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Introduction
Evolutionary processes allowing the transmission of genetic 
information horizontally among species include horizontal 
gene transfer1–3 and hybridization.4,5 Hybridization is particu-
larly important in the evolution of eukaryotic species by hybrid 
speciation: when 2 genetically isolated parental species hybrid-
ize to produce a new hybrid lineage.6 In homoploid hybridiza-
tion, the hybrid species has the same ploidy level as the parental 
species. Owing to the recombination process, after the first 
hybrid generation, the genome of a homoploid hybrid becomes 
a mosaic, with different regions tracing distinct evolutionary 
histories of the parental species. Hybrid speciation might also 
result in a polyploid hybrid species: sets of chromosomes in 
polyploid genomes inherited from distinct parents—homeolo-
gous chromosomes—have distinct histories that follow the dis-
tinct histories of the parental lineages.

In phylogenetic studies of species involved in hybridiza-
tions, evolutionary relationships are more easily accommodated 
using a concept that generalizes the commonly used concept of 
a species tree: species networks.7,8 Genomic segments evolve in 
a species network model just as they do in species tree models, 
except that for some lineages, several alternative paths to the 
common ancestor are possible.

A number of consensus, parsimony, and likelihood-based 
methods that can be used for inferring species networks from 
sets of multiple gene trees have been developed. In consen-
sus-based species network methods, analogously to species 
tree inference using consensus,9 clades, or clusters defined by 
clades, that appear in a minimal percentage of gene trees are 
displayed in the form of a network.10 The consensus approach 

is often used for visualization and identification of contradic-
tory phylogenetic evidence without distinguishing among 
multiple potential causes of the discordance, including in sce-
narios in which hybridization is of interest.11,12 Because many 
ways exist to produce a network from a collection of clusters, 
several consensus methods have been developed,13–15 accom-
modating such phenomena as variability of taxon sampling 
across gene trees,16 which arises when some taxa are missing 
orthologs for some of the phylogenetic characters due to gene 
loss or failure to detect the genes.

A parsimony-based method for inferring species networks 
from a collection of gene trees has been reported by Yu et al,17 
extending the minimizing-deep-coalescence (MDC) crite-
rion for species tree inference.18,19 In MDC-based species 
tree inference, the species tree requiring the fewest deep coa-
lescence events to explain the discordance of gene tree topol-
ogies is reported as the estimated species tree. In its extension 
for species network inference, a species network is represented 
as a multilabeled species tree,20 and the multilabeled species 
tree that minimizes deep coalescence events is inferred using 
a set of possible mappings of gene tree tips onto tips of the 
multilabeled species tree representation, thereby producing an 
MDC species network.

In a maximum likelihood (ML) framework, one approach 
infers species networks from a set of gene trees.21,22 It uses a 
multilabeled tree representation of the species network, similar 
to the maximum parsimony (MP) method of Yu et al,17 to cal-
culate under a coalescent model the probabilities of gene trees, 
given the topology and branch lengths of the species tree.23 All 
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possible mappings of the gene tree leaves to tips of the multila-
beled species tree are considered in evaluating gene tree prob-
abilities. The likelihood of the multilabeled species tree is built 
as a product across loci of gene tree probabilities and maxi-
mized over a space of species networks, including both topol-
ogy and branch lengths, but constrained by a maximal permitted 
number of hybridizations. With this method, a strategy can be 
implemented in which species networks allowing different 
numbers of hybridizations are constructed on the same set of 
gene trees and compared using the Akaike information crite-
rion (AIC) or related statistics.

Given a set of gene trees, a second ML method tests whether 
a hybridization event between a pair of extant sister lineages is 
more likely than incomplete lineage sorting (ILS) to explain 
the gene tree discordance involving a putative extant hybrid 
species.24,25 A species network containing 1 candidate hybridi-
zation event is represented as a superposition of 2 alternative 
species trees, conditional on which loci evolve as in a regular 
species tree. Assuming conditional independence of loci given 
the species network, under a multispecies coalescent model, the 
likelihood of the species network is as follows:
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where α is the relative contribution of 1 species tree topology 
to the network and t is a vector containing the species tree 
branch lengths. θ is a vector of population sizes for branches of 
the species tree, N is the number of loci, g is the set of gene 
trees, possibly including intraspecific sampling, S1 and S2 are 
species trees representing a species network S with 1 hybridiza-
tion, and fG is the probability of a gene tree—both topology 
and branch lengths—given the species tree topology and 
branch lengths under the multispecies coalescent.26 This model 
is compared using AIC with the nested submodels in which α 
is set to 0 or 1.

In the case of species tree inference methods, performance 
depends on a number of factors, including the number of loci 
in the multilocus data set used, the evolutionary distances sepa-
rating taxa in the species tree, the size and topology of the spe-
cies tree, the number of alleles sampled per species, and the 
accuracy of gene tree inference and orthology prediction.27–29 
The behavior of methods for species network inference is likely 
to vary as a function of analogous properties.

For individual methods, simulations have examined various 
aspects of the dependence of hybridization network inference 
on factors of interest. For example, the MP method of Yu et al17 
was generally able to recover true network topology and inher-
itance probability α when the true number of hybridization 
events in the event history was supplied, and network branches 
adjacent to hybridizations were set to at least 1 coalescent time 
unit. The ML method of Kubatko24 was tested on species net-
works with lengths set to 1 coalescent unit for branches 

separating consecutive speciation or hybridization events. The 
ability of the method to detect true hybridizations in a model-
testing framework improved when the number of sampled loci 
increased from 20 to 100.

With the recent increased interest in hybridization, analyses 
of the performance of the various methods can help users in 
their choice of method and in understanding potential strengths 
and weaknesses of such methods. Newly introduced methods 
for species network inference under hybridization have gener-
ally been evaluated on different scenarios, however, and little 
comparative data exist on relative performance. Moreover, sim-
ulation studies have explored a relatively limited portion of the 
parameter space, often using longer species network branch 
lengths that do not provide as great a challenge to methods as 
smaller values. Here, we report a systematic simulation–based 
comparison of methods for species network inference, investi-
gating the influence of species divergence time, species contri-
butions to hybridization events, and errors in gene tree 
estimation on the performance of several inference methods.

Materials and Methods
We use simulations to study the performance of methods for 
inferring species trees and networks. For our pipeline (Figure 
1), first, we choose parameters of the species network—we select a 
particular species network topology and choose parameter 
values for the branch lengths and parental species contribu-
tions toward hybridization. Second, we simulate gene genealo-
gies—for each set of species network parameter values, we 
generate gene genealogies conditional on the species network, 
considering sets of size 10 to 250 gene trees, with 10 repli-
cates for each size. Third, we introduce errors into true gene 
trees—for some parameter settings, we also add errors to true 
gene genealogies, forming sets of erroneous gene trees with 
different error rates. Fourth, we reconstruct species trees and spe-
cies networks—using each set of gene genealogies, we employ 
each of a series of methods for inferring species relationships, 
both species tree and network inference methods. Finally, we 
evaluate inferred species histories—to assess the performance of 
methods, we compare the inferred species tree or network 
with the true species relationships, both on average and in the 
standard error across 10 replicates.

Choosing parameters of the species network

We designed a scenario of species evolution in which 1 hybrid-
ization event occurs (Figure 2), incorporating speciation events 
both before and after hybridization. For the fixed network 
topology, we varied the network branch lengths and the paren-
tal species contributions to the hybridization event. Different 
combinations of these parameter values generated 18 evolu-
tionary scenarios, to each of which we assigned a numerical 
label (Table 1).

We varied the extent to which ILS affects gene trees by 
considering several settings for the branch lengths,  
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measured in number of generations normalized by the effec-
tive number of gene copies in a population, or coalescent 
time units. Viewed forward in time, we set the branch 
lengths of species network edges leading to the ancestral 
species participating in hybridization (t2) and to the first 
speciation event after hybridization (t1) to 0.025, 0.25, or 
2.5, and we set the branch lengths of the edges leading to 
the extant species and from the species network root to 5 
(Figure 2). As internal species network branch lengths 
become shorter, ILS increases, gene tree topologies deviate 
from the species tree topology more frequently, and the 
experimental settings provide more challenging scenarios 
for determining species relationships.

Each hybridization event is characterized by the relative 
contributions of the 2 parental species toward the event, α and 
1 − α. We varied the value of α, considering α = 0, .1, .2, and .5 
(Table 1). These 4 values of α represent 4 levels of hybridiza-
tion: no hybridization, “skewed” hybridizations with different 
genetic contributions of the 2 parents to the hybrid at each of 
2 levels, and symmetric hybridization with equal genetic con-
tributions of the 2 parents to the hybrid. We expect that skewed 
hybridizations will be generally harder to detect, as fewer loci 
in the data set will record the transmission of the minor con-
tributing genome. Use of α = 0 assists in quantifying the extent 

to which a hybridization hypothesis is supported when hybrid-
ization is not included in the true scenario of species 
evolution.

Simulating gene genealogies

For each of our 18 evolutionary scenarios (Table 1), we used 
the MS program30 to generate gene trees conditional on the 
species network, sampling 1 allele per species for each gene, 
assuming that the organisms are haploid. All gene trees were 
simulated independently, and gene trees for different settings 
for the number of loci were distinct.

Introducing errors into true gene trees

To assess the robustness of species tree and network inference 
methods to evaluate errors in gene tree estimation, we gener-
ated several sets of erroneous gene trees using gene genealogies 
from scenarios 4, 11, and 18, where branch lengths t1 and t2 
were set to equal values, and α = .5. The pipeline for this simu-
lation appears in Figure S1. The simulation adds noise to the 
original gene trees produced with MS for these settings. For 
each gene tree, we computed the pairwise distances between 
leaves of the gene tree as the sum of the lengths of all branches 

Figure 1.  Workflow for the analysis.
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on the shortest path between the leaves. Next, to emulate the 
errors in genetic distance estimation, each entry of the branch 
length distance matrix was perturbed by adding a random 
number drawn from a normal distribution of specified variance 
centered at 0, and neighbor-joining trees were constructed 
using perturbed distance matrices. Distance methods such as 
neighbor joining sometimes infer negative branch lengths31; in 
addition, in this case, negative branch lengths might also rise 
from negative entries in the perturbed distance matrices. If 
negative lengths were inferred, then each negative value was 
replaced with a small nonzero value of 0.000001. Normal dis-
tributions with different variances, N(0, 0.2), N(0, 1), or N(0, 
5), were used to account for low, medium, and high error rates 
in gene tree estimation. This procedure generated additional 
sets of gene genealogies that we considered as different sce-
narios (scenarios 19-27, Table 1).

Reconstructing species trees

Species tree inference methods are routinely used to analyze 
species phylogenies, even in cases when species under consid-
eration are known to hybridize. For completeness, to evaluate 
the effect of a hybridization event on species tree estimation, 
we included 2 methods for species tree reconstruction (Table 
2): greedy consensus9 and MDC,19 as implemented in the 
PhyloNet_3.5.4 package.32

Reconstructing species networks

We tested 4 methods for species network inference (Table 2). 
For some of the methods, we first conducted initial experi-
ments using the largest sets of gene genealogies from evolu-
tionary scenarios 1 to 4, 8 to 11, and 15 to 18 to establish a 

Table 1.  Parameter values for simulated data sets.

Scenario t1a t2a αb Gene tree error

1 0.025 0.025 0 None

2 0.025 0.025 .1 None

3 0.025 0.025 .2 None

4 0.025 0.025 .5 None

5 0.025 0.25 .5 None

6 0.025 2.5 .5 None

7 0.25 0.025 .5 None

8 0.25 0.25 0 None

9 0.25 0.25 .1 None

10 0.25 0.25 .2 None

11 0.25 0.25 .5 None

12 0.25 2.5 .5 None

13 2.5 0.025 .5 None

14 2.5 0.25 .5 None

15 2.5 2.5 0 None

16 2.5 2.5 .1 None

17 2.5 2.5 .2 None

18 2.5 2.5 .5 None

19 0.025 0.025 .5 Lowc

20 0.025 0.025 .5 Mediumd

21 0.025 0.025 .5 Highe

22 0.25 0.25 .5 Lowc

23 0.25 0.25 .5 Mediumd

24 0.25 0.25 .5 Highe

25 2.5 2.5 .5 Lowc

26 2.5 2.5 .5 Mediumd

27 2.5 2.5 .5 Highe

at1 and t2 measured in coalescent units are branch lengths of the network used 
in simulation (Figure 2).
bα denotes the contribution of one parental species lineage toward the 
hybridization event. The other parental species contributes at a level of 1 − α.
cErrors added to the distance matrix were drawn from a normal distribution N(0, 
0.2).
dErrors added to the distance matrix were drawn from a normal distribution N(0, 1).
e�Errors added to the distance matrix were drawn from a normal distribution N(0, 
5). Results for particular scenarios are in some cases copied between multiple 
figures to emphasize different comparisons.

Figure 2.  Species network topology used to simulate gene genealogies. 

α and 1 − α denote the contributions of 2 parental species toward a 

hybridization event. Branch lengths in the network are measured in 

coalescent units, with 1 unit equal to the number of generations required 

on average for 2 random alleles in a population to find their common 

ancestor. The species are labeled s1 to s7.
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generally applicable strategy for species network inference with 
the method. The largest sets of gene genealogies were used to 
inform protocol design with as much phylogenetic signal as 
possible. We then used the protocols to infer species networks 
in all the experiments.

Consensus.  In consensus species network inference, a collec-
tion of gene trees is summarized in a form of a network. The 
network displays clusters of extant taxa that appear in gene 
trees, as well as the number of gene trees displaying each of the 
clusters. Clusters displayed by a minimal percentage of the 
entire gene tree collection appear in the inferred network.10,14 
The choice of the percent threshold on the number of gene 
trees is a methodological decision made by the user.

To decide on a threshold to routinely apply to our experi-
ments, we reconstructed consensus networks on sets of 250 
gene genealogies from scenarios 1 to 4, 8 to 11, and 15 to 18 
by setting the percent threshold to 8% to 50%, with a step of 
2%, recording the number of reticulation nodes inferred in 
each case (Figure S2). The number of predicted hybridiza-
tion events increases when the threshold value decreases and 
grows quickly with a decreasing threshold when species 
divergence times are small (scenarios 1-4 and 8-11). In these 
cases with small thresholds, ILS generates incongruent gene 
trees that support different clusters. The point when the 
number of hybridizations starts to grow corresponds approx-
imately to a 20% threshold, even for scenarios where no gene 
flow is present (α = 0; scenarios 1, 8, and 15). Therefore, to 
evaluate performance of the consensus network method, we 
chose a 20% threshold. Consensus networks were recon-
structed using the command-line interface of Dendroscope, 
choosing the cluster-network consensus option.34 A sche-
matic representation of the process applied to recover con-
sensus species networks appears in Figure S3a.

Parsimony.  We used the method of Yu et  al,17 limiting the 
number of inferred hybridization events. To identify a promis-
ing strategy to limit the estimated number of hybridizations in 
the species network, we analyzed the behavior of 2 quantities 
that can potentially be used to inform network inference: num-
ber of extra lineages (NEL) and estimated ancestral species 
contribution toward hybridization α̂. Number of extra lineages 
is calculated as a sum over all the species tree branches, sum-
ming the number of gene tree lineages existing within each spe-
cies tree branch minus 1, given the estimated species history. We 
examined how NEL and α̂  change as the number of allowed 
hybridizations grows, considering multiple scenarios with dif-
ferent values for the species divergence time and true value of α 
(scenarios 1-4, 8-11, and 15-18). We performed this evaluation 
on our largest locus sets, with 250 gene trees (Figure S4).

Because each additional hybridization provides alternative 
routes for gene trees to travel through the species tree, NEL 
decreases when the method is permitted to include a larger 
number of inferred hybridizations (Figure S4). It might be 
expected that NEL would decrease rapidly until the true num-
ber of hybridizations in the species network is reached and only 
more slowly afterward with additional “false-positive” hybridi-
zations; however, in most cases, the decrease in NEL with 
increasingly many permitted hybridizations was linear, sug-
gesting that no particular pattern is evident in NEL when the 
true number of hybridizations is reached. We therefore pro-
ceeded only using α̂ .

In their empirical application, Yu et al17 added hybridiza-
tions to the inferred species network until extra hybridizations 
become skewed, with a small contribution from one of the 
parental lineages. To evaluate the possibility of using such a 
strategy systematically, we examined the distribution of inferred 
α̂  values when 1, 2, or 3 hybridizations were allowed in the 
inferred network (Figure S5).

Table 2.  Methods evaluated in this study.

Form of 
estimate

Type of 
method

Reference Inference 
framework

Software Evolutionary 
processes 
considered

Notes

Tree MDC tree Than and 
Nakhleh19

Maximum 
parsimony

PhyloNet ILS  

Tree Greedy 
consensus tree

Bryant9; 
Felsenstein33

Consensus PhyloNet  

Network Consensus 
network

Holland and 
Moulton10

Consensus Dendroscope Requires threshold for percentage of 
trees containing the cluster for the 
cluster to be included in the network

Network MP network, 
PhyloNet

Yu et al17 Maximum 
parsimony

PhyloNet ILS, hybridization Number of hybridization events 
needs to be set

Network ML network, 
PhyloNet

Yu et al22 Maximum 
likelihood

PhyloNet ILS, hybridization Number of hybridization events needs 
to be set; AIC to test different models

Network ML network, 
STEM-hy

Kubatko24 Maximum 
likelihood

STEM-hy ILS, hybridization Only allows testing of candidate 
hybridization events; AIC to test 
different models

Abbreviations: AIC, Akaike information criterion; ILS, incomplete lineage sorting; MDC, minimizing deep coalescence; ML, maximum likelihood; MP, maximum parsimony.
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We observed that when species divergence times are high, 
the hybridization in a 1-hybridization network generally has a 
value of α̂  near the true α (scenarios 16-18). As additional 
hybridizations were permitted, the α̂  values became more 
skewed toward 1 parent. This pattern suggested that the Yu 
et  al17 strategy was sensible for these cases. We therefore 
adopted an approach that permits increasingly many hybridi-
zations in the inferred network until a network is reached in 
which at least 1 hybridization is >90% skewed toward 1 
parent.

Thus, in summary, our strategy for MP network inference 
used a sequential process, allowing up to 3 hybridizations 
(Figure S3b). A network allowing 1 hybridization event was 
inferred. If the predicted species history had 1 species contrib-
uting at a level lower than 10%, then a network with 0 hybridi-
zation events (MDC species tree) was recorded as the final 
inferred species history. Otherwise, a network allowing 2 events 
was considered; the 2-hybridization network does not neces-
sarily contain the original 1-hybridization network. For the 
2-hybridization network, only if in both hybridization events 
distinct parental lineages contributed at a level of 10% or 
higher, inference was continued. Otherwise, the 1-hybridiza-
tion network was recorded as final. For the 3-hybridization 
network, if all 3 hybridizations were less than 90% skewed, 
then the network was recorded as final. Otherwise, the 
2-hybridization network was recorded.

ML using PhyloNet.  The ML network was inferred using 
methods of Yu et al,21 as shown in Figure S6a. Inference was 
performed in PhyloNet_3.5.4. We tested networks with 
increasingly many hybridizations (up to 3) using the AIC35:

AIC = − −2 2logL k 	 (2)

where L is the likelihood of the species relationship graph, its 
branch lengths, and values of α given a collection of gene trees, 
as generated by PhyloNet, and k is the number of estimated 
parameters, identified as the number of branches of the species 
network whose branch lengths are estimated plus 1 for each 
estimate of α. The number of parameters increases by 4 with 
each additional hybridization: 3 additional branch lengths and 
1 extra α value. If AIC for a network with a larger number of 
hybridizations exceeded the AIC of a simpler species history, 
then we stopped the inference and recorded the simpler net-
work as the final one.

ML using STEM-hy.  The STEM-hy program is designed for 
testing a specified hypothesis about hybrid origin of a species 
rather than for estimating a hybridization history.24,25 To apply 
STEM-hy (Figure S6b), for each set of simulated gene trees, 
we first used STEM to infer the species tree using gene trees. 
We also generated a list of up to 3 most-supported candidate 
hybridizations. To identify candidates, we used the consensus 
network approach with the threshold set to values ranging 
from 8% to 24%, with a step of 2%. Starting with 8%, if the 

inferred consensus network contained 3 or fewer hybridiza-
tions, these were chosen as the candidates. If the inferred con-
sensus network contained more than 3 hybridizations, then the 
threshold was sequentially increased until the inferred network 
had 3 or fewer hybridizations. This condition was always 
achieved at a threshold no larger than 24%.

If a candidate hybridization was consistent with the species 
tree (in the sense that a cluster containing the descendants of 
the hybridization and the remaining descendants of one of its 
parental taxa was displayed by the species tree), then we tested 
them using STEM-hy. Otherwise, it was discarded.

To test candidate hybridizations with STEM-hy, we made 
some adjustments to the gene trees. STEM-hy allows only 1 
hybrid species at a time and permits hybridization only between 
sister lineages. Therefore, in each gene tree, we retained 1 out-
group species, 1 species representing the hybrid lineage, and 1 
lineage for each parent; tips representing other species in the 
gene trees were dropped. A species tree was estimated with 
STEM for the modified gene trees. If the inferred species tree 
on the modified gene tree set was displayed by the species tree 
on the full taxon set, then AIC for the species network includ-
ing the candidate hybridization was compared with AIC for 
the species tree on the modified gene tree set to evaluate a can-
didate hybridization for inclusion in the final species network; 
otherwise, the hybridization was rejected. The hybridization 
was incorporated if its associated AIC was smaller than AIC 
for the species tree without the hybridization, and the inferred 
hybridization was less than 95% skewed.

Each potential hybridization was tested with STEM-hy 
independently from the others, and all supported hybridiza-
tions were incorporated into the estimated species network.

Evaluating inferred species histories

To evaluate the performance of species network reconstruction 
methods, we compared the topology of the inferred network 
with the topology of the true network or tree (in the α = 0 case) 
used in simulations. We used the cluster-based distance meas-
ure of topological differences between 2 networks32,36 imple-
mented in PhyloNet:
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where C1 and C2 are the sets of clusters induced by networks N1 
and N2, respectively. For a pair of trees, this measure becomes 
the normalized Robinson-Foulds distance. For each evolution-
ary scenario, data set size, and species tree or network inference 
method, we assessed the performance as the average distance 
between the inferred and the true species network or tree across 
10 replicates. Standard errors were computed as standard devi-
ations of the distance between the inferred and true species 
network or tree across 10 replicates, divided by 10 .
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We also explored the number of hybridization events 
included in the final network by different methods on the sets 
of 250 loci in 10 repeated experiments.

Results
Species divergence time

Topological difference between gene trees is one source of 
information for uncovering the presence of horizontal pro-
cesses in species evolution. Other mechanisms, however, for 
instance, ILS, might also generate gene tree discordance. The 
amount of ILS is determined by the branch lengths separating 
species divergences, as measured in coalescent units. We study 
how divergence time parameters, and consequently the amount 
of ILS, influence network inference.

Figure 3 displays the error in species network topology esti-
mation when gene trees are simulated on a species network 
whose internal branch lengths t1 and t2 take values of 0.025, 
0.25, and 2.5. Each of the 9 combinations of values for t1 and t2 
appears in a different panel. The parental contributions associ-
ated with the hybridization, α, are held constant at .5. The 

error is plotted for each of the various methods as a function of 
the number of loci used.

For instance, the central panel provides results for scenario 
11. As shown on the top and left of the figure, t1 = t2 = 0.25. 
The x-axis shows the number of loci used for the inference, 
from 10 to 250. The y-axis illustrates error in species network 
topology estimates for different methods, measured as the clus-
ter distance between the true and the inferred networks, con-
sidering for completeness 2 tree inference methods alongside 
the 4 network inference methods that form the focus of our 
analysis. Trends for the various approaches appear with differ-
ent colors and symbols, as described in the inset in the bottom 
right panel. The position of the symbol gives the mean error in 
species network topology estimation for the method, and the 
bars represent standard error of the mean across 10 replicate 
simulations. For all methods, this panel shows a decreasing 
error rate with an increasing number of loci. At 250 loci, the 
error rate is lowest for ML-PhyloNet.

