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ABSTRACT

Natural antisense transcript-derived small interfering
RNAs (nat-siRNAs) are a class of functional small
RNA (sRNA) that have been found in both plant and
animals kingdoms. In plants, these sRNAs have been
shown to suppress the translation of messenger
RNAs (mRNAs) by directing the RNA-induced silenc-
ing complex (RISC) to their sequence-specific mRNA
target(s). Current computational tools for classifica-
tion of nat-siRNAs are limited in number and can be
computationally infeasible to use. In addition, current
methods do not provide any indication of the function
of the predicted nat-siRNAs. Here, we present a new
software pipeline, called NATpare, for prediction and
functional analysis of nat-siRNAs using sRNA and
degradome sequencing data. Based on our bench-
marking in multiple plant species, NATpare substan-
tially reduces the time required to perform predic-
tion with minimal resource requirements allowing for
comprehensive analysis of nat-siRNAs in larger and
more complex organisms for the first time. We then
exemplify the use of NATpare by identifying tissue
and stress specific nat-siRNAs in multiple Arabidop-
sis thaliana datasets.

INTRODUCTION

Natural antisense transcripts (NATs) are endogenous RNA
transcripts that share sequence complementary to other
RNA transcript sequences (1). They have been identified in
multiple eukaryotes, including humans, mice, yeast, rice and
Arabidopsis (2). NATs include both protein coding and,
mostly, non-protein coding transcripts (3) and can be clas-
sified into either cis-NATs or trans-NATs based on their ge-
nomic origin. cis-NATs are transcribed from the same ge-
nomic location but on opposite strands, resulting in sec-
tions of perfectly complementary double stranded RNA
(dsRNA) forming between the two transcript sequences.
Conversely, trans-NATs originate from different genomic
locations and can form imperfect dsRNA (2). There are

three types of cis-NAT orientation that can form dsRNA:
5′ overlap (head-to-head), 3′ overlap (tail-to-tail) and the
complete enclosure of one transcript by the other (full over-
lap) (3), shown in Figure 1. Although current understand-
ing is limited, research has suggested a variety of regulatory
roles for NATs, such as RNA interference (RNAi), alterna-
tive splicing, genomic imprinting, and X-chromosome inac-
tivation (2,4,5).

Small RNAs (sRNAs) are short, non-coding RNAs that
are vital components of gene regulation acting through en-
dogenous RNA silencing pathways (6). They regulate many
important and diverse biological pathways such as growth
and development, disease resistance and stress response
(7,8). To do this, they suppress the translation of messen-
ger RNAs (mRNAs) by directing the RNA-induced silenc-
ing complex (RISC) to its sequence-specific mRNA tar-
get(s). In plants, there are many well categorized classes
of sRNA, such as microRNA (miRNA), small interfer-
ing RNA (siRNA), heterochromatic small interfering RNA
(het-siRNA) and trans-acting short interfering RNA (ta-
siRNA), differentiated by both biogenesis and mode of ac-
tion (9). One mechanism of sRNA-mediated mRNA regu-
lation is through mRNA cleavage and the resulting mRNA
fragments can be captured on a genome-wide scale using
degradome sequencing techniques, such as Parallel analy-
sis of RNA ends (10) or nanoPARE (11). This data can
then be used to support sRNA target prediction by align-
ing the captured cleavage fragments back to the reference
transcript sequences which are then used to identify pos-
sible causal sRNAs (12–15). Furthermore, this data can
also be used to capture cleavage products generated through
Dicer-mediated processing of sRNA precursors, as previ-
ously demonstrated with miRNA biogenesis (13,16,17).

Over the last few years, much research attention has
been focused on the biogenesis and function of natural
antisense transcript-derived small interfering RNAs (nat-
siRNAs) (5,18–21). The founding example was identified in
Arabidopsis thaliana, where a pair of cis-NATs, SRO5 and
P5CDH, were shown to be involved in the response to salt
tolerance through the RNAi pathway (5). During salt stress,
SR05 is expressed and can form a complementary over-
lapping region with the constitutively expressed P5CDH,
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Figure 1. The three types of cis-NAT orientation that can form dsRNA: 5′ overlap (head-to-head) (A), 3′ overlap (tail-to-tail) (B) and the complete enclosure
of one transcript by the other (full overlap) (C). Transcript sequences are always transcribed in the 5′ direction and are represented by arrows. Regions of
complementarity between the two sequences are represented by dashed lines.

which is then processed by a biogenesis pathway dependent
on Dicer-like 2 (DCL2), RNA-dependent RNA polymerase
6 (RDR6), Suppressor of Gene Silencing 3 (SGS3) and
DNA-directed RNA polymerase IV subunit 1 (NRPD1) to
produce a 24nt nat-siRNA. This nat-siRNA then directs the
cleavage of P5CDH, which is subsequently used as a tem-
plate by RDR6 to produce dsRNA that is then processed
by DCL1 to produce 21nt secondary nat-siRNAs (5).

Recently, NATs were identified in public sequencing
data from 69 plant species and a database called Plant-
NATsDB (22) was constructed. This database includes in-
formation regarding sRNAs originating from overlapping
and non-overlapping regions of NAT transcript pairs. In
2012, Zhang et al. performed a genome-wide analysis of
plant nat-siRNAs in both Oryza sativa and A. thaliana,
which revealed insights into their distribution, biogenesis
and function (21). In this study, >17 000 unique siRNAs
corresponding to cis-NATs from biotic and abiotic stress
challenged A. thaliana and 56 000 from abiotic stress treated
O. sativa. These siRNAs were enriched in the overlapping
region of NAT pairs and displayed either site-specific or dis-
tributed patterns.

