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Abstract

Recently, green tide outbreaks have resulted in severe coastal ecology and eco-

nomic effects in China. Jiangsu coastal areas are usually the site of early green

tide outbreaks. To clarify the effects of green tide outbreaks in Jiangsu coastal

areas, this study analyzed microbial communities during green tide-free and

green tide outbreak periods (May and July, respectively) through 16S rDNA

sequencing. Sequences were clustered into 4117 operational taxonomic units

(OTUs), 1044 and 3834 of which were obtained from the May and July groups,

respectively. Redundancy analysis indicated that green tide occurrence was

closely associated with the temperature, pH, and concentrations of various

nutrients. Diversity analysis revealed that the July group had a richer micro-

bial community than the May group, in agreement with the results of propa-

gule culture. Moreover, comparative analysis revealed that samples in the May

and July groups clustered together. According to Megan analysis, the May

group had much more Psychrobacter, Sulfitobacter, and Marinomonas than the

July group, whereas the other genera were predominantly found in July, such

as Ascidiacerhabitans, Synechococcus Hydrotalea, and Burkholderia-Parabur-

kholderia. These findings suggest that green tide outbreaks affect marine

microbial communities, and detecting the changes in the identified genera dur-

ing green tide outbreaks may contribute to green tide forecasting.

Practitioner Points

• Jiangsu coastal areas are usually the site of early green tide outbreaks.

• Green tide occurrence was related to the concentrations of various

nutrients.

• Microbial species and community structure significantly changed after green

tide outbreak.
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INTRODUCTION

Green tides are harmful algal blooms caused by the
explosive reproduction of green macroalgae (Fu
et al., 2022; J. L. Liu et al., 2021) During green tide
blooms, macroalgae reproduce rapidly and drift with the
wind and sea surface circulation (Jin et al., 2018; Son
et al., 2015). The large-scale green tide blooms alter the
survival and reproduction of other marine organisms,
and can even affect human activities and health; more-
over, decaying algal masses wash ashore and cause sub-
stantial ecological and economic losses (Crispim
et al., 2003; Jin et al., 2018; Paul et al., 2007; Steinberg &
de Nys, 2002; C. Zhang et al., 2019). In recent years,
green tides have frequently occurred in coastal marine
areas (Landsberg, 2002), such as those in Europe, North
America and the Asia-Pacific region (Lappalainen &
Ponni, 2000; Yabe et al., 2009). In China, since 2007, the
macroalgae blooms have continually occurred in the
Southern Yellow Sea for 15 years, usually from May to
August each year (W. Guo et al., 2016; Y. Wang
et al., 2019). Direct losses caused by macroalgal blooms
from 2008 to 2012 amounted to approximately two billion
RMB (X. Q. Liu et al., 2016). The green tide in China is
usually caused by Ulva prolifera. Affected by climatic,
thermal, nutritional, biological and other factors,
U. prolifera easily blooms in shallow sea and offshore
coastal areas, then erupts into a green tide (X. Q. Liu
et al., 2016; Mayali & Azam, 2004).

In general, the eutrophication of seawater environ-
ments is regarded as the cause of most green tides
(Gladyshev & Gubelit, 2019). In the case of China, some
researchers have suggested that coastal aquaculture
ponds have resulted in outbreaks of green tides. Some
believe that the cause of green tide outbreaks might be
Porphyra aquaculture, because the macroalga U. prolifera
has been found to be the dominant fouling species grow-
ing on Neopyropia yezoensis rafts (D. Y. Liu et al., 2009).
Marine ecosystems are enormous and complex, and
marine microbial communities contribute to productiv-
ity, nutrient cycling, biological decomposition, and
marine ecosystem resilience (Smriga et al., 2010). In addi-
tion, macroalgae have complex relationships with
bacteria.

Currently, increasing numbers of signal transduction
molecules among microorganisms are being identified,
including defensins, pheromones, attractants, and other
signaling molecules (Crispim et al., 2003; Lubarsky

et al., 2010; Paul et al., 2007; Steinberg & de Nys, 2002)
Some of these chemical signals are universal, whereas
others are species specific (J. Q. Li et al., 2011). The
organic compounds released by macroalgae can induce
the growth of bacteria; subsequently, macroalgae release
secondary metabolites that inhibit bacterial attachment
(Maximilien et al., 1998). Meanwhile, the attached bacte-
ria inhibit other organisms' attachment (Rao et al., 2006).
Some bacteria even degrade the cell components of other
organisms (Weinberger et al., 1999).

Although the direct cause of green tide is controver-
sial, green tides in the Southern Yellow Sea often origi-
nate from the coastal waters of Jiangsu Province (Xu
et al., 2009). To verify the correlations of marine micro-
bial communities with periods before and after green tide
outbreaks, we collected water samples from the coastal
waters of Jiangsu Province before and after green tide
outbreaks. We then performed 16S rDNA sequencing to
analyze the differences in microbial communities during
the green tide outbreaks. Our results provide information
that may aid in understanding and predicting green tide
outbreaks.

MATERIALS AND METHODS

Sample collection

Samples were collected from the coastal waters of four
cities in Jiangsu, China, during May (9th and 10th) and
July (2nd and 3rd) of 2019. Samples were collected in
Lianyungang (L), Sheyang (S), Dafeng (D), and Rudong
(R) from north to south, and the numbers of sample sites
were determined on the basis of the different coastline
lengths (Figure 1a). The northernmost site, Lianyungang,
had the longest coastline, containing five sampling sites
(M/J-L1, 119�30017.1600E, 34�45050.1000N; M/J-L 2,
119�42005.7600E, 34�45050.1000N; M/J-L 3, 119�53056.2200E,
34�45050.1000N; M/J-L 4, 120�13005.9400E, 34�45050.1000N;
and M/J-L 5, 120�31016.0200E, 34�45050.1000N), and each
sample from five sampling sites was denoted M-L and J-L
according to the sampling times of May and July,
respectively. Sheyang, samples were collected from three
sampling sites denoted M/J-S1 (120�44024.9600E), M/J-S2
(33�45051.0000N, 120�56046.5600E, 33�45051.0000N), and
M/J-S3 (121�16037.2000E, 34�45050.1000N). Next to
Sheyang, two sampling sites in Dafeng were located at
121�34038.5800E, 33�13041.1000N (M/J-D1) and
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121�53048.3000E, 33�13041.1000N (M/J-D2). The southern-
most sample site in Rudong was located at
121�26003.4800E, 32�33006.6600N, denoted by M-R and J-R.
For each site, water samples were collected approxi-
mately 15 m below the water surface with 0.5 m sampling
depth.

For sequencing, because the large-scale green tide did
not bloom in early May, the samples collected in May
were pooled into one sample for each sampling site, and
every sample was repeatedly sampled three times to elim-
inate error. A 500 ml volume of subseawater (0.5–1 m)
for each sampling was collected with a water collector
(GB 17378. 7–2007, General Administration of Quality
Supervision, Inspection and Quarantine of the People's
Republic of China and Standardization Administration of
the People's Republic of China) and stored in an ice

bucket until filtration through 0.22 μm membranes
(60 mm, Jinjing, CHN). The filter paper was a cellulose
acetate microporous filter membrane with a diameter of
60 mm. All samples were stored at �80�C (Thermo,
USA). Additionally, the water samples from each sample
sites were cultured for propagule analysis.

To analyze the presence of green tide outbreaks,
visual inspection is the method of choice. Green tide was
clearly not observed in May (Figure 1b) but was observed
in July (Figure 1c). In addition, in this study, the propa-
gules of each sample were cultured. The 1 L water sam-
ples were filtered with 100-mesh cloth, and the filters
were transported in the dark at low temperature. In the
laboratory, samples were cultured under a temperature
of 16�C to 18�C, light intensity of 80–100 μmol/(m2�s),
and light–dark cycle of 12 h. Culture media were

FIGURE 1 Sampling sites in coastal areas of Jiangsu Province, China. Samples were collected in Lianyungang (L), Sheyang (S), Dafeng

(D), and Rudong (R) from north to south. Abbreviations: L1, Lianyungang Site 1; L2, Lianyungang Site 2; L3, Lianyungang Site 3; L4,

Lianyungang Site 4; L5, Lianyungang Site 5; S1, Sheyang Site 1; S2, Sheyang Site 2; S3, Sheyang Site 3; D1, Dafeng Site 1; D2, Dafeng Site

2; R, Rudong site
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changed every 5 days. The total algal seeding was
counted 20 days later. Sediment samples were resus-
pended in sterile seawater (salinity: 2.5% to 3.0%), the
supernatant was removed as a control, and the sediment
was cultured in seawater (with 500 μmol/L dissolved
inorganic nitrogen [DIN] and 30 μmol/L PO4-P). Cultur-
ing was performed as described above. Additionally, dry
air was bubbled into the culture beakers 7 days later, and
nutrients were supplied every 7 days. The algal seeding,
including spores, gametes, zygotes, and micropropagules,
was counted after 3–4 weeks of culture. Moreover, the
Ulva species were identified by molecular identification.
After DNA extraction and PCR reaction, the amplified
products were sequenced to identify species (Akcali &
Kucuksezgin, 2011).

Analysis of environmental factors

Environmental factors, such as pH, dissolved oxygen
(DO), NO2-N and PO4-P, were determined with Chinese
standard methods (HJ506-2009, Ministry of Environmen-
tal Protection of the People's Republic of China; HY/T
147.1-2013, State Oceanic Administration of the People's
Republic of China). Briefly, pH was measured through
potentiometry measurement; DO was determined
through the iodimetry method; NO2-N was determined
through the diazo-azo method; NO3-N was
determined through the zinc cadmium reduction
method; NH4-N was determined through the sodium
hypobromite oxidation method; PO4-P was determined
through ascorbic acid reduced phosphomolybdate blue
spectrophotometry; and SiO3-Si was determined through
silicon molybdenum blue spectrophotometry. Spectro-
photometry was used to detect the visible light.

DNA extraction and high-throughput
sequencing

Genomic DNA was extracted from all samples with a
DNeasy plant mini kit (Qiagen, Hilden, Germany),
according to the manufacturer's instructions. The
quantity of isolated genomic DNA was verified with
agarose gel electrophoresis and with a NanoDrop 2000c
spectrophotometer (Thermo Scientific, USA). Specific
primers with barcodes were used for amplification of
the V3–V4 region, which is the best choice for marine
bacterial detection, because it can successfully detect all
clones at taxonomic resolution (Wear et al., 2018).
Every sample was amplified with three replications,
and PCR amplification products were quantified with a
QuantiFluor™-ST Handheld Fluorometer with UV/Blue

Channels (Promega, USA). For library construction,
approximately 580 bp DNA fragments were prepared
and sequenced on an Illumina PE250 (Illumina, USA)
instrument.

Bioinformatics analysis

The sequences with low quality (>20), lengths less than
50 bp, and presence of N bases were removed. On the
basis of the overlap of reads, paired reads were merged.
Chimeras were removed with Usearch software version
7.1 (Edgar, 2010) (http://drive5.com/uparse/) and the
gold database. Obtained reads were assembled, and then,
the clean reads were created. Clean reads were clustered
into operational taxonomic units (OTUs) at 97% similar-
ity, and chimeras were removed again with Usearch soft-
ware. The obtained OTUs were BLAST searched against
SILVA, dataset covering the three domains of Archaea,
Bacteria and Eukaryota, which updates data while pre-
serving the original data (Quast et al., 2013) (Release119,
http://www.arb-silva.de). Taxonomic analysis of each
sample was performed with the RDP classifier algorithm
(Q. Wang et al., 2007).