In all 9 panels, for most methods, the accuracy of species 
network inference improves when considering larger numbers 

Figure 3.  Influence of species divergence time and number of loci on the accuracy of the inferred topology of the species network. The error in the 

topology of the inferred network was measured as the mean cluster distance between true and inferred networks (equation (3)). For each choice of the 

number of loci used for species network or tree inference, standard error was computed using 10 replicate simulations. The number of loci used for 

species network inference is plotted along the x-axis.
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of loci. Accuracy also improves when t1 and t2 increase from 
0.025 to 0.25 and 2.5 coalescent units. For t1 = 0.025, the per-
formance generally improves with an increase in t2 from 0.025 
to 0.25. When 250 gene trees are used and t2 = 0.25, the error in 
species network topology estimation drops from the range 0.1-
0.5 (50%-90% of clusters are present in both true and inferred 
networks) to 0.1-0.4 (60%-90% of clusters are present in both 
true and inferred networks). When t2 is increased further to 2.5 
coalescent units, the accuracy does not improve substantially 
and does not achieve a level of no error for any of the methods.

Setting t1 to 0.25 leads to a similar trend. When 250 gene 
trees are used, as t2 increases from 0.025 to 0.25, the error in 
species network topology estimation drops from 0.1-0.2 to 
0-0.2 for all methods except MP-PhyloNet. MP-PhyloNet has 
the poorest performance when t2 = 0.025, becoming compara-
ble with the other methods only when t2 reaches 2.5. At t2 = 
2.5, ML-PhyloNet achieves 0 error.

When t1 = 2.5, the performance of the different methods is 
generally good, improving gradually with increasing t2. When 
t2 reaches 2.5, most methods recover the true species network 
even when the number of loci is small.

Similar behavior is observed when t2 is set to a fixed value, 
0.025, 0.25, or 2.5, and t1 is varied. The accuracy of species net-
work inference is consistently higher in this case than when the 
roles of t1 and t2 are reversed. For instance, when t2 = 0.025 and t1 
= 2.5, the error for different methods lies between 0 and 0.2, and 
ML-STEM-hy recovers the correct species network when 250 
loci are used. The error is lower than when t2 = 2.5 and t1 = 0.025.

Overall, the likelihood methods, ML-PhyloNet and 
ML-STEM-hy, tend to produce lower error than consensus 
and parsimony methods, and they have among the lowest 
error rates in rather challenging simulation conditions with 
t1 and t2 both set to 0.25 or less. MP-PhyloNet produces an 
unusual pattern in scenario 18 when t1 and t2 are both set to 
2.5. In this case, the error increases with an increasing num-
ber of gene trees in the data set. A similar trend, but not as 
pronounced, is sometimes observed for the consensus net-
work method (scenarios 6 and 13).

To understand whether some of the methods over- or 
underpredict the number of hybridization events, we examined 
the estimated number of hybridizations in the networks 
inferred using the largest number of gene genealogies consid-
ered as 250 (Figure 4). Recall that the true number of hybridi-
zations in the simulation is 1. Results for the various scenarios 
are arranged, as shown in Figure 3, with t1 and t2 shown on the 
top and left sides of the figure. The numbers of hybridizations 
inferred by each of the species network reconstruction methods 
on 10 replicate data sets of 250 gene trees are summarized as 
histograms. For instance, the central panel considers scenario 
11. In this case, consensus and ML-STEM-hy underpredict 
hybridizations, detecting no events for most replicates. 
MP-PhyloNet overpredicts hybridizations, inferring 3 events 
for all the replicates. ML-PhyloNet detects the correct value of 
1 hybridization for most replicates.

For each scenario and each method, the species network 
inferred most frequently among replicates with the largest 
number of gene trees, 250, appears in Figure S7a. Recall that 
the true species network topology is shown in Figure 2. Inferred 
networks are arranged as shown in Figure 3, with t1 and t2 
shown on the top and left sides of the figure. For instance, the 
central panel considers scenario 11. In this case, consensus 
recovers a species tree with a multifurcation in 8 of 10 repli-
cates, and MP-PhyloNet recovers a network with a complex 
structure in 3 of 10 replicates. ML-STEM-hy recovers a spe-
cies tree that corresponds to one of the ancestry paths in the 
species network in 5 of 10, and MP-PhyloNet captures the 
correct species network in 8 of 10.

When t1 = t2 = 2.5 (scenario 18), 3 of the methods predict 1 
hybridization event in all 10 replicates. This result is not sur-
prising as these methods also infer the correct species network 
(Figure 3). The poorer performing MP-PhyloNet, however, 
predicts 2 events for most replicates (Figures 4 and S7a).

When one of the internal branch lengths, t1 or t2, is set to 
2.5 and the other is smaller (scenarios 6, 12, 13, and 14), the 
consensus network method overpredicts the number of hybrid-
izations and generally recovers a complex network (Figure 
S7a). At the same time, it tends to underpredict the number of 
hybridizations when both internal branches are shorter than 
2.5 (Figure 4, scenarios 4, 5, 7, and 11) and often returns unre-
solved species trees with multifurcations (Figure S7a).

Likelihood methods predict networks with 1 or 0 hybridi-
zation events in most cases. ML-PhyloNet underpredicts the 
number of hybridizations in 4 scenarios: when t2 = 0.025, inde-
pendently of the value of t1 (Figure 4, scenarios 4, 7, and 13), 
and when t2 = 0.25 and t1 = 2.5 (Figure 4, scenario 14). The 
inferred network is generally a tree that corresponds to one of 
the ancestry paths in the true species network (Figure S7a). For 
the other 5 scenarios, when t2 = 2.5, independently of t1 (sce-
narios 6, 12, and 18), and when t2 = 0.25 and t1≠2.5 (scenarios 
5 and 11), it predicts 1 hybridization for most replicates (Figure 
4) and generally returns the correct species network topology 
(Figure S7a).

ML-STEM-hy is more prone than ML-PhyloNet to 
underprediction of the number of hybridizations. It infers 0 
hybridizations for most replicates (Figure 4) in 5 scenarios: 
when t1 = 0.025, independently of t2 (scenarios 4, 5, and 6), and 
when t1 = 0.25 and t2 < 2.5 (scenarios 7 and 11). Although the 
method does not identify the hybridization event, it does 
recover a species tree that corresponds to one of the ancestry 
paths in the species network (Figure S7a). For the other 4 sce-
narios, when t1 = 2.5, independently of t2 (scenarios 13, 14, and 
18), and when t1 = 0.25 and t2 = 2.5 (scenario 12), it tends to 
predict 1 hybridization event (Figure 4) and generally captures 
the correct species network (Figure S7a).

This collection of analyses indicates that internal species 
network branch lengths have strong effects on the performance 
of the inference methods, with the branch length of the edges 
following the hybridization forward in time (t1) having a 
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stronger effect than the branch length immediately preceding 
the hybridization (t2). If the branches are long, then likelihood 
and consensus generally recover the correct species history, 
even when a small number of gene trees are used. If the 
branches are shorter, then the more sophisticated likelihood 
methods are required for minimizing the error. However, if the 
branches are short, then none of the methods reliably recovers 
the correct species history even when examining 250 gene 
genealogies.

Parental species contributions

Next, we investigate the influence of the skew in parental spe-
cies contributions on species network inference. As part of this 
analysis, we also evaluate how frequently hybridizations are 
identified when they are absent from the species history.

Similar to Figure 3, Figure 5 displays the error in species 
network topology estimation as a function of the number of 
sampled loci, except that here t1 = t2, with values of 0.025, 0.25, 

and 2.5, and the parental contribution associated with the 
hybridization, α, takes values of 0, .1, .2, and .5. Figure 6 repre-
sents similar information to that depicted in Figure 4. Figure 
S7b shows the most frequently recovered species network 
topologies, similar to Figure S7a.

With no hybridization, α = 0, all the methods except 
MP-PhyloNet and consensus achieve low error (0-0.2) on 
250 gene trees (Figure 5, scenarios 1, 8, and 15). The low 
error rate occurs even when t1 = t2 = 0.025, at which a large 
amount of ILS occurs in the gene trees (scenario 1). When t1 
and t2 increase to 0.25, all methods except MP-PhyloNet 
recover the correct species history with 250 gene trees (sce-
nario 8); MP-PhyloNet instead predicts a large number of 
hybridizations (Figures 6 and S7b, scenarios 1 and 8). When 
t1 and t2 increase further to 2.5, the methods all recover the 
correct species history even when the number of loci is small 
(Figure 5, scenario 15).

In the case of highly skewed hybridization, α = .1, for t1 = 
t2 = 0.025, the error in species network estimation increases 

Figure 4.  Influence of species divergence time on the inferred number of hybridization events in the inferred species networks. Histograms on the y-axes 

show the distribution of the number of hybridization events in the networks reconstructed using various species network inference methods, across 10 

sets of 250 gene trees. Methods are shown on the x-axes: Con, consensus network; MP, MP network inferred using PhyloNet; ML-PN, ML network 

inferred using PhyloNet; ML-STEM, ML network inferred using STEM-hy. The maximum number of hybridizations was 6 and only occurred for consensus 

networks; in other cases, our implementation limited the maximum to 3. ML indicates maximum likelihood; MP, maximum parsimony; PN, PhyloNet. 
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for all the methods in comparison with the α = 0 scenario 
(Figure 5, scenario 2). Most methods still find no hybridiza-
tion (Figure 6), but ML-PhyloNet and ML-STEM-hy do 
identify species trees corresponding to ancestry paths in the 
species network (Figure S7b, scenarios 2 and 9). When t1 and 
t2 grow to 0.25, error decreases for all methods except 
MP-PhyloNet (Figure 5, scenario 9). However, correct spe-
cies relationships are not recovered by any of the methods, 
even with data sets of 250 gene trees. This result is largely 
attributable to a failure to detect highly skewed hybridization 
as most methods identify 0 hybridizations (Figure 6). Finally, 

when t1 and t2 increase to 2.5, the correct species network is 
often obtained when 100 or more loci are sampled (Figure 5, 
scenario 16). The consensus method does not find this skewed 
hybridization (Figures 6 and S7b).

A similar trend is observed for the less skewed α = .2, except 
that in this case, all methods recover the correct species network 
when t1 = t2 = 2.5, even with a small number of sampled loci 
(Figure 5, scenario 17). The correct species network and num-
ber of hybridizations are identified as well (Figures 6 and S7b).

The relationship between error in species network estima-
tion and the number of loci in the data set is also similar when 

Figure 5.  Influence of the species contributions toward the hybridization event (α) and number of loci on the accuracy of the inferred topology of the 

species network. The error in the topology of the inferred network was measured as the mean cluster distance between true and inferred networks 

(equation (3)). For each choice of the number of loci used for species network or tree inference, standard error was computed using 10 replicate 

simulations. The number of loci used for species network inference is plotted along the x-axis.
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hybridization becomes symmetric, α = .5 (Figure 5). One excep-
tion here is MP-PhyloNet, for which error increases with an 
increasing number of loci for scenario 18 (t1 = t2 = 2.5, α = .5).

Overall, ML-PhyloNet and ML-STEM-hy produce lower 
error than other methods, with ML-PhyloNet performing bet-
ter in scenario 11 and producing the correct species network 
and ML-STEM-hy registering lower error for t1 = t2 = 0.025 
(Figure 5, scenario 4). Consensus and MP-PhyloNet demon-
strate similar, relatively inaccurate, performance when t1 = t2 = 
0.025. Consensus improves, however, when t1 and t2 increase to 

0.25, with error more similar to likelihood-based methods 
(Figure 5, scenarios 8-11), but failing to recover hybridization 
when it is present (Figure 6). It fails to identify highly skewed 
hybridization, even when internal species network branches are 
long (scenario 16), although it reports a species tree that repre-
sents an ancestry path encoded by the true species network 
(Figure S7b). Otherwise, it performs well in this time setting 
(scenarios 17 and 18).

Together, our results indicate that the parental species con-
tribution, when hybridization is present, has a generally smaller 

Figure 6.  Influence of the species contributions toward the hybridization event (α) on the inferred number of hybridization events in the inferred species 

networks. Histograms on the y-axes show the distribution of the number of hybridization events in the networks reconstructed using various species 

network inference methods, across 10 sets of 250 gene trees. Methods are shown on the x-axes: Con, consensus network; MP, MP network inferred 

using PhyloNet; ML-PN, ML network inferred using PhyloNet; ML-STEM, ML network inferred using STEM-hy. The maximum number of hybridizations 

was 6 and only occurred for consensus networks; in other cases, our implementation limited the maximum to 3. ML indicates maximum likelihood; MP, 

maximum parsimony; PN, PhyloNet.
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effect on the performance of the inference methods than the 
branch lengths of the species network. Skewed hybridizations 
are as hard to detect as symmetric events when internal 
branches of the network are not long. If the branches are long, 
however, then most of the methods detect even highly skewed 
hybridizations.

Errors in gene trees

To address the possibility that errors in gene tree inference might 
influence the performance of species network inference methods, 
we infer species histories from erroneous gene trees, comparing 
the reconstructed history with the true assumed scenario.

As shown in Figure 3, Figure 7 displays the error in spe-
cies network topology estimation as a function of the num-
ber of sampled loci. Here, internal branch lengths t1 and t2 
are equal, taking values of 0.025, 0.25, and 2.5. The parental 
species contribution associated with the hybridization, α, is 
set to .5. Different error rates applied to the gene genealo-
gies are shown in different rows. Figure 8 represents similar 
information to that depicted in Figure 4. Figure S7c shows 
the most frequently recovered species network topologies, 
similar to Figure S7a.

When t1 = t2 = 0.025, all methods already suffer from a 
high error rate in the inferred topology, which increases even 
further with added errors in gene trees. The error is especially 

Figure 7.  Influence of the level of error in gene tree (GT) estimation and number of loci on the accuracy of the inferred topology of the species network. 

The error in the topology of the inferred network was measured as the mean cluster distance between true and inferred networks (equation (3)). For each 

choice of the number of loci used for species network or tree inference, standard error was computed using 10 replicate simulations. The number of loci 

used for species network inference is plotted along the x-axis. 
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pronounced for ML-PhyloNet, for which the highest error 
level of ~0.8 is observed for scenario 20 when 250 gene trees 
are used (Figure 7). The high level of error in the species 
network topology is not associated with strong overpredic-
tion of hybridizations, as all the methods except MP-PhyloNet 
predict 0 to 2 hybridizations (Figure 8). The methods gener-
ally do not have a single most frequently inferred network 
topology (Figure S7c).

When t1 = t2 = 0.25, the error in the species network topol-
ogy increases for ML-STEM-hy when a medium level of 
gene tree error is specified and for consensus at a high gene 
tree error level (Figure 7, scenarios 23 and 24). ML-PhyloNet 
never finished with 250 highly erroneous gene trees, but a 
high error rate in inferred species networks was obtained for 
100 loci (Figure 7).

When t1 = t2 = 2.5, inference is more robust to gene tree 
errors, and accuracy generally remains the same for all the 
methods for low and medium gene tree error levels. If a high 
level of gene tree errors is used, however, then methods relying 
on likelihood exhibit more errors in the inferred network 
topology (Figure 7, scenario 27). The decrease in accuracy in 
this case is also associated with an elevated number of pre-
dicted hybridizations (Figure 8). At the same time, consensus 
remains robust and infers the correct species network when 
250 gene trees are used (Figure S7c).

In summary, this analysis shows that although likelihood 
methods perform better on the true gene trees, they are often 
more sensitive to error in gene tree inference than the consen-
sus approach, and in some cases, they might overpredict the 
number of hybridizations.

Discussion
The occurrence of hybridization in eukaryotic species has 
prompted development of tools to reconstruct reticulate spe-
cies histories. Although a number of approaches have been 
developed for this task, little data have been generated to com-
paratively assess the properties of the methods. We have 
reported a systematic simulation–based comparative study of 
the performance of several methods for species network 
reconstruction.

Comparative performance of methods

We find that ML-PhyloNet performs generally well and is 
often robust to extensive ILS and errors in gene tree estimation 
when symmetric hybridization events are considered (Figure 3, 
scenarios 11 and 12; Figure 7, scenarios 22 and 23). Although 
it does not usually overpredict hybridizations, it fails to recover 
skewed hybridizations in the presence of non-negligible ILS 
(Figure 6, scenario 10). As an additional note, ML-PhyloNet also 
suffers from a long computing time, making this approach 
unsuitable for large data sets.

The next best method is ML-STEM-hy, which uses con-
sensus-based identification of potential hybridization events 

and refines the list of those events by testing them in an ILS-
aware framework. This method is also reasonably robust to ILS 
(Figure 3, scenarios 12 and 14). It is, however, sensitive to errors 
in gene trees. It can underpredict the number of hybridizations 
(Figure 8, scenario 23), and it also underidentifies skewed 
hybridization events in the presence of ILS (Figure 6, scenario 
10). A sometimes sizable difference in the sensitivity of the 2 
ML approaches to errors in gene tree estimation is likely attrib-
utable to the fact that STEM-hy uses gene tree branch lengths, 
which are affected by gene tree errors, in the likelihood calcula-
tion, whereas PhyloNet uses only the somewhat more robust 
gene tree topology.

Another method that performs reasonably well is the con-
sensus method, which is often robust to errors in gene trees 
(Figure 7, scenario 27). However, it can be more sensitive to 
ILS than methods built upon the coalescent model when it is 
applied to detect symmetric (Figure 3, scenarios 11 and 12) or 
skewed hybridizations (Figure 5, scenarios 9 and 10). Consensus 
underpredicts symmetric hybridizations when ILS is suffi-
ciently large, but branches of the species network have similar 
lengths (Figure 6, scenario 11). It also underpredicts highly 
skewed hybridizations even when ILS is low (Figure 6, sce-
nario 16). However, the method overpredicts hybridizations 
under some circumstances, for instance, when the species net-
work includes both short and long branches (Figure 4, scenar-
ios 6, 12, 13, and 14).

The method with the highest error in species topology 
estimation was MP-PhyloNet. Recall that the strategy we 
implemented for MP-PhyloNet involves adding hybridiza-
tion events to the network until they become highly skewed 
toward one of the parental lineages or until the number of 
hybridizations reaches a critical value of 3. This method 
recovered the correct species history only for scenarios 15 
and 17 (Figure 5), which included only long species network 
branches and no hybridizations or skewed hybridizations. 
With the same time settings but symmetric hybridization, 
for this approach, we observed increasing error in the species 
network topology with a growing number of loci (Figure 3, 
scenario 18). This pattern of increasing error with more loci 
might indicate statistical inconsistency of the MP-PhyloNet 
strategy. Networks inferred with MP-PhyloNet often con-
tain a large number of hybridizations.

Simulation conditions

We examined several simulation conditions. For the species 
divergence, we evaluated long (2.5 coalescent units), short 
(0.25), and very short (0.025) species network branch lengths. 
These species tree branch lengths are likely to reasonably rep-
resent a range of values that occur in empirical phylogenies. 
The great ape tree is estimated to have some longer branches 
several coalescent units in length,37 whereas larger phylogenies 
with many species often contain various branch lengths that 
span the range we consider.38
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We found that when species network branch lengths are 
long (2.5 time units), almost all the methods performed well 
and often recovered the correct species history, even with a 
small number of loci and in the case of skewed hybridizations 
(Figure 5, scenarios 15-18). When internal species network 
branches became shorter (0.25), however, only ML-PhyloNet 
had minimal error with symmetric hybridization when applied 
to 250 loci (Figure 5, scenario 11). Although none of the meth-
ods detected a skewed hybridization in these time settings 
(Figures 5 and 6, scenarios 9 and 10), most were more 

successful when hybridization was absent (Figure 6, scenario 
8). With the shortest species network branch lengths (0.025), 
almost none of the methods recovered the correct species his-
tory even when hybridization was absent (Figure 5, scenario 1), 
suggesting that this setting might be too difficult for all of the 
methods.

Skew in parental species contributions toward hybridization 
has a major effect on the performance of the consensus method, 
which fails to detect highly skewed hybridizations even when 
species network branches are long (Figure 6, scenario 16). This 

Figure 8.  Influence of the level of error in gene tree (GT) estimation on the inferred number of hybridization events in the inferred species networks. 

Histograms on the y-axes show the distribution of the number of hybridization events in the networks reconstructed using various species network 

inference methods, across 10 sets of 250 gene trees. Methods are shown on the x-axes: Con, consensus network; MP, MP network inferred using 

PhyloNet; ML-PN, ML network inferred using PhyloNet; ML-STEM, ML network inferred using STEM-hy. The maximum number of hybridizations was 6 

and only occurred for consensus networks; in other cases, our implementation limited the maximum to 3. ML indicates maximum likelihood; MP, maximum 

parsimony; PN, PhyloNet.
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factor has a similar effect on ML-PhyloNet and ML-STEM-hy 
when network branches are short (Figure 6, scenarios 9 and 10).

Conclusions
We note that the study remains limited due to several factors. 
First, only 4 approaches for hybridization network reconstruction 
were evaluated, and a number of other methods and strategies 
exist14,39–43 or can be envisioned. Indeed, multiple promising 
methods, including SnaQ43 and new algorithms in PhyloNet,44 
have been reported since the time that our simulations began and 
hence were not included in our pipeline; it will be important to 
include such methods in future simulation studies. We do note 
that we included representative methods from multiple method-
ological categories: consensus, parsimony, and likelihood.

We designed our simulations with a focus on homoploid 
hybridization events that form new species, a perhaps less com-
mon type of hybridization in comparison with hybridization 
that produces polyploids6,45 or introgression from one species 
into an existing species.5 It will be useful to perform a similar 
evaluation of the properties of hybridization detection meth-
ods in such scenarios.

Our computationally convenient strategy for generating 
erroneous gene trees from true trees differs from the com-
monly used approach of simulating alignments with the true 
gene trees and then inferring (potentially erroneous) gene 
trees from the alignments using gene tree inference meth-
ods.22,46 Although such simulations are informative for 
gaining mechanistic understanding of gene tree error pro-
duction, we note that they require multiple parameters to 
describe sequence evolution, and our approach, although 
less mechanistically interpretable, makes it possible to char-
acterize the effect of gene tree error in relation to a single 
error parameter.

Another limitation is the small number of parameter val-
ues included in the simulations; we also considered only a 
single species network, with a fixed time for the hybridiza-
tion event, with only a single hybridization, and with sub-
stantial contributions from each hybridizing species. We did 
not explore the impact of the species network shape, the 
choice of which species to hybridize, or the number of 
hybridization events in the true species network. We also did 
not consider introgressive scenarios with very limited contri-
butions to the hybridization of one of the ancestral species as 
we focused on methods designed for large contributions 
from both parental species. However, even with this limited 
sampling of the parameter space, we covered a wide range of 
data sets with different properties, testing methods in condi-
tions ranging from difficult to easy.

Finally, we examined a relatively small maximum number 
of loci and a relatively small number of species in our model 
species network. Although the size of data sets now often 
exceeds the 250 loci that we consider,38,47 the sizes that we 
have examined continue to be relevant to many studies.48,49  
In the future, as methods continue to develop, it will be of 

interest to evaluate relative performance using data sets of 
larger size. An important concern for large data sets is com-
putational scalability, which has been of great interest in the 
study of species network methods.22,50 The computational 
cost, particularly for likelihood methods, can become prohibi-
tive quickly if the number of taxa grows to ~25 or more.50

In summary, based on our results, we recommend 
ML-PhyloNet for data sets that include small numbers of 
taxa and few enough loci for computation to be feasible. For 
larger data sets, due to computational overhead associated 
with ML-PhyloNet, we also recommend a hybrid approach 
in which candidate hybridizations are detected using con-
sensus and then tested in an ILS-aware ML framework; such 
a strategy with ML-STEM-hy performed reasonably well, 
although it did have the weakness that it was sensitive to 
errors in gene trees.
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