Current tools available for the prediction of nat-siRNAs
are limited in both number and functionality. NATpipe
(23), a collection of Perl scripts developed for the predic-
tion of NATs and nat-siRNAs, is the only computational
pipeline for this type of analyses, however it suffers from
limitations in its runtime and also requires a large num-
ber of third-party dependencies that must be installed and
configured by the user. This requires computational ex-
pertise that some users may not have. Additionally, NAT-
pipe is developed to exclusively discover phased-distributed
nat-siRNAs, however based on a previous study (21), nat-
siRNAs production can also follow site-specific patterns
and thus would be missed by NATpipe. Moreover, the re-
sults reported by NATpipe do not give any indications into
the possible function of any predicted nat-siRNAs. Finally,
based on our prediction performance benchmarking, limi-
tations with the implementation of the NATpipe algorithm
causes some known cis-NAT pairs and their corresponding
cis-nat-siRNAs to be discarded.

In this paper, we introduce NATpare, a tool for the pre-
diction and functional analysis of nat-siRNAs. NATpare
takes sRNA, transcriptome and optionally, degradome,
data as input and enables the identification of both cis-
and trans-nat-siRNAs. It is scalable with the increasing size
of modern sequencing datasets and enables comprehensive
analysis of nat-siRNAs in more complex transcriptomes
for the first time within a reasonable time frame. In addi-
tion, if corresponding degradome data is available, NAT-
pare provides the reported nat-siRNAs to PAREsnip2 (24)

for prediction of potential mRNA targets based on evidence
within the degradome.

MATERIALS AND METHODS

The NATpare algorithm is split into four main stages, with
the final stage being optional and dependent on the in-
put data. The first is the pre-processing of input sequenc-
ing data and the approaches taken to reduce the possible
search space. The second stage is the identification of po-
tential NAT pairs. In the third stage, potential nat-siRNAs
are identified and additional quantitative information is ex-
tracted and reported. Finally, and if degradome data is
provided, the candidate nat-siRNAs are subject to func-
tional analysis using PAREsnip2 (24) to search for poten-
tial mRNA targets. A visual overview of the steps involved
in performing analysis on the input data is shown in Fig-
ure 2. We now explain each stage of the algorithm in more
detail.

Data input and tool configuration

To perform an analysis using NATpare for a specific organ-
ism, the user must input the following data:

• A reference file (transcriptome) in either FASTA or
Generic Feature Format version 3 (GFF3) with corre-
sponding genome;

• A genome file (optional unless using GFF3 as reference);
• A set of sRNAs in redundant FASTA format;
• A degradome library in redundant FASTA format (op-

tional).

A reference file and at least one sRNA library are re-
quired to perform analysis. If the user chooses to use a
GFF3 file as a reference then a corresponding genome must
also be provided. When extracting the gene sequences from
the genome using information from the provided annota-
tion (GFF3), the tool will include all splice variants of a
given transcript that are detailed within the annotation. The
input sRNA library must be in redundant FASTA format
with the adaptors trimmed. Tools available to processing
FASTQ files, such as adaptor trimming and other quality
checking, can be found in the UEA sRNA Workbench (25),
where NATpare is also included.

When performing analysis, the user has the option to con-
figure a number of parameters to meet their requirements,
which are shown in Table 1. The most notable parameters
are the number of expected sRNA phases, which is defined
as the number of expected adjacent sRNAs, with or without
overlap, that align to a given transcript for it to be reported,
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Figure 2. A visual overview of the NATpare pipeline. Input and output
data are represented by ovals and processes are represented by rectangles.
Data input or processing steps surrounded by dashed lines are optional and
dependent on the provided input data. NATpare takes as input HTS data
(sRNA and degradome) along with a reference transcriptome and outputs
a list of predicted nat-siRNA. Additional annotation information, in the
form of a GFF3 file, can be used to annotate the predicted NATs (cis or
trans) by incorporating genomic origin.

as shown in Figure 3, and the minimum overlap length be-
tween two NATs (i.e. the minimum overlap length consid-
ered possible to produce sRNAs).

Sequence filtering

Several optional filtering techniques can be applied to the
input data to remove low quality reads, sequencing errors or
sample contamination. First, any sequence containing am-
biguous bases are discarded as they cannot be accurately
aligned. Second, a low complexity sequence filter is ap-
plied based on the sequence composition (24). Specifically,
this works by discarding any sequences that contain more
than 75%, 37.5% and 25% of a single, di- or tri-nucleotide
composition, respectively. Finally, if a genome is provided,

sRNA sequences can be aligned using PatMan (26), with
any sequences that do not align being discarded.

Search space reduction

A core component of the NATpare algorithm is the pre-
processing of the input data to reduce the possible search
space and thus reduce the required runtime of a given anal-
ysis. In the first step, the sRNA and optional degradome
libraries are aligned to the provided transcript sequences
in the positive direction with no mismatches allowed. For
this, we use the Binary Search Alignment algorithm imple-
mented in UEA sRNA Workbench (24,25). Next, we extract
sub-sequences based on the following criteria:

• Adjacent aligned sRNA sequences, either at the 5′ end
or 3′ end, that meet the minimum number of expected
phases (configurable parameter).

• If provided, degradome tags where the first position
aligns adjacent to the 3′ position of an aligned sRNA,
which results in a ∼40nt sequence.

The use of degradome data is to find DCL cleavage ev-
idence and to determine those sRNA that may be site-
specific, e.g. there is a preferential DCL cleavage site, based
on the types of distribution patterns found in a previous
study (21).

Once the longer sub-sequences, that meet either of the
above criteria, have been extracted, we take their reverse
complement and perform exact match sequence alignment
to all other transcripts using PatMan (26). This process
gives us potential overlapping regions, that give rise to sR-
NAs, between two transcripts and are then subject to more
a comprehensive investigation.

NAT pair search

After the generation of the candidate NATs from the search
space reduction technique, they are subject to an alignment
search using BLAST (27). If the alignment length is greater
than or equal to the expected minimum, the NAT pair is
then identified as either cis or trans. If a GFF3 file is pro-
vided as input this will be determined by the genomic ori-
gin of the two transcripts, otherwise it will be determined
based on previously described criteria (23). Specifically, if
the overlapping region is perfectly complementary, it will be
considered as a cis-NAT, otherwise it will be considered as a
trans-NAT albeit the lack of genomic location information.
In the case of trans-NATs, the reported alignment is further
analysed using RNAplex (28) to verify the annealing po-
tential of the BLAST-predicted alignment at the secondary
structure level. The results from RNAplex must meet the
following criteria for the NAT pair to be considered for fur-
ther analysis:

1. The reported annealing region should overlap with the
BLAST reported complementary region by at least 80%
(configurable parameter)

2. Any unpaired region within the annealing region should
be no longer than 10% (configurable parameter) of the
total length of the overlapping region
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Table 1. The configurable parameters for NATpare. The values used during analysis can be changed by modifying the input configuration file or by using
the command line when running the tool.

Parameter Default value Description

Minimum overlap length 100 Minimum length of the annealed region between NATs
Minimum sRNA phases 1 Minimum number of sRNA alignment phases (shown in Figure 3)
Minimum sRNA length 19 Minimum input sRNA length
Maximum sRNA length 24 Maximum input sRNA length
Minimum sRNA abundance 1 Minimum input sRNA abundance
Minimum tag length 19 Minimum length of degradome reads
Maximum tag length 21 Maximum length of degradome reads
Cis only true Only search for NATs with perfectly complementary or from the same genomic

location
Coverage ratio 80% The percentage of overlap required between the BLAST and RNAplex alignments
Largest bubble region 10% Largest non-complementary region in a trans-NAT alignment cannot be longer

than 10% of the total alignment
Low complexity filter true Discard input sequences based on their complexity
Genome alignment true If a genome is provided, discard any sRNAs that do not align

A

B

sRNA 1 sRNA 2 sRNA 3 sRNA 45’ ’3

Adjacent sRNA phases without overlap

Adjacent sRNA phases with overlap

5’ ’3sRNA n1 2 3 4 . . . . . . . . ..

Figure 3. The two types of adjacent sRNA alignment phases considered by
NATpare. Adjacent sRNA phases without overlap (A) are when the first
position at the 5′ end of an aligned sRNA is adjacent to the last position at
the 3′ end of another aligned sRNA. Adjacent sRNA phases with overlap
(B) are where sRNA sequences align contiguously to a given transcript.

Unlike NATpipe, we only do the hybridization analysis
if the reported BLAST alignment or genomic location in-
formation suggests that the NAT pairs work in trans. In
addition, to compensate for the long processing time of
RNAplex, if the length of either transcript of the NAT pair
is greater than 5000nt, we omit the hybridisation step and
instead just proceed with the reported BLAST alignment.

Once all of the candidate NATs have been processed,
those passing all the required criteria are categorized into
the following groups:

• High-coverage (HC): the complementary region is longer
than 50% of the length of either transcript

• 100nt: the complementary region is 100nt or longer in
length

• Low-coverage (LC): the complementary region is less
than 100nt in length

Categorization of candidate nat-siRNAs

Once the overlapping regions between NATs have been de-
termined, the pipeline extracts the sRNA sequences that
aligned to these positions. Rather than just providing the
user with a set of aligned sRNAs, we developed a system to
categorise each sRNA based on the current understanding

of the sRNA biogenesis model. For this system, we also in-
clude degradome data (if provided) as this provides a snap-
shot of the mRNA degradation profile, which can include
Dicer-mediated cleavage products. In addition, by looking
at the degradation profile, it can also give us an indication
as to what mRNAs are currently being expressed, as the
mRNA must be expressed in order to be degraded, and thus
improve our nat-siRNA prediction model.

For each biogenesis group, we define the mature sRNA
as the one originating from the transcript currently being
investigated. For example, given the NAT pair consisting of
transcripts A and B, when investigating sRNA alignments
to transcript A, those sRNAs aligning to B will be consid-
ered the star sequences, and vice-versa when investigating
transcript B, those aligning to A will be considered the star
sequence.