To confirm the microbial diversity, the Shannon index
(http://www.mothur.org/wiki/Shannon) was calculated.
Differences between samples were analyzed with t tests in
STAMP version 2.1.3 (Parks et al., 2014) (https://beikolab.
cs.dal.ca/software/STAMP). Principal coordinate analysis
(PCoA) was performed in R3.4.3 with the vegan 2.4-6
package (Dixon, 2003). Correlation analysis of environ-
mental factors was performed with vegan (Dixon, 2003).

RESULTS

Propagule culture

After propagule culture shown (Table 1), Ulva flexuosa
and U. prolifera were found at almost all sites in the May
group, whereas only U. prolifera was found at the M-L
site. In July, with the green tide bloom, U. flexuosa was
still found at almost sites; moreover, Ulva compressa and
Ulva linza appeared at these sites. Among the sampling
sites, J-L3 had the most species in propagule cultures,
whereas only U. flexuosa was found at J-D1, J-S3 and
J-L2, and some sites did not yield propagule cultures. In a
comparison of the propagules in the May and July
groups, U. linza and U. compressa were found in only the
July groups, thus indicating that these two species may
be indicators of early green tide blooming. Meanwhile,
the July groups showed more species, thereby indicating
that the increasing species may forecast green tide
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blooming. In brief, the changes in propagule species may
indicate blooming of the green tide.

Correlation analysis of environmental
factors

In July, the temperature clearly increased, whereas the
suspended solids, DO, NO3-N, PO4-P, and SiO3-Si all
decreased to varying degrees (Table 2). The nutrient salts
almost completely disappeared after the green tide
bloomed: the more severe the green tide outbreak, the
clearer the decrease in environmental factors. The opti-
mum growth temperature of U. prolifera has been reported
to be 18�C to 23�C (Kim et al., 2011). The temperature of
seawater monitored this time was below 18�C in May and
rose to 21.82�C to 28�C in July, thereby confirming the
aforementioned relationship. DO ranged from 6.52 to
10.2 mg/L, with an average of 8.97 mg/L in May and a
decrease to 6.95 mg/L in July. The inorganic nitrogen in
May ranged from 0.2036 to 0.3871 mg/L, thus confirming
water quality class II to class III (GB 3097-1997, Ministry
of Environmental Protection of the People's Republic of
China). The range of inorganic nitrogen in July was
0.0034–0.3059 mg/L. J-R was consistent with class III
water quality, whereas J-S1 and J-S2 were consistent with
class II water quality, and other sites were consistent with
class I water quality. The range of active phosphate was
0.0047–0.0188 mg/L; except for M-S and J-R, all other sites
were consistent with class I water quality.

In addition, redundancy analysis (Figure 2) was per-
formed to identify correlations between taxonomic com-
position at the phylum level and the environmental
factors. As shown in Figure 2, the other factors were close

to the abscissa except for NH4-N, thus indicating that the
microbial community structure of each sample was
affected by the environmental factors. Salinity had the
greatest effects on microbial community structure, and
nutrients had greater effects than temperature. Moreover,
DO, NO3-N, PO4-P, and SiO3-Si showed negative correla-
tions with the microbial community structure, whereas
temperature and NO2-N were positively correlated with
the microbial community structure.

OTU cluster analysis and annotation

High-throughput sequencing yielded a total of 1,035,171
high-quality sequences, of which 252,368 were obtained
from the samples collected in May (before green tide
bloom), and 782,803 were obtained from the samples in
July (during green tide bloom). The average length of
these sequences was approximately 418 bp. After cluster-
ing, 4117 OTUs were obtained, comprising 1044 and 3834
from the samples collected in May and July, respectively.
After annotation, all OTUs were classified into 47 phyla,
113 classes, 227 orders, 438 families, 868 genera, and
1620 species. Of these, 30 phyla, 72 classes, 149 orders,
266 families, 481 genera, and 738 species were found in
the May group, whereas 47 phyla, 115 classes, 225 orders,
426 families, 807 genera, and 1491 species were found in
the July group.

Alpha-diversity analysis

The alpha-diversity analysis of samples was performed
on the basis of the Shannon index and rank abundance

TABLE 1 Summary of propagule

culture
Month Sites Species Count

May M-R Ulva flexuosa, Ulva prolifera 2

M-D U. flexuosa, U. prolifera 2

M-S U. flexuosa, U. prolifera 2

M-L U. flexuosa 1

July J-D1 U. flexuosa 1

J-D2 U. prolifera, Ulva linza 2

J-S1 U. flexuosa, U. prolifera 2

J-S2 U. flexuosa, Ulva compressa 2

J-S3 U. flexuosa 1

J-L1 U. flexuosa, U. compressa, U. prolifera 3

J-L2 U. flexuosa 1

J-L3 U. flexuosa, U. prolifera, U. compressa, U. linza 4

J-L4 U. flexuosa, U. prolifera, U. compressa 3

J-L5 U. flexuosa, U. compressa, U. linza 3
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(Figure 3). As shown in Figure 3a, the J-R group had the
highest average Shannon index, whereas the M-R group
had the lowest. In the J-D2 group, the average Shannon
index exceeded 5, thus indicating rich diversity. Most July
groups had higher average Shannon index values than
the May groups, thus suggesting that the July groups had
richer diversity than the May groups. Among the July
groups, the diversity of J-S3 was lowest, in agreement
with the finding of fewer propagules. In addition, the
gentle curve of the Shannon index reflected the reliability
and sufficiency of the sequencing data. The rank abun-
dance indicates the diversity and uniformity of sequenc-
ing data. As shown in Figure 3b, J-R had the richest
diversity (more than 2500 OTUs), followed by J-D2 (more
than 2000 OTUs), and the July groups (J-L2, J-L1, J-D1
etc.) had markedly higher diversity than the May groups.

Comparative analysis between the May
and July groups

As shown in Figure 4, the samples in May and July clus-
tered together. M-S, M-R, and M-D clearly clustered
together, and M-L was distant from them. In the July

groups, J-D1, J-D2, and J-R clustered together, thus indi-
cating similar community composition. The second clus-
ter was composed of J-L1, J-L2, J-L3, J-L4, J-L5, and J-S3,
and the last cluster comprised J-S1 and J-S2, thus imply-
ing their similar community composition. Because the
samples were distributed essentially according to their
geographic locations in the PCoA plot, the types or stages
of the green tide in different locations might have varied.

Taxonomic composition

The top three most abundant phyla in May and July were
Proteobacteria, Deinococcus-Thermus, and Bacteroidetes.
At the genus level, the top five genera in May were Rho-
dobacteraceae, Vibrio, Pseudoalteromonas, Sulfitobacter,
and Thermus, four of which (those besides Thermus)
belong to the Proteobacteria (Figure 5). After the green
tide bloom, the relative abundance of Deinococcus-
Thermus clearly increased. As shown in Figure 5, the top
five genera in July were Thermus, Pseudoalteromonas,
Meiothermus, Pseudomons, and Alteromonas, and the top
genera belonged to Deinococcus-Thermus (more than
10%).

FIGURE 2 Redundancy analysis

showing the relationships between

environmental factors and green tide

samples. Abbreviations: Tep., water

temperature; DO, dissolved oxygen; L1,

Lianyungang Site 1; L2, Lianyungang

Site 2; L3, Lianyungang Site 3; L4,

Lianyungang Site 4; L5, Lianyungang

Site 5; S1, Sheyang Site 1; S2, Sheyang

Site 2; S3, Sheyang Site 3; D1, Dafeng

Site 1; D2, Dafeng Site 2; R, Rudong site
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To further determine the taxonomic differences dur-
ing the green tide bloom, we assessed the taxonomic
composition in the May and July groups with Megan
analysis (Figure 6). At the bacteria level, the July group
clearly had higher species abundance (73.3%). In addi-
tion, every phylum had higher abundance in the July

