.2 

11.2 

3.8 
8.2 

11.2 

ra.~./llter 

0 

m.eq./Uter 

0 

0 
0 
0 

25 
25 
25 

100 
100 
100 

111 

139 
132 
154 

71 
91 
70 

83 

87 

57 
56 
39 

0 
0 
0 

8 
16 
20 

23 

78 

28 
68 
88 

80 

66 
62 
50 

50 
46 

51 
52 
62 

48 
49 
47 

probably processed by one carrier site, while sodium is handled by another, 
as is the case in barley roots (7). However, the existence of separate carrier 
sites for different groups of ions does not necessarily imply independent trans- 
port mechanisms for these groups. A contractile protein (9) or other macro- 
molecular carrier could be operating which would allow different binding sites 
on the same carrier. 

Several experiments with Porphyra have given results inconsistent with the 
coupling concept. (1) Iodoacetate in the dark preferentially inhibits retention 
of potassium over and above the difference in magnitude of the concentration 
gradients of sodium and potassium (4). (2) Net potassium accumulation con- 
tinues after net sodium extrusion has ceased, and net potassium loss in potas- 
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sium-free sea water continues after sodium gain is complete. The latter results 
may not be valid data for argument, however, since only net flux, not influx 
and efitux, was measured. Evidence from the iodoacetate experiment may also 
be invalid here, because there may be a potassium retention mechanism, 
independent of sodium extrusion, involving glycolysis as in yeast (8). As yet 
no data are available on the latter possibility. 

At this point no complete picture of sodium extrusion and potassium accumu- 
lation in Porphyra may be drawn. The evidence for coupling, the dinitrophenol 
and cyanide sensitivity, the requirement for oxidative metabolism, and the 
temperature coefficient for transport (1.9 between 3 and 10.4°C. for both 
sodium extrusion and potassium accumulation in the dark after anoxia) sug- 
gest a cyclic mechanism similar to that proposed by Hodgkin and Keynes 
(11) for squid giant axon. 

It  is a pleasure to acknowledge the criticism and advice of Professor L. R. Blinks 
under whose direction the work was undertaken. 
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