Below is an overview of the biogenesis groups:

• Group 1: sRNA and sRNA* sequence present with 2 nt
5′ overhang and both sequences supported by the de-
gradome data

• Group 2: sRNA and sRNA* sequence present with 2 nt
5′ overhang and only the mature sequence supported by
the degradome data

• Group 3: sRNA and sRNA* sequence present with 2 nt
5′ overhang

• Group 4: sRNA present with degradome evidence but no
sRNA*

• Group 5: Only the sRNA aligning to the overlapping re-
gion

NAT alignment distribution and sRNA alignment densities

To determine the distribution pattern of aligned sRNAs
for a given NAT pair, we implemented a method described
previously (21). Specifically, starting from the first aligned
sRNA closest to the 5′ end of a transcript, sRNAs were clus-
tered if their first nucleotide is within a 10nt long segment
of the starting sRNA, with any cluster containing more
than 5 reads being retained for further analysis. For each
NAT, we record the number of clusters and the percentage
of the unique reads in these clusters relative to the whole
transcript. Alignments are considered to be site-specific if
a transcript contains 10 or less clusters and the percentage
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of unique reads within these clusters is 50% or greater than
that over the whole transcript, otherwise it is categorized to
have a distributed pattern.

For each NAT pair, we also report the sRNA alignment
density for the overlapping region and also for the whole
transcript. To do this, we implement the same methods as
described previously (21). Briefly, for each NAT, we counted
the number of unique sRNAs, denoted as No, mapping to
the overlapping region and the total number, denoted as Ng,
mapping to both transcripts. We then measured the length
of the overlapping region, denoted as Lo, and the sum of
the length of both transcripts, denoted as Lg. Finally, the
ratios No/Lo and Ng/Lg were reported as the sRNA align-
ment densities for the overlapping region and for the overall
transcript sequences within the NAT pair, respectively.

Functional analysis of candidate nat-siRNAs

It has been shown that cis-nat-siRNAs can direct the cleav-
age of their mRNA targets (5). Therefore, to provide further
indication of the function of the reported nat-siRNAs and
if degradome data is provided as input, we incorporate the
predicted nat-siRNAs into PAREsnip2 (24). For the target
prediction, we allow the user to configure their own parame-
ters or alternatively use the default configurations provided
by PAREsnip2. Additionally, if the user has a version of R
installed and is correctly configured as an environment vari-
able, the pipeline can automatically produce t-plots to pro-
vide a visual representation of the reported interactions.

Implementation and output

The algorithm has been implemented using the Java pro-
gramming language and a user-friendly, cross-platform
software package has been incorporated into the UEA
sRNA Workbench (25). Analysis using NATpare can be
performed through the command-line interface as a stan-
dalone application or alternatively be incorporated into
larger and more complex bioinformatics pipelines or work-
flows.

The results of NATpare are provided in comma-
separated value (CSV) format, allowing them to be viewed
in any CSV file viewer.

Sequence datasets

To enable a comprehensive evaluation of the NATpare tool,
we performed computational benchmarking on five plant
species with varying transcriptome sizes (Supplementary
Table S1), namely A. thaliana, S. lycopersicum, O. sativa, G.
max and T. aestivum. The transcriptome used for all species
in the computational performance benchmarking were ex-
tracted from genome and GFF files, obtained from plant
Ensembl (29) release 43. 100 000 sRNA sequences were
used in the computational benchmarking for each species
and were simulated from the overlapping region of two ran-
domly selected cis-NATs, based on the genomic informa-
tion provided within the genome annotation. All generated
sequences were 21nt in length and were randomly selected
to be extracted from either transcript within the NAT pair.

This benchmarking was performed on a desktop computer
running Ubuntu 18.04 equipped with a 3.40 GHz Intel Core
i7-6800K six core CPU and 128GB RAM.

For the prediction comparison between NATpipe and
those reported by a previous study, we used the publicly
available G. max sRNA dataset, which we will refer to as
D1 hereafter, obtained from a previous study (30) (GEO
accession GSE33380), and the reference transcriptome ob-
tained from the Phytozome database (31) release 12. For all
A. thaliana analysis, besides from the computational bench-
marking, we used the TAIR10 reference transcriptome ob-
tained from The Arabidopsis Information Resource (TAIR)
(32). The control and stress treated A. thaliana sRNA se-
quences that were used for the seedling salt stress analy-
sis were obtained from a previous study (33) (GEO acces-
sion GSE66599) and will be referred to as dataset D2 here-
after. The A. thaliana flower, root, seedling and leaf libraries,
with corresponding degradome data, were generated from
plants grown at 21C and obtained from NCBI BioProject
PRJNA407271 (34) and will be referred to as dataset D3
hereafter.

RESULTS

Benchmarking and comparison with NATpipe

To measure the computational performance of the newly
developed NATpare algorithm, i.e. the time and memory
required to perform an analysis, we carried out computa-
tional benchmarking and compared our results to those of
the other publicly available method.

For this benchmarking, we used the simulated set of
sRNA sequences and the reference transcriptome, pro-
duced using the GFF file obtained from Ensembl (29),
as described in the methods, for each species. The reason
that we used simulated data is that it allows us to gener-
ate nat-siRNAs that we know should be captured by the
tools and thus allows for the fairest possible comparison. As
NATpipe can only predict nat-siRNA originating from cis-
NATs, we adjusted the NATpare parameters to also have
this restriction. We recorded the time taken for each tool
to perform analysis on the simulated data and the results
of these analyses are shown in Table 2. If the tool did not
complete the analysis within 10 days, we recorded it as did
not finish (DNF). The results show that the newly devel-
oped algorithm substantially outperforms NATpipe on the
simulated datasets in terms of computation time. For the A.
thaliana dataset, the only dataset that NATpipe was able to
complete within the 10 day cut-off limit, the newly devel-
oped method was able to complete the analysis with over
200× speed up. For all tested datasets, the memory require-
ment varied between 4GB and 8GB depending on the num-
ber of transcript sequence within the reference annotation.
The timing results suggest that the time taken is dependent
on the number of transcripts and transcript pairs that con-
tain overlapping and complementary regions, for which the
exact number is difficult to determine, particularly when
you consider trans-NATs, as this information is not possible
to obtain, even with a complete genome annotation, with-
out thorough computational analysis. However, the results
of the computational performance benchmarking demon-
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Table 2. Computation performance comparison between NATpipe and the newly developed NATpare pipeline when evaluated on 5 simulated datasets.
If the tool did not finish within 10 days it was recorded as did not finish (DNF).

Species Annotation version # Transcripts NATpipe time NATpare time

S. lycopersicum SL3.0 33925 DNF 4 min 52 s
O. sativa IRGSP-1.0 42378 DNF 5 min 38 s
A. thaliana TAIR10 48359 1 day 18 h 34 min 11 min 15 s
G. max G. max v2.1 88412 DNF 1 h 5 min
T. aestivum IWGSC 133744 DNF 13 h 2 min

strate NATpipe’s speed limitations and the need for addi-
tional pipelines or software tools for the prediction of nat-
siRNAs.

Next, we wanted to evaluate the predictions reported by
the tools on real sequencing data. However, unlike other
classes of sRNA, such as miRNAs, there is no extensive set
of true positives. Nevertheless, a number of previous stud-
ies have manually predicted NATs and nat-siRNAs in both
model and non-model plants, for example, A. thaliana (21),
G. max (30) and Z. mays (35). As NATpipe is currently
the only publicly available tool for the prediction of nat-
siRNAs, we performed an analysis on a publicly available
G. max dataset and investigated the overlap in the number
of nat-siRNAs reported by computational methods, NAT-
pipe and NATpare, and those found previously during man-
ual analysis (30). For this analysis, we used the G. max
cDNA reference transcriptome, obtained from Phytozome
and the D1 sRNA dataset, as described in the methods. In
addition, to compensate for the long processing time re-
quired by NATpipe and the fact that it is only able to pre-
dict cis-nat-siRNAs, we restricted the input transcript se-
quences only to those with perfectly complementary over-
lapping regions, as reported by a BLAST search using those
transcripts previously found to produce nat-siRNAs (30) as
input.

The results from this analysis, with the top 10 NAT
pairs based on number of generated nat-siRNAs, presented
in Table 3 and the rest in Supplementary Table S2, show
that NATpare is able to capture a larger number of the
previously reported nat-siRNAs in G. max compared to
NATpipe. To investigate the overlap in results between the
two tools, we compared the results and found that all of
the NATpipe reported nat-siRNA were a subset of those
reported by NATpare. In addition, further investigation
into the NAT pairs missed by NATpipe showed that the
RNAplex hybridization step of the algorithm did not always
correspond to the alignment reported by BLAST, thus no
results were reported, which supports our decision to per-
form RNA hybridization exclusively on trans-NATs. Inter-
estingly, we observed differences between the numbers of
reported nat-siRNAs from the previous study (30) and the
prediction tools and consider this likely to be a result of mi-
nor discrepancies between the different filtering and predic-
tion methods applied to the input sRNAs.

Comparing the expression of nat-siRNAs in A. thaliana con-
trol and salt stress treated samples

The current understanding of NATs and nat-siRNAs is that
they are expressed during certain stress conditions, develop-

ment stages or disease response (5,21,36). To illustrate the
use of NATpare and to validate the results reported by the
tool, we performed analysis on a publicly available dataset,
D2, obtained from A. thaliana seedling under salt stress,
a type of abiotic stress in which the plants response has
been previously shown to involve nat-siRNAs (5). Before
performing analysis using NATpare and to increase confi-
dence within the predictions, we discarded any sRNAs that
were not conserved between at least 2 out of 3 biological
replicates. Next, we further filtered the data to remove any
known miRNAs or isomiRs by aligning the sRNAs to all
known plant miRNAs, obtained from miRBase (release 22)
(37), allowing up to 2 mismatches. In addition, we removed
any sRNAs that may have originated from tRNA or rRNA
sequences using the filtering methods implemented within
the UEA sRNA Workbench (25). The results for this anal-
ysis, including the breakdown of the NAT and nat-siRNA
prediction categories, can be found in Supplementary Ta-
ble S3. After performing analysis on the filtered data using
NATpare, we then investigated the overlap between the con-
trol and treatment samples and the results show that there
exists a clear separation in the reported nat-siRNAs be-
tween treatment and control, with just 281 overlapping se-
quences within the intersection, yet 877 and 581 being spe-
cific to control and treatment, respectively. As the biogene-
sis of nat-siRNAs require both transcripts to be expressed
simultaneously within the same cell, the separation and dif-
ferences in the number of nat-siRNAs that are reported be-
tween control and treatment may be due to transcriptional
changes in response to the stress.

To investigate these results further, we performed differ-
ential expression analysis with iDEP (38), using the de-
fault parameters, which reported 31 differentially expressed
(DE) nat-siRNAs using a false discovery rate of 0.1. These
comprised of 29 upregulated nat-siRNAs in the treatment
datasets, presented in Table 4, and two up-regulated nat-
siRNA in the control datasets. For each of the upregulated
nat-siRNAs identified in the treatment datasets, we exam-
ined the current annotation model (TAIR10) and found
that 10 of the 29 sequences originated from a NAT pair
where one of the transcripts is currently annotated as a po-
tential natural antisense gene. Majority of the other upregu-
lated nat-siRNAs in the treatment datasets originated from
transcripts annotated as either unknown protein or other
RNA. Further analysis of all NAT pairs giving rise to these
nat-siRNAs, besides for AT5G01600.1 and AT5G01595.1,
showed that the sRNA alignment density within the over-
lapping region was greater than that of the whole transcript,
suggesting that sRNAs are more likely to originate from
overlapping regions of these NATs.
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Table 3. Top 10 reported G. max cis-NATs with the highest number of unique reported nat-siRNAs by Zheng et al. (30) and the prediction results from
NATpare and NATpipe.

Gene A Gene B Overlap length
Zheng et al. reported

sRNAs NATpipe NATpare

Glyma13g11940.1 Glyma13g11970.1 542 1864 0 1802
Glyma13g11820.1 Glyma13g11830.1 428 1285 0 1406
Glyma13g11940.1 Glyma13g11950.1 147 724 0 576
Glyma13g11940.1 Glyma13g11960.1 118 509 0 487
Glyma11g30060.1 Glyma11g30070.1 392 244 209 237
Glyma13g21780.1 Glyma13g21790.1 355 28 0 28
Glyma15g06490.1 Glyma15g06500.1 156 26 0 26
Glyma17g23860.1 Glyma17g23870.1 174 18 11 11
Glyma03g22390.1 Glyma03g22400.1 276 17 16 17
Glyma15g37470.1 Glyma15g37480.1 764 15 0 15

Table 4. The upregulated nat-siRNAs, as reported by iDEP, in the A. thaliana seedling salt-stress dataset. Ten of the 29 sequences originated from NAT
pairs where one of the transcripts is annotated as a potential natural antisense gene. The transcript that gives rise to the largest number of nat-siRNAs is
currently annotated as ‘unknown RNA’ and the corresponding NAT has an unknown function. Adjusted P-values were obtained using a false discovery
rate of 0.1 and were expressed to three significant digits. Any extreme P-values (i.e. P < 0.001) were reported as P < 0.001.

Sequence
Originating

gene
Originating gene

annotation
Corresponding

NAT Corresponding NAT annotation log2fc
Adjusted
P-value

CAAAAACTGCTGAATCGTCGAGG AT3G41761.1 other RNA AT3G41762.1 unknown protein 7.759025974 P < 0.001
CCGGCGACTTTTCCGGCGATCGG 7.728742081 P < 0.001
CAAAAACTGCTGAATCGTCGAGGA 6.425292703 P < 0.001
AAAAACTGCTGAATCGTCGAGG 6.214796612 P < 0.001
AAAAACTGCTGAATCGTCGAGGA 6.133011199 P < 0.001
CCGGCGACTTTTCCGGCGATCGGT 5.961226293 P < 0.001
CGGCGACTTTTCCGGCGATCGG 5.539642282 P = 0.002
CCGGCCGCCGGGATTTTCGCCGG 5.283876137 P = 0.007
AAAAACTGCTGAATCGTCGA 4.989198969 P = 0.035
GGCGACTTTTCCGGCGATCGG 4.908960699 P = 0.062
CCGGCCGCCGGGATTTTCGCCG 4.22132342 P = 0.061
GGCGACTTTTCCGGCGATCG 4.117655813 P = 0.081
AACTGCTGAATCGTCGAGG 3.689930846 P = 0.035
TCCGGCGACTTTTCCGGCGATCGG 3.580577335 P = 0.001
AAAACTGCTGAATCGTCGAGG 3.080787251 P = 0.044
CCGGCCGCCGGGATTTTCGCC 2.703061225 P = 0.027
AAACTGCTGAATCGTCGAGGA 2.517183992 P = 0.054
CAAAAACTGCTGAATCGTCGAG 2.435469953 P = 0.002
TAAGAGAGAACAAGGATGGTT AT1G05560.1 UDP-

glucosyltransferase
75B1

AT1G05562.1 Potential natural antisense gene 4.458736007 P = 0.035

GACAAGTAGAAAAAAAATGGCG 3.790780596 P = 0.026
AGTAGAAAAAAAATGGCGCCA 3.258296457 P = 0.007
CAAGTAGAAAAAAAATGGCGCC 3.16407171 P < 0.001
AAGTAGAAAAAAAATGGCGCC 2.086703913 P = 0.024
CAAGTAGAAAAAAAATGGCGC 1.98426758 P = 0.027
TGAGAATTTTCGGTTTGGTTT AT1G05562.1 Potential natural

antisense gene
AT1G05560.1 UDP-glucosyltransferase 75B1 5.178982904 P = 0.015

TTGTTTGTGTTGGAAGGTGTG 4.804480168 P = 0.098
AGACAGATTAGGTAACTCGAA 2.199439073 P = 0.035
GCGGCGGAGAAGTATGTGGATA AT3G59068.1 Potential natural

antisense gene
AT3G59070.1 Cytochrome b561/ferric reductase

transmembrane with DOMON
related domain

4.908960699 P = 0.062

GCCACTACTCCCTCACGGCTCTGC AT5G01600.1 ferretin 1 AT5G01595.1 other RNA 6.220625993 P < 0.001

Investigation into the function of cis- and trans-nat-siRNAs
in different Arabidopsis tissues

In a previous study by Yuan et al. (39), manual analyses of
40 publicly available A. thaliana sRNA datasets obtained
from flower, leaf and seedling tissues identified 5385 nat-
siRNAs that could be mapped to the overlapping region of
a single cis- or trans-NAT pair and were conserved between
at least three of the 40 datasets. Of these, 1548 were found
to be conserved between each tissue whereas 945 and 142
were specific to seedling and flower, respectively. Analyses
into the function of nat-siRNA has shown that they can
act as post-transcriptional gene regulators, like miRNAs,
by directing the RISC to sequence-specific mRNA targets,
usually in cis (5,40). Degradome data provides experimental
support that increases confidence with sRNA target predic-

tion (41) and the NATpare pipeline includes PAREsnip2 for
target prediction and functional analysis of reported nat-
siRNA candidates. To illustrate the usefulness of combin-
ing prediction with functional analysis, we performed anal-
ysis using NATpare on the D3 dataset, which consists of
two synonymous A. thaliana sRNA and degradome bio-
logical replicates obtained from each flower, leaf, root and
seedling.

For this analysis, and similar to the analysis performed
in a previous study (39), we configured NATpare to re-
port both cis- and trans-nat-siRNAs. Similar to our previ-
ous analysis, we removed any sRNAs that were not con-
served between both replicates and also removed predic-
tions that aligned to any known miRNA, rRNA or tRNA
sequences using the UEA sRNA Workbench (25). After
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performing analysis on the filtered sRNAs (Supplementary
Table S4), we further processed the results to remove any
predicted nat-siRNAs that were reported to originate from
multiple transcripts. In total, there were 2962, 1505, 2701,
3562 nat-siRNAs candidates reported in flower, leaf, root
and seedling, respectively. We then investigated the over-
lap between the nat-siRNAs reported from each tissue and
found that 613 nat-siRNAs (9.6% of all reported sequences)
were conserved between each of the tissues. The tissue with
the largest number of uniquely reported nat-siRNAs was
seedling, with 1438 (22.6% of all reported sequences), and
the tissue with the fewest uniquely reported sequences was
leaf with just 272 (4.3% of total reads). These results are
consistent with those reported by Yuan et al. (39), where
it was also found that seedling tissue produces the largest
number and leaf tissue produces the smallest number of
unique nat-siRNAs. A Venn diagram, created by Interac-
tiVenn (42), showing the overlap between all tissues within
the D3 dataset can be found in Supplementary Figure S1.
Further analysis into the nat-siRNA candidates found that
96.5%, 98.5%, 98.1% and 97.6%, of nat-siRNAs identified
in flower, leaf, root and seedling, respectively, were uniquely
reported in this study, when compared to those previously
reported (39).

To identify the possible function of the captured nat-
siRNAs, we performed target prediction with PAREsnip2,
using default targeting criteria but without additional fil-
tering (Supplementary Table S5), on the dataset D3 de-
gradome libraries. The sRNA input for degradome analysis
on each tissue were the captured nat-siRNAs that passed
all filtering methods described above. The results of each
analysis can be found within Supplementary Table S6. A
t-plot showing an exemplary interaction that was reported
in seedling is shown in Supplementary Figure S2. The time
taken to perform target prediction on each dataset was ∼5
min with a peak memory usage of 4GB. After performing
analysis on each dataset, we extracted the reported targets
that were conserved between each of the replicates. This re-
sulted in 6 targets from 4 nat-siRNAs captured in flower,
29 targets from 8 nat-siRNAs captured in leaf, 63 targets
from 29 nat-siRNAs captured in root and 35 targets from
9 nat-siRNAs captured in seedling. To exemplify the use
of degradome data for functional analysis of the predicted
nat-siRNAs, we further investigated the targets reported by
the root nat-siRNAs. We found that out of the 63 reported
targets, 31, 12 and 1 were also found in seedling, leaf and
flower, respectively, suggesting that nat-siRNAs may play
both tissue-specific and wide-spread roles.

DISCUSSION

Small RNAs that originate from endogenous RNA tran-
scripts that share sequence complementary to other RNA
transcript sequences are termed nat-siRNAs, and like miR-
NAs, they have been shown to regulate the translation of
specific mRNAs through mRNA cleavage (5). Recently,
there has been increase in the amount of research focused on
classifying this type of sRNA and investigating their possi-
ble function. Even so, bioinformatics tools designed to iden-
tify nat-siRNAs from high-throughput sequencing data are
limited in both number and function. In this paper, we de-

scribe a new software tool and pipeline, called NATpare,
which is able to perform analyses on recent sRNA sequenc-
ing datasets within a reasonable timeframe for the very first
time. When compared against the only available tool for this
type of analysis, NATpare achieved a speed-up of 227× (1
day, 18 h and 34 min compared to just 11 min and 15 s) when
benchmarked on a simulated A. thaliana dataset. In addi-
tion, NATpare was able to complete all analyses of the sim-
ulated non-model organism datasets, including T. aestivum
which took just 13 h and 2 min, whereas NATpipe was un-
able to complete any non-model organism analysis within
the 10 day cut-off. Prediction performance benchmarking
of NATpare demonstrated its ability capture a larger num-
ber of previously reported nat-siRNAs in G. max when com-
pared with NATpipe and further investigation into these re-
sults led us to identify that part of NATpipe’s algorithm was
causing some known cis-NAT pairs to be discarded.

In this study, we exemplified the usage of NATpare by
performing analyses on data obtained from plants as the
primary mechanism for RNA silencing in plants is mRNA
cleavage, whereas in animals the primary mechanism is
translational repression. However, degradome data has also
been obtained in animal systems, for example in human (43)
and mouse (44), and so, in principle, NATpare could also be
used to analyse animal data.

The founding examples of nat-siRNAs were in A.
thaliana seedling, where a pair of cis-NATs, SRO5 and
P5CDH, were shown to be involved in salt tolerance
through the RNAi pathway (5). We demonstrated the use
of NATpare by performing analysis on a publicly available
A. thaliana seedling dataset (33), consisting of control and
salt stress libraries, followed by a DE analysis on the re-
ported nat-siRNAs. Intriguingly, NATpare did not capture
the same salt stress responsive nat-siRNAs as reported in
a previous study (5) and further investigation showed that
the previously found sequences were not present within the
more recent salt stress dataset that we analysed. However,
we did identify a number of upregulated nat-siRNAs in salt
stress treated A. thaliana seedling whose originating tran-
scripts are currently annotated as either potential natural
antisense genes, unknown protein or simply described as
other RNA. These results suggest that more work is re-
quired into the role of these sRNAs in salt stress and also
additional work into whether nat-siRNAs are specific to salt
stress or indeed play a responsive role in plants under vari-
ous stress conditions. However, based on previous findings
(5), the function of these upregulated nat-siRNAs may be
to ensure the downregulation of the corresponding protein
coding transcripts contained within the NAT pair. Addi-
tionally, the identification of nat-siRNAs originating from
transcripts where the annotation is currently unknown, for
example AT3G41762.1, may enable additional annotation
information to be included, similar to AT1G05562.1, which
is labelled as a potential natural antisense gene in the cur-
rent annotation.

In plants, post-transcriptional regulation by sRNAs usu-
ally result in mRNA cleavage and subsequent degradation.
Degradome data is a useful resource for identifying the po-
tential function of a sRNA as it captures the uncapped 5’
ends of cleaved mRNAs for sequencing, which can then be
aligned back to the reference transcripts and used to iden-
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tify causal sRNA(s). We used a combination of NATpare
and PAREsnip2 on the A. thaliana D3 dataset to predict
and identify the possible targets of nat-siRNAs that were
conserved between two biological replicates in flower, leaf,
root and seedling tissues. In this analysis, we identified a
number of interactions, conserved between replicates, which
were found to be either tissue-specific or present within mul-
tiple of the analysed tissues. However, as these results are
based solely on predictions, further experimental valida-
tion is necessary to determine the exact role or function
that these nat-siRNAs play. Nonetheless, bioinformatics ap-
proaches to identify possible targets from sequencing data
and subsequent validation is a vital step in understanding
the function of a sRNA. Thus, we hope that the develop-
ment of NATpare will lead to further understanding of the
origin and function of nat-siRNAs in all manner of experi-
mental contexts.
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26. Prüfer,K., Stenzel,U., Dannemann,M., Green,R.E., Lachmann,M.
and Kelso,J. (2008) PatMaN: rapid alignment of short sequences to
large databases. Bioinformatics, 24, 1530–1531.

27. Johnson,M., Zaretskaya,I., Raytselis,Y., Merezhuk,Y., McGinnis,S.
and Madden,T.L. (2008) NCBI BLAST: a better web interface.
Nucleic Acids Res., 36(suppl 2), W5–W9.

28. Tafer,H. and Hofacker,I.L. (2008) RNAplex: a fast tool for
RNA–RNA interaction search. Bioinformatics, 24, 2657–2663.

29. Bolser,D., Staines,D.M., Pritchard,E. and Kersey,P. (2016) Ensembl
plants: integrating tools for visualizing, mining, and analyzing plant
genomics data. In Plant bioinformatics (115–140). Humana Press,
NY.

30. Zheng,H., Qiyan,J., Zhiyong,N. and Hui,Z. (2013) Prediction and
identification of natural antisense transcripts and their small RNAs in
soybean (Glycine max). BMC Genomics, 14, 280.

31. Goodstein,D.M., Shu,S., Howson,R., Neupane,R., Hayes,R.D.,
Fazo,J., Mitros,T., Dirks,W., Hellsten,U., Putnam,N. et al. (2012)

http://srna-workbench.cmp.uea.ac.uk/
https://github.com/sRNAworkbenchuea/UEA_sRNA_Workbench/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaa448#supplementary-data


6490 Nucleic Acids Research, 2020, Vol. 48, No. 12

Phytozome: a comparative platform for green plant genomics. Nucleic
Acids Res., 40, D1178–D1186.

32. Lamesch,P., Berardini,T.Z., Li,D., Swarbreck,D., Wilks,C.,
Sasidharan,R., Muller,R., Dreher,K., Alexander,D.L.,
Garcia-Hernandez,M. et al. (2012) The Arabidopsis Information
Resource (TAIR): improved gene annotation and new tools. Nucleic
Acids Res., 40, D1202–D1210.

33. Barciszewska-Pacak,M., Milanowska,K., Knop,K., Bielewicz,D.,
Nuc,P., Plewka,P., Pacak,A.M., Vazquez,F., Karlowski,W.,
Jarmolowski,A. et al. (2015) Arabidopsis microRNA expression
regulation in a wide range of abiotic stress responses. Front. Plant
Sci., 6, 410.
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