group; only the ratio of Proteobacteria in the May group
was higher than that in the July group. At the class level,
Alphaproteobacteria and Gammaproteobacteria were
present in the same proportion as the Proteobacteria.
Notably, among Gammaproteobacteria, the May group
had more Pseudonadales and Vibrionales than the July
group and also had more Moraxellaceae, Pseudomonada-
ceae, and Vibrionaceae. At the genus level, for these fam-
ilies, the May group had more abundant Pseudomonas
(54.55%), Vibrio (72.73%), and Psychrobacter (nearly
100%) species than the July group. Similarly, most Sulfito-
bacter and Marinomonas were found in the May group.
These results suggested that a significant decrease in Psy-
chrobacter, Sulfitobacter, and Marinomonas may directly
indicate the occurrence of green tide. Accordingly, some
genera were predominantly found in July group, such as
Alteromonas (97.14%), Ascidiacerhabitans (96.30%), Syne-
chococcus (nearly 100%), OM60_NOR5_clade (nearly
100%), Hydrotalea (nearly 100%), and Burkholderia-Para-
burkholderia (nearly 100%). Significant increases in these
genera also imply green tide occurrence.

FIGURE 3 Alpha-diversity analysis of samples in May and

July. (a) Shannon index analysis of samples and (b) rank

abundance analysis of samples. Abbreviations: M/J-L1,

Lianyungang Site 1 in May or July; M/J-L2, Lianyungang Site 2 in

May or July; M/J-L3, Lianyungang Site 3 in May or July; M/J-L4,

Lianyungang Site 4 in May or July; M/J-L5, Lianyungang Site 5 in

May or July; M/J-S1, Sheyang Site 1 in May or July; M/J-S2,

Sheyang Site 2 in May or July; M/J-S3, Sheyang Site 3 in May or

July; M/J-D1, Dafeng Site 1 in May or July; M/J-D2, Dafeng Site

2 in May or July; M/J-R, Rudong site in May or July

FIGURE 4 Principal coordinate analysis of samples in May

and July. Abbreviations: M/J-L1, Lianyungang Site 1 in May or

July; M/J-L2, Lianyungang Site 2 in May or July; M/J-L3,

Lianyungang Site 3 in May or July; M/J-L4, Lianyungang Site 4 in

May or July; M/J-L5, Lianyungang Site 5 in May or July; M/J-S1,

Sheyang Site 1 in May or July; M/J-S2, Sheyang Site 2 in May or

July; M/J-S3, Sheyang Site 3 in May or July; M/J-D1, Dafeng Site

1 in May or July; M/J-D2, Dafeng Site 2 in May or July; M/J-R,

Rudong site in May or July
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FIGURE 5 Dominant microbial genera in green tide samples. (a) Dominant microbial genera in the May group and (b) dominant

microbial genera in the July group
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FIGURE 6 Megan analysis of

samples in May and July
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DISCUSSION

To explore the changes in microbial diversity during
green tide blooms, we compared water samples before
and after green tide blooming in coastal areas of Jiangsu
Province, China. On the basis of 16S rDNA sequencing,
the microbial community abundance and structure were
systematically investigated. A previous study has indi-
cated that the abundance of some bacteria increases with
green tide outbreaks, then gradually reverts to normal
with green tide decay, in multiple locations in Shandong,
China (J. H. Wang et al., 2020). In contrast, during green
tide blooming in the Qingdao offshore region, a decrease
in the abundance and diversity of the surface and sedi-
ment bacterial community has been observed (Qu
et al., 2020). Overall, this finding is consistent with our
results, in which most samples in the July groups had
higher microbial community diversity than the samples
in the May groups. Marine investigations have indicated
that the blooming of red tides usually causes uneven dis-
tribution of organic matter, thus resulting in marked
increases in several bacteria in a certain water layers
(C. Zhang, 2010). This finding is consistent with the
increase in microbial diversity observed after the green
tide outbreak in this study. Studies have detected large
numbers of propagules in the Southern Yellow Sea dur-
ing green tide outbreaks, and their spatial and temporal
distribution is consistent with the outbreak process and
drift path of green tide (Huo et al., 2014; Taylor
et al., 2001; J. H. Zhang et al., 2013). In this study, more
species of propagules were observed in the July group
than the May group, in agreement with the higher micro-
bial diversity in July than May, thus indicating that the
change in propagules may forecast the outbreak of
green tide.

The bacterial community ratios in the May and July
groups clearly changed during the green tide bloom
(Figure 6). Among the species flourishing more in May
than July, Sulfitobacter is known to promote diatom cell
division via secretion of the hormone indole-3-acetic acid,
thus affecting the global distribution of diatoms (Amin
et al., 2015). Hence, diatoms are expected to be strongly
influenced by decreased Sulfitobacter in green tide
blooming. Beyond Sulfitobacter, the other species in the
order Rhodobacterales increased during the green tide
outbreak. These bacteria have been verified to be associ-
ated with green tide and have been reported to produce
algicidal substances that directly or indirectly inhibit
algal growth (Mayali & Azam, 2004). In contrast, with
the outbreak of macroalgae, photosynthesis is sup-
pressed, thus resulting in generation and accumulation of
large amounts of hydrogen sulfide (Nedergaard
et al., 2003). Rhodobacterales are dominant in eutrophic

environments, because they have versatile metabolic
characteristics; for example, they function in decreasing
the concentration of hydrogen sulfide in water environ-
ments (Brinkhoff et al., 2008; Lenk et al., 2012). More-
over, bacteria that have high resistance and sulfate-
reducing characteristics gradually proliferate.
Deinococcus-Thermus comprises two orders, both with
exceptional resistance to environmental stresses (Ho
et al., 2016). Because of the sensitivity of these bacteria to
the environment, their changes might be key indicators
of green tide outbreaks.

In the spring of 2012, the concentration of DIN in
Jiangsu coastal water increased to three times that in
1985, and this increase has become more pronounced in
recent years. DIN is positively correlated with the bio-
mass of green macroalgae (Shi et al., 2014). Moreover,
during the green tide outbreak, massive macroalgal
reproduction consumes organic matter and inorganic
nutrients in marine environments. From 2008 to 2012,
the nutrients in the green tide areas of the Southern Yel-
low Sea were found to be high in the coastal area and
low in the far sea area (Shi et al., 2014). In this study, the
nutrients at each site presented similar characteristics
overall. Additionally, the concentrations of nutrients all
decreased after the green tide outbreak (Table 2). Previ-
ous studies have demonstrated that environmental fac-
tors (i.e., dissolved organic carbon, fluorescent dissolved
organic matter and DO) change with the outbreak of
green tides (H. M. Li et al., 2016; X. Z. Li et al., 2019;
F. Liu et al., 2013). Furthermore, microbial communities
are altered by green tide blooms and the decreased inor-
ganic nutrients. In some aquaculture ponds, bacterial
communities with U. prolifera have been found to have
higher diversity than those in U. prolifera-free ponds (Lin
et al., 2017), and green tide blooms have been found to
increase microbial community diversity in the coastal
waters of Shandong, China (J. H. Wang et al., 2020).
Moreover, among the microorganisms cultured, bacterial
communities have been found to exhibit relatively high
diversity in low-nutrient conditions (Connon &
Giovannoni, 2002). A similar result was found in our
study: The diversity of the microbial community was
lower in the May group than the July group (Figure 3). In
summary, the diversity of microbial communities
increased under the low-nutrient concentrations during
green tide outbreaks. Beyond limiting nutrients being key
to algal blooms, Redfield (1960) has proposed that a ratio
of nutrient salt concentrations of Si, N, and P is 16:16:1 is
conductive to the growth and reproduction of phyto-
plankton, whereas other ratios cause changes in plankton
population structure. Moreover, much higher N/P pro-
mote U. prolifera growth; that is, N has a greater influ-
ence on U. prolifera than P (Yang et al., 2020). In this
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study, apart from the M-D and J-L2 sites, which showed
<16:1 N/P, other sites all showed N/P > 16:1, indicating
a suitable environment for U. prolifera.

Specific microbial groups show direct associations
with physical and chemical factors in the environment
(Takai et al., 2001). For example, the temperature
index can robustly distinguish winter and summer–
autumn communities (Kan & Sun, 2011). In China,
the biomass of bacteria in autumn is more than three
times that in spring in the fresh water flushed area of
the Yangtze River Estuary (Liu et al., 2001). The green
tide outbreaks always occur in summer, thus indicating
that temperature plays an essential role in green tide
blooming (Fan et al., 2018; Kim et al., 2011). In our
study, redundancy analysis showed a clear positive cor-
relation between temperature and bacterial communi-
ties during green tide blooming. As previous studies
have reported, U. prolifera spore production is elevated
at temperatures ranging from 18�C to 25�C (Kim
et al., 2011). An appropriate temperature leads to thriv-
ing of green tides and increases the diversity of the
microbial community.

In general, climate change and human disturbance
are external factors involved in the occurrence of green
tides in the Yellow Sea, and the occurrence of El Niño or
La Niña may affect the duration of green tide outbreaks
in the Yellow Sea (J. Yang et al., 2017). Meanwhile, foggy
days and lower sea surface temperatures indirectly pro-
long the extinction cycle of green tide (L. N. Guo
et al., 2015). The necessary conditions for the occurrence
of large-scale green tide in the Yellow Sea can be
explained by four aspects: specific provenances in the
shoal, attachment and amplification of aquaculture rafts,
expansion of high nutrients in the sea area, and hydrody-
namic transport. Floating ecotype U. prolifera is the main
organism causing green tides, and the micropropagules
serve as seed banks in green tides.

Amounts of studies reported that when the green tide
outbroken, the organic released by phytoplankton
increases rapidly, which can stimulate the growth of spe-
cific bacterial groups, thus causing changes in bacterial
community structure (Gonzalez et al., 2000; M. Liu
et al., 2011). Because marine heterotrophic bacteria rely
mainly on phytoplankton and dissolved organic matter
released by zooplankton during predation, a clear corre-
lation exists between the standing stocks of heterotrophic
bacteria and phytoplankton. Simultaneously, the growth
of marine heterotrophic bacteria also depends on the
concentrations and properties of inorganic nutrients. Het-
erotrophic bacteria can use DIN and dissolved inorganic
phosphorus as nitrogen and phosphorus sources
(G. Z. Zhang et al., 2022). Only when heterotrophic
planktonic bacteria in the water are not limited by

dissolved organic matter do inorganic nutrients have an
important effect on their growth (G. Z. Zhang
et al., 2022). Meanwhile, the change of marine bacteria
also affects the green tide outbreak and environmental
factors. For example, during the outbreak of green tide,
increased Rhodobacterales inhibited algal growth and
decreased the concentration of hydrogen sulfide. Further-
more, the seasonal change would also affects the environ-
mental factors, and the seasonal environmental changes
would directly/indirectly effects on the green tide out-
break and microbial community structure (Bunse &
Pinhassi, 2017; G. Z. Zhang et al., 2022). These results
indicated that the relationships among the changes in
microbial community structure, environmental factors,
and algal growth were not unidirectional and unique but
were complex. However, to explore the multiple relation-
ship between the three, even seasonal change related
effects, requires prolonged data collection and accumula-
tion, further research, and discussion.

CONCLUSION

In this study, we investigated the changes in the diversity
and structures of microbial communities during green
tide outbreaks in the coastal area of Jiangsu Province in
China. As shown by the Shannon index and rank abun-
dance analyses, the microbial community increased after
the green tide bloomed. Psychrobacter, Sulfitobacter, and
Marinomonas dominated in the May group, whereas
Ascidiacerhabitans, S. Hydrotalea, and Burkholderia-
Paraburkholderia dominated in the July group. These
findings indicate that the green tide significantly influ-
ences the microbial community, and the changes in some
key microbial communities might serve as a new indica-
tor of green tide outbreaks.
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