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This review focuses on the current evidence that maternal dietary and gut bacterial 
exposures during pregnancy influence the developing fetal immune system and subse-
quent offspring asthma. Part 1 addresses exposure to a farm environment, antibiotics, 
and prebiotic and probiotic supplementation that together indicate the importance of 
bacterial experience in immune programming and offspring asthma. Part 2 outlines 
proposed mechanisms to explain these associations including bacterial exposure of 
the fetoplacental unit; immunoglobulin-related transplacental transport of gut bacterial 
components; cytokine signaling producing fetomaternal immune alignment; and immune 
programming via metabolites produced by gut bacteria. Part 3 focuses on the interplay 
between diet, gut bacteria, and bacterial metabolites. Maternal diet influences fecal bac-
terial composition, with dietary microbiota-accessible carbohydrates (MACs) selecting 
short-chain fatty acid (SCFA)-producing bacteria. Current evidence from mouse models 
indicates an association between increased maternal dietary MACs, SCFA exposure 
during pregnancy, and reduced offspring asthma that is, at least in part, mediated by the 
induction of regulatory T lymphocytes in the fetal lung. Part 4 discusses considerations 
for future studies investigating maternal diet-by-microbiome determinants of offspring 
asthma including the challenge of measuring dietary MAC intake; limitations of the exist-
ing measures of the gut microbiome composition and metabolic activity; measures of 
SCFA exposure; and the complexities of childhood respiratory health assessment.
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iNTRODUCTiON

The human microbiome and its host form a complex symbiosis, and the gut microbiome is the pri-
mary interface for this relationship, harboring the most diverse array of microorganisms found in the 
human body (1). This diversity has been dramatically altered by diet and the modern environment (2). 
Changes in the human microbiome may be contributing to the rise of non-communicable diseases in 
developed societies, including childhood respiratory diseases such as asthma. These conditions pose 
a major health burden and have lifelong effects, with childhood asthma and poor early lung growth 
associated with respiratory disease in adulthood (3).
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There is growing evidence that the maternal diet and gut bac-
teria influence offspring immune function and respiratory health 
(4). A number of mechanisms have been identified to explain 
the transplacental effects of maternal bacteria on the developing 
fetal immune system. These include bacterial exposure of the 
fetoplacental unit; immunoglobulin-related transplacental trans-
port of gut bacterial components; cytokine signaling producing 
fetomaternal immune alignment; and immune programming via 
metabolites produced by gut bacteria. The role of gut bacteria and 
their metabolites in the development of fetal immune tolerance 
and subsequent offspring asthma is of particular interest.

Maternal gut bacteria are influenced by maternal diet, par-
ticularly intake of certain fibers and carbohydrates that have 
been collectively termed microbiota-accessible carbohydrates 
(MACs). Short-chain fatty acids (SCFAs) are the major metabo-
lite produced by the gut bacteria from MACs. There is compelling 
evidence from mouse models linking variations in maternal 
dietary intake of MACs, gut bacteria, and SCFA production in 
the development of offspring asthma. These findings are yet to 
be confirmed in human studies. The aims of this review are to 
assess the current evidence regarding the influence of maternal 
dietary MACs and gut bacterial exposures during pregnancy on 
the developing fetal immune system and subsequent offspring 
asthma and discuss the considerations for future studies in this 
emerging field.

PART 1

evidence that Maternal Bacterial 
exposures during Pregnancy Are 
Associated with Offspring Asthma
Maternal exposure to a farming environment during pregnancy 
is associated with diverse bacterial experience and reduced risk 
of asthma in offspring (5). In the Protection against Allergy-
STUdy in Rural Environments (PASTURE) study, von Mutius 
et  al. measured levels of bacterial endotoxin in the home of 
farming and non-farming families, demonstrating that higher 
exposure was associated with reduced asthma incidence (6). The 
Prevention of Allergy Risk factors for Sensitization In children 
related to Farming and Anthroposophic Lifestyle (PARSIFAL) 
(7) and the Multidisciplinary Study to Identify the Genetic and 
Environmental Causes of Asthma in the European Community 
Advanced Study (GABRIELA) (8) are two important European 
cohorts comparing children living on farms with those living in 
suburban areas. Both the PARSIFAL and GABRIELA cohorts 
showed an association between a farming environment and 
increased bacterial prevalence in mattress dust (9, 10). Ege et al. 
reported results from both cohorts, identifying that children liv-
ing on farms had a lower prevalence of asthma and other atopic 
disease in comparison to those from suburban areas (11). Further 
analysis of these studies has indicated that the effect on asthma is 
largely explained by exposure to cows, straw, and consumption of 
raw cow’s milk (12); although unspecified, livestock exposure is 
also associated with a lower prevalence of asthma (13). The effect 
of a farming environment and livestock exposure on asthma has 
been supported by recent evidence comparing children from the 

Amish and Hutterite groups in the United States, both isolated 
agrarian communities of genetically similar European descent. 
Differences between the groups were correlated with farming 
practices, with high dairy farm and livestock exposure in the 
Amish associated with lower incidence of asthma and allergic 
sensitization (14).

There is evidence that the “farm effect” (12) is not confined to 
childhood but acts on the developing fetal immune system dur-
ing pregnancy. A farming environment has been associated with 
increased number and efficiency of regulatory T  lymphocytes 
(Tregs) (15) as well as an altered cytokine profile in cord blood 
(16). Finally, the PASTURE study has demonstrated that mater-
nal exposure to a farming environment is associated with reduced 
offspring asthma, although this effect is enhanced by early-life 
farm exposure (17). The “farm effect” provides strong evidence 
that maternal bacterial exposure during pregnancy influences the 
fetal immune system and subsequent risk of offspring asthma.

Prebiotic and probiotic supplementation during pregnancy 
may alter maternal gut bacteria and influence maternal immune 
function and offspring asthma. These supplements represent 
a growing worldwide industry worth billions of dollars (18), 
despite insufficient evidence of their purported benefits in many 
cases (19). A prebiotic is a “selectively fermented ingredient that 
allows specific changes, both in the composition and/or activity 
in the gastrointestinal microbiota thus conferring benefit  …” 
(20). The short-chain galactooligosaccharides (scGOS) and long-
chain fructooligosaccharides (lcFOS) are human milk oligosac-
charides that have attracted research interest for their potential 
use in infant formula. Prebiotic human milk oligosaccharides 
have immune-modulating effects. Acidic milk oligosaccharides 
can alter the production of many cytokines (21), and scGOS/
lcFOS have been shown in other allergic and autoimmune 
conditions to act via galectin-9 to suppress immune responses, 
promoting interferon-gamma production by T-helper 1 (Th1) 
cells and inducing Tregs (22–24). The galectins and other glycan-
binding receptors in the intestinal epithelium such as C-type 
lectins and siglecs are important potential immune modulators. 
These receptors bind many glycans including the human milk 
oligosaccharides and other carbohydrates and are implicated in 
the putative benefits of prebiotic supplementation (25). scGOS/
lcFOS supplementation during pregnancy may also alter the 
fecal microbiome, promoting an increase in maternal bifidobac-
teria (26). There is preliminary evