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The level of transcription factor activity critically regulates cell
fate decisions such as hematopoietic stem cell self-renewal and
differentiation. The balance between hematopoietic stem cell
self-renewal and differentiation needs to be tightly controlled,
as a shift toward differentiation might exhaust the stem cell
pool, while a shift toward self-renewal might mark the onset
of leukemic transformation. A number of transcription factors
have been proposed to be critically involved in governing stem
cell fate and lineage commitment, such as Hox transcription
factors, c-Myc, Notch1, b-catenin, C/ebpa, Pu.1 and STAT5. It is
therefore no surprise that dysregulation of these transcription
factors can also contribute to the development of leukemias.
This review will discuss the role of STAT5 in both normal and
leukemic hematopoietic stem cells as well as mechanisms by
which STAT5 might contribute to the development of human
leukemias.

Introduction

Signal Transducer and Activator of Transcription 5 (STAT5) is
widely expressed throughout the hematopoietic system, both in
stem and progenitor cells as well as in committed erythroid,
myeloid and lymphoid cells.1-3 Indeed, it is not surprising that
STAT5 can be activated by a wide variety of cytokines and growth
factors.3-5 These include cytokines and growth factors that can
signal through the Interleukin 3 (IL3)-receptor family [IL3, IL5,
Granulocyte-Macrophage Colony Stimulating Factor (GM-
CSF)], through the common c-chain receptor family (IL2, IL7,
IL9, IL12, IL15), through single chain receptors [Erythropoietin
(EPO), Thrombopoietin (TPO), Growth Hormone (GH),
prolactin, Granulocyte-Colony Stimulating Factor (G-CSF)],
through class II receptors [Interferon a (IFN-a), IFN-c, IL22]
or through tyrosine kinase receptors [Stem Cell Factor (SCF),
Platelet Derived Growth Factor (PDGF), Epidermal growth
Factor (EGF)] (Fig. 1). In most cases, Janus Kinase (JAK) tyrosine
kinase activity mediates STAT5 tyrosine phosphorylation, and
STAT5 can be activated by JAK1, 2 or 3, depending on the
cytokine-activated receptor complex. Alternatively, the tyrosine
kinase receptor family can also induce STAT5 phosphorylation
in a JAK-independent manner. While STAT5 is expressed in the

majority of hematopoietic cell types, the cytokine receptor
expression is much more tissue-specific. Thus, specific cytokines
are able to induce STAT5 activity in subsets of cell types
only.6 For example, cytokines that activate STAT5 in the most
immature human hematopoietic stem compartment include
SCF7 and TPO.8 These cytokines have been shown to promote
long-term hematopoiesis in vitro,9 and hypersensitivity to TPO in
Lnk−/− mice resulted in elevated stem cell self-renewal, which
coincided with increased levels of STAT5 activity.10 Within the
erythroid compartment, STAT5 is activated by EPO,11 where
STAT5 fulfills an important anti-apoptotic role by upregulating
Bcl-Xl,12-15 although a more direct role in initiating erythroid
commitment might exist as well.16-18 In myeloid cells, STAT5
can be activated by a variety of cytokines, including IL3, IL5,
GM-CSF and CSF1 (reviewed in ref. 3). Although initially in
STAT5ABDN/DN mice myelopoiesis appeared to be relatively
unaffected,19 it is likely that in myeloid cells many of the signals
initiated by e.g., IL-3 and GM-CSF are, at least in part, mediated
by STAT5,20,21 thereby regulating myeloproliferation or anti-
apoptosis.22-24 During myelosuppression, mice completely defi-
cient of STAT5AB failed to produce enhanced levels of
neutrophils and were unable to respond to GM-CSF.25 IL5-
induced STAT5 activation is required for the induction of
eosinophil differentiation.26 Lymphoid development is severely
impaired in STAT5−/− mice.27 STAT5 activation is required for
IL2-induced T cell proliferation and the production of NK
cells,28,29 or for IL7-mediated B cell expansion.30

As summarized in Table 1 and Figure 1B, a wide variety of
genetic defects in myeloid leukemias and myeloproliferative
diseases (MPDs) result in activation of the STAT5 pathway,
including mutations in Flt3 and cKit receptors, JAK2 mutations,
translocations such as TEL-PDGFRa, and Bcr-Abl, but also as a
result of increased cytokine signaling. Numerous functional
studies have indicated that aberrant activation of STAT5 can
contribute to the process of leukemic transformation. Down-
stream of Flt3-ITD (Internal Tandem Duplication) mutations,
STAT5 is strongly activated via two tyrosine residues within the
Flt3 receptor, Y589 and Y592 that act as docking sites for the
SH2 domain of STAT5 molecules.31 Mutation of these residues
into phenylalanines completely abrogated activation of STAT5,
and importantly completely impaired induction of a myelo-
proliferative disease in vivo in a murine transplantation model.31

Thus, it is likely that STAT5 signaling is essential for the
transforming potential of Flt3-ITD.
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Although in human cells introduction of Flt3-ITD did not
result in a myeloproliferative disease in transplanted NOD-SCID
mice, the activated stem cell phenotype imposed on CB CD34+

cells, as revealed by the formation of early cobblestone area
forming cells (CAFCs), was impaired by coexpression of a
dominant negative STAT5A (Y694F) mutant,32 suggesting that
also in human cells STAT5 is an important mediator of Flt3-
ITD-induced signaling. In studies in which STAT5 expression
was targeted in primary acute myeloid leukemia (AML) CD34+

cells using a lentiviral approach, it was observed that long-term

expansion and the formation of leukemic
CAFCs was strongly impaired by down-
modulation of STAT5.33 Although the pres-
ence of Flt3-ITDs was not the exclusive
genetic mutation that induced constitutive
STAT5 signaling in the samples that were
studied, these data clearly underscore the
important role that STAT5 fulfills in long-
term expansion and self-renewal of primary
AML stem/progenitor cells as well.

In chronic myeloid leukemia (CML)
induced by Bcr-Abl, it has been convincingly
demonstrated that STAT5 also plays an
important role. A number of studies have
shown that STAT5 is efficiently activated
downstream of Bcr-Abl,59-62 and interference
with STAT5 activation negatively impacts
the survival and proliferation of Bcr-Abl-
expressing cells.27,55,63-69 Bcr-Abl p210-
transduced STAT5DN/DN murine bone marrow
(BM) cells developed CML with low frequen-
cies, with a delayed onset of disease.55 The
induction of acute lymphoid leukemia
(ALL) was not impaired in these animals.
Complete abrogation of STAT5 expression
in STAT5AB−/− mice also impaired lymphoid
transformation induced by Bcr-Abl-expressing
murine BM.27,70 In primary human CML
cells, it was demonstrated that downmodula-
tion of STAT5 expression by RNAi impaired
Bcr-Abl-dependent proliferation and also
reduced colony formation in methylcellulose.68

Inhibition of STAT5 by pimozide reduced
colony formation of CML CD34+ cells, also in
tyrosine kinase-resistant patient samples.71

In myeloproliferative diseases it has been
demonstrated in mouse models that bone
marrow (BM)-transduced with TEL-JAK2
no longer induced disease in recipient mice
when the oncogene was introduced in a
STAT5DN/DN background.40 Similarly, MPD
induced by TEL-PDGFRa depended on
STAT5 activity.50,51 Finally, enhanced
STAT5 activity has been observed in Poly-
cythemia Vera (PV), caused by the activating
JAK2 V617F mutation.72 Inhibition of JAK2

kinase activity abrogated the activation of STAT5, which
coincided with a suppression of erythropoiesis in vitro and in
vivo.73,74

The most direct evidence for STAT5 acting as an oncogene
arises from murine BM transplantation studies in which con-
stitutively activated STAT5 (S711F) mutants were overexpressed.
Lethally irradiated recipients receiving activated STAT5-
transduced BM died within 6 weeks after transplantation of a
multilineage leukemia.75 It was demonstrated that a tryptophan
residue in the N-terminal region of STAT5 is required for

Figure 1. STAT5 signaling in normal and leukemic cells. (A) Normal cytokine-induced STAT5
signaling. (B) Constitutive STAT5 signaling in hematological malignancies.
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tetramerization of STAT5 dimers, and tetramer-deficient STAT5
mutants were unable to induce leukemia in mice.75 Another
activating mutant of STAT5, STAT5A(1*6) that contains two
point mutations (H299R and S711F)76 was earlier shown to
induce myeloid hyperproliferation, but not leukemia, in a murine
retroviral overexpression model.40 This was later confirmed by
others, and a fatal MPD was observed by overexpression of these
STAT5 mutants, but only when the most primitive CD34−Lin−

cKit+Sca1+ (LSK) population was transduced and used for
transplantation to irradiated recipients, suggesting that the stem
cell, but not a committed progenitor is the target cell for
transformation induced by activated STAT5.77 Intriguingly, while
these examples clearly demonstrate that STAT5 can transform
murine hematopoietic stem cells (HSCs), no in vivo STAT5-
induced transformation has been reported in human cell popula-
tions. While enhanced self-renewal and long-term stem cell
maintenance can be achieved by introduction of activated STAT5
in human CD34+ cells, a myeloproliferative disease or leukemia
does not occur in non-obese diabetic/severe combined immuno-
deficiency (NOD-SCID) transplantations models.16 It is plausible
that the NOD-SCID xenograft model is not suitable to com-
pletely recapitulate human disease, or alternatively it is possible
that species-specific differences in STAT5 signaling exist. In line
with these observations, introduction of Bcr-Abl in murine BM
resulted in a rapid and lethal MPD whereby recipients die within
3 weeks after transplantation. Introduction of Bcr-Abl in human
CD34+ cells does not result in a rapid leukemia or MPD in
engrafted NOD-SCID mice, and only after 5 mo progression to
an early stage disease was observed in some animals.78,79

Collectively, these data indicate that STAT5 is frequently
activated in various hematological malignancies, whereby it
strongly affects processes such as self-renewal and lineage fate
determination. Whether STAT5 target genes in normal and
leukemic stem cells are identical, or whether leukemic stem cell-
specific STAT5 target genes exist remains to be determined.
Also, it will be informative to study how STAT5 might cooperate
with additional leukemic oncogenes in a multi-hit approach to
model the development of human leukemias.

STAT5 as a Stem Cell Self-Renewal Factor

Loss-of-function and gain-of-function experiments have revealed
critical roles for STAT5 in the hematopoietic stem/progenitor
compartment. STAT5ABDN/DN mice have been used to assess
stem cell function in the absence of wt STAT5 signaling. These
mice were characterized by normal HSC numbers and stem cells
isolated from the bone marrow or fetal liver were capable of
engrafting irradiated recipients.80 Yet, competitive repopulating
capacity of STAT5ABDN/DN HSCs was severely impaired.80-85 The
underlying mechanisms are not fully elucidated yet, but it has
been observed that the responsiveness of STAT5ABDN/DN HSCs
to early-acting cytokines such as IL3 and SCF was reduced,
while the sensitivity to 5-fluoroacil was enhanced.81 Loss of
protection against apoptosis most likely does not explain the
STAT5ABDN/DN HSCs phenotypes, as overexpression of Bcl2 was
not sufficient to rescue repopulating defects.84 Although homing
of STAT5ABDN/DN BM cells into lethally irradiated recipients was
not impaired,83 retention in the bone marrow was reduced under
non-myeloablative conditions,86 leaving open the possibility that
competition for the niche might play a role. Mice completely
devoid of STAT5 display severely impaired hematopoiesis.87 More
recently, using an Mx1-Cre inducible mouse model, it was shown
that conditional deletion of STAT5 results in a loss of stem cell
quiescence, associated with reduced survival and gradual loss of
the HSC pool.88

In order to study STAT5 signaling in human hematopoietic
stem/progenitor cells, we have used a lentiviral shRNA approach
in cord blood (CB) CD34+ cells.33 Downmodulation of STAT5
to about 30% of the endogenous levels reduced progenitor
frequencies as determined by Colony Forming Cell (CFC) assays
in methylcellulose as well as stem cell frequencies as determined
by Long-Term Culture-Initiating Cell (LTC-IC) assays in
limiting dilution.33 This resulted in reduced long-term expansion
on MS5 bone marrow stroma upon downmodulation of STAT5
expression, whereby the myeloid and erythroid differentiation
were unaffected. Single-cell assays using transduced CD34+/
CD38− cells revealed that cell cycle progression induced by early-
acting cytokines SCF and TPO was impaired by STAT5
downmodulation.33

Reversely, activating mutants of STAT5 have been introduced
in murine CD34−LSK cells and the effects on stem and progeni-
tor cells were assessed in vitro and in vivo.77 Introduction of
STAT5A(1*6) or STAT5A(1*7) mutants resulted in a strong ex
vivo expansion of immature CFU-nmEM progenitors, without
affecting the symmetry of stem cell divisions as determined in
paired-daughter cell assays.77 Importantly, long-term repopulating
HSCs could be maintained under ex vivo culture conditions as
CD34−LSK cells expressing activated STAT5 had a strong com-
petitive repopulating advantage over wild type cells after 7 d and
10 d ex vivo culturing in the presence of SCF or SCF and TPO.77

Activating mutants of STAT5 have also been introduced in
human CD34+ cells. Overexpression of STAT5A(1*6) in human
CD34+ cord blood cells resulted in enhanced stem cell self-
renewal.16 This enhanced self-renewal was only observed in bone
marrow stromal cocultures, but not in cytokine-driven liquid

Table 1. STAT5 activation in hematological malignancies

Kinase Mutation/Translocation Disease References

Flt3 ITD (exon 11–12, 3–400 bp)
TK point mutations (Asp835)

AML
AML

31, 34–38
39

JAK2 TEL-JAK2
V617F

ALL, CML, MPD
PV, ET, IMF

40
41–44

JAK3 A572V, V722I, P132T AMKL 45

c-Kit D816V
ITD (exon 11–12)

AML
Pediatric AML

46–48
49

PDGFR TEL-PDGFR
FIP1L1-PDGFRa

CML, MPD
Chronic Eosinophilic

Leukemia

50, 51
52, 53

Abl v-ABL (p160)
BCR-ABL (p210, p185)

CML, BCL
CML

54
27, 55

FGFR ZNF198-FGFR1 MPD 56

RARa STAT5b-RARa APL 57, 58
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culture conditions. These data argued that STAT5-induced HSC
cell self-renewal depends on the presence of a bone marrow
microenvironment, and it was indeed observed that STAT5A
(1*6)-expressing CD34+ cells have a strongly enhanced interaction
with bone marrow stromal cells, resulting in the appearance of
early CAFCs underneath the stroma within 1 week after plating.
These CAFCs contained self-renewal potential as demonstrated
by their capacity to give rise to second CAFCs upon harvest
and replating onto new stroma, as well as by their capacity to
engraft in sublethally irradiated NOD-SCID mice. Upon serial
replating, long-term cultures could be established by over-
expression of activated STAT5 for over 20 weeks, giving rise to
new CAFCs upon each replating as well as to progeny in suspen-
sion. Hematopoietic progenitors could be maintained long-term
in these culture conditions and the suspension cells retained an
immature blast-like morphology.16

When STAT5A(1*6) mutants were expressed in murine
embryonic stem (ES) cells, the generation of hematopoietic stem
cells was greatly facilitated as studied on OP9 bone marrow
stromal cells.17 The generation of hematopoietic CAFCs was
strongly enhanced by activated STAT5. Importantly, these
CAFCs could be serially passaged onto new OP9 stroma, giving
rise to second and third CAFCs that were able to sustain long-
term hematopoiesis and generate high numbers hematopoietic
progenitors, indicative of HSC self-renewal in vitro. Also, the
CAFCs generated by activation of STAT5 could engraft
sublethally irradiated NOD-SCID mice, indicating that STAT5
facilitates the generation of ES-derived HSCs that can contribute
to hematopoiesis in vivo as well.17

Mechanisms Involved
in STAT5-Induced HSC Self-Renewal

Although various STAT5 target genes have been identified, the
mechanisms by which STAT5 acts on HSCs remain to be
elucidated. Using cell lines or heterogeneous stem/progenitor cell
populations, enhanced cell growth is one of the most dominant
phenotypes that is frequently observed in various studies, and
several genes that are regulated by STAT5 associate with cell
proliferation and cell cycle progression, including Cyclin D1,
Pim1 and c-Myc.16,89-91 CyclinD1−/−D2−/− mice exhibit defects in
the expansion of hematopoietic stem/progenitor cells.92 Pim
serine/threonine kinases act as mediators of cytokine-induced cell
growth93 by promoting acceleration of cell-cycle progression
both at the G1/S and G2/M transitions by phosphorylating
and activating the phosphatases Cdc25A and Cdc25C, respec-
tively.94,95 c-Myc controls the balance between self-renewal and
differentiation of HSCs.96,97 However, when more purified stem
cell populations were studied using a conditional deletion Mx1-
Cre model it was observed that STAT5 was required to maintain
HSC quiescence. Upon STAT5 deletion a decrease in the
percentage of cells in G0 within the long-term and short-term
HSC compartments was observed, coinciding with a decrease in
expression of quiescence-associated genes such as p57 and Tie2.88

Loss of STAT5 also coincided with an increase in AnnexinV+

CD34−LSK cells.88 In erythroid cells, it has been convincingly

demonstrated that STAT5 contributes to cell survival by
upregulating the anti-apoptosis gene Bcl-XL.13,14 Survival of
Flt3-ITD+ AML cells has been shown to depend on STAT5-
mediated expression of Mcl1.98 Also, Bcl2 can be upregulated by
STAT5 and is required to prevent apoptosis during terminal
differentiation of myeloid cells.23 Whether prevention of apoptosis
contributes to STAT5-induced HSC self-renewal is currently
unclear, but Bcl2 overexpression was not sufficient to rescue the
repopulation defects of STAT5ABDN/DN HSCs,84 suggesting that
protection against apoptosis is not the main role of STAT5
signaling in HSCs. In our co-cultures, despite strong reductions in
LTC-IC and CFC frequencies, we also did not detect an increased
rate of apoptosis in STAT5 RNAi-transduced CD34+ CB cells,
and no decreased expression of the Bcl-XL gene was observed.33

The basic helix-loop-helix transcriptional inhibitor ID1 is also
upregulated by STAT5,99 and ID1-deficient HSCs fail to self-
renew, leading to low steady-state HSC numbers and premature
HSC exhaustion.100 Little evidence exists that STAT5 affects the
expression of other known HSC self-renewal regulators such as
Bmi1 or HoxB4. Recently, we observed that STAT5 binds to and
activates the promoter of Hypoxia Induced Factor 2a (Hif2a) in
human CD34+/CD38− HSCs.101 Functional studies indicated
that STAT5-induced long-term expansion and elevated LTC-IC
and CFC frequencies were reduced upon downmodulation of
Hif2a.101 Glucose uptake was enhanced in cells expression
activated STAT5, coinciding with a Hif2a-dependent upregula-
tion glucose metabolism genes, suggesting that pathways norm-
ally active under hypoxia might be utilized by STAT5 under
normoxic conditions as well to maintain stem cell properties.

The phenotype imposed on cells by STAT5 might well depend
on the actual level of STAT5 activity that is induced. Using a
4-hydroxytamoxifen inducible system that allowed titration of
STAT5 activity in human stem and progenitor cells we have
demonstrated that the stem cell maintenance properties require
intermediate STAT5 activation.102 On the other hand, high
STAT5 activation levels resulted in erythroid differentiation at the
expense of HSC self-renewal.102 C/ebpa levels were reduced upon
STAT5 activation, which reached maximum reduction levels at
intermediate STAT5 activation. In line with these observations,
in mice C/ebpa deficiency resulted in hyperproliferation of
hematopoietic progenitor cells and enhancement of hemato-
poietic stem cell repopulating capacity and self-renewal.103,104

Reintroduction of C/ebpa in STAT5A(1*6)-transduced human
CD34+ cells was sufficient to impair HSC self-renewal capacity.105

The mechanisms by which STAT5 affects C/ebpa expression
levels are still under investigation, but these observations leave
open the possibility that enhanced HSC self-renewal might in part
be explained by reduction in C/ebpa expression levels.

It is remarkable that the effects of STAT5 on HSC self-renewal
are confined to intermediate STAT5 activation levels.102 This
dosage effect of STAT5 on self-renewal is consistent with the
observed constitutive activation of STAT5 in AML samples,
which is typically lower then cytokine-induced STAT5 activa-
tion.37,106,107 Such a dosage effect of transcription factors is at
present not well understood, but besides STAT5 this has also
been observed for the myeloid transcription factor Pu.1, which
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at 20% expression gives rise to self-renewing murine myeloid
leukemias, whereas 50% or 100% reduction in expression do not
have such a dramatic effect.108,109 Recently, also for Wnt signaling
it was demonstrated that intermediate activation levels enhance
self-renewal of HSCs.110 Collectively, these examples clearly
underscore the role of transcription factor dosage in regulating
HSC self-renewal.

Cell Type-Specific STAT5 Signaling:
Differential Role of STAT5 in Hematopoietic Stem

and Progenitor Cells?

The observation that STAT5 drives cell cycle progression in
various cell types and anti-apoptosis in others, while STAT5 is
also required to maintain quiescence of hematopoietic stem cells,
suggests that the cell-biological consequences of STAT5 signaling
might be highly cell type-specific. We have addressed this issue by
introducing a 4-hydroxytamoxifen (4OHT)-inducible STAT5-
ER fusion in human stem and progenitor cells.101 Activation of
STAT5 specifically in HSC, common myeloid (CMP), granulo-
cyte-macrophage (GMP) or megakaryocyte-erythroid progenitor
(MEP) populations resulted in rather distinct phenotypes. Long-
term self-renewal and enhanced cobblestone formation could

only be imposed on HSCs, but not on committed progenitor
subpopulations. Erythroid differentiation could be induced in
HSC, CMP and MEP populations, but not in GMPs. Gene
expression profiling revealed that rather distinct gene expression
profiles were induced in HSC as compared with more committed
progenitor subpopulations. For instance, Tubb1, Hif2a, Sod2,
IL8 and also the cell cycle inhibitor Cdkn1a/p21 were particularly
upregulated in HSCs but not in committed progenitors (Fig. 2).
In contrast, Osm, Pim1 and the negative feedback regulators
CISH and Socs2 were upregulated both in HSCs and MPPs. The
underlying mechanisms are currently unclear, but a number of
possibilities might be hypothesized. First, it has been shown that
several cofactors such as p300/Cbp, but also interactions with
other transcription factors such as Foxo3a, can modulate and
fine-tune the STAT5 response.111-113 Cell type-specific interaction
with such cofactors would then dictate a cell type-specific STAT5
activation pattern of target genes. Seen from this perspective,
the modulation of STAT5 signaling by p300/Cbp could add to
a stem vs. progenitor-specific component of STAT5. It has
been observed that, unlike p300, Cbp is essential for HSC self-
renewal maintenance, while p300 is suggested to play a role in
differentiation.114-116 Interaction of various transcription factors
with p300/Cbp is facilitated by the p300/Cbp interacting protein

Figure 2. Cell type-specific STAT5 signaling in hematopoietic stem and progenitor cells. (1) Expression/activation of cofactors: complex composition.
(2) Epigenetic factors that influence STAT5 DNA binding. (3) Expression of receptors and ligands. (4) Niche interactions.
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Cited2 which has been shown to be a target gene of STAT5113

and has differential expression and functions in hematopoietic
stem vs. progenitor cells117 (and our own observations). In part, such
interactions can be mediated by posttranslational modifications
such as serine phosphorylation or glycosylation of STAT5.112 Thus,
besides the induction of STAT5 tyrosine phosphorylation required
for dimerization, nuclear translocation and DNA binding, the
simultaneous activation of pathways that mediate STAT5 serine
phosphorylation or glycosylation would be required.

Furthermore, the epigenetic status of the cell might play an
important role. Hypermethylation of specific promoters or
polycomb-mediated condensation of chromatin might prevent
STAT5 association with regulatory promoter elements and thus
transactivation of certain genes. Clearly, such differences in
epigenetic status and cofactor expression might also be dictated
by different responses to extracellular stimuli. Thus, the repertoire
of specific cytokine and growth factor receptors that is expressed
on a cell, as well as direct interactions between hematopoietic stem
cells and their bone marrow niche, might ultimately determine
the specific STAT5 response (Fig. 2).

Single cell tyrosine phospho-STAT5 analysis revealed that
within the normal hematopoietic stem cell and progenitor
compartment highly distinct cytokine-induced STAT5 activation
patterns are observed.6 Also in primary AML patient samples,
rather heterogeneous responses toward a series of cytokines were
observed, not directly linked to whether or not the cognate
receptor was expressesed.6 There was clear heterogeneity between
different patient samples, but also different responses could be
observed within distinct cellular compartments within a single
patient.6,118 For instance, in some patient samples strong IL3
and GM-CSF responses were observed, but only in the CD34−

subpopulation, while in other cases strong TPO responses were
observed within CD34+/CD38− and CD34+/CD38+ compart-
ments. These observations clearly indicate that strong differences
exist in how cytokine and growth factor signals are mediated
within a certain cell type, both normal as well as leukemic.

Although elucidation of molecular mechanisms by which cell
type specific STAT5 signaling is orchestrated needs further
studies, cell type-specific STAT5 target genes clearly do exist. The
observation that p21 is upregulated by STAT5, particularly in
HSCs, is remarkable (our unpublished observations and ref. 101).
It will be interesting to analyze whether the enhanced long-term
self-renewal that is observed upon activation of STAT5 in
hematopoietic stem cells16 involves improved stem cell main-
tenance by keeping the HSCs pool in a relatively quiescent state
via upregulation of p21. Knockout studies in mice have indicated
that p21 is required during stress hematopoiesis,119 and although
p21 was also initially downregulated in STAT5 depleted LSK
cells, this downmodulation was not maintained.88 On the other
hand, in murine embryonic fibroblasts it has also been shown that
STAT5 can negatively regulate cell cycle progression through
activation of p21.120 Inhibition of JAK2/STAT5 signaling by the
specific Jak2 inhibitor AZ960 stimulated cell cycling in CD34+/
CD38− cells in conjunction with downregulation of p21.118

Further, activation of p21 has been shown to be critical in
preventing excess DNA-damage accumulation and functional

exhaustion of leukemic stem cells,121 and it will be interesting to
further reveal its role downstream of STAT5 in HSCs.

Furthermore, HIF2a was upregulated in HSCs and CMPs
by STAT5, but not in MEPs and GMPs.101 Under normoxic
conditions, proline residues of Hypoxia-Induced Factor 2 are
hydroxylated resulting in a reduction in protein levels via VHL-
mediated proteasomal degradation. Under hypoxic conditions,
such as in the presumed endosteal quiescent stem cell niche,
Hifs are stabilized and act as transcription factors.122 It is cur-
rently unknown whether and which Hif-induced target genes
are essential to maintain stemness of normal HSCs, but it was
recently shown that in Hif1−/− mice HSCs numbers decrease
during stress which was associated with a loss of HSC quiesc-
ence.123 Another report indicated that HSCs in the quiescence
niche utilize glycolysis for their energy demands, which depended
on a Meis1-induced Hif1a signaling network.124 Whether Hif1a
and Hif2a display similar or distinct functions in HSCs remains
to be established.

Our understanding of the mechanisms that determine
whether, where and when a stem cell will self-renew or
differentiate is still limited, but recent advances have indicated
that the stem cell microenvironment provides essential cues that
direct these cell fate decisions.125-128 It is remarkable that STAT5-
induced long-term self-renewal is typically observed when cells
are cultured in direct contact with stromal cells,16 in contrast
to, e.g., Bmi1-induced self-renewal, which occurred in a more
microenvironment-independent manner.129 Thus, altered inter-
actions with the stem cells niche might also underlie the enhanced
self-renewal properties imposed on HSCs by activated STAT5.
Although the mechanisms by which the interaction with the
microenvironment of STAT5A(1*6)-expressing CD34+ cells are
still unclear, our ongoing studies in which gene-expression
profiling was performed in HSCs and progenitor subsets revealed
that the list of STAT5-targets is significantly enriched for
membrane (associated) proteins.102 One of the STAT5 targets
that has been identified is MUC1130 which is a (proto)oncogene
involved in adhesion and transendothelial migration, and has been
associated with initiation of various intracellular signal trans-
duction pathways including β-catenin, p53 and NFkB path-
ways.131-136 Also, MUC1 has been shown to mediate an oscillatory
calcium signal upon binding to ICAM1.137 Within the endosteal
region of the bone marrow where stem cells are thought to reside,
Ca2+ levels are high, and HSC retention within the niche depends
on the Calcium-Sensing receptor (CaR).138 Thus, STAT5 might
exert its phenotype, at least in part, by influencing interactions
between HSCs and their niche.

Conclusions and Future Perspectives

In both murine and human model systems it has been
convincingly shown that STAT5 fulfills an important role in
hematopoietic stem cell self-renewal. Although the precise
mechanisms by which HSC self-renewal is orchestrated by
STAT5 remain elusive to date, an increasing number of STAT5
target genes have been identified that are currently under
investigation. In myeloproliferative diseases and leukemias, a
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number of oncogenes have been identified that are capable of
inducing STAT5 activity, and accumulating evidence has
indicated that STAT5 participates in self-renewal of leukemic
stem cells as well. Thus, it appears likely that STAT5 will

become an important diagnostic marker in the near future, and
specific targeting of STAT5 should be focus of therapeutical
intervention strategies to improve treatment of hematological
malignancies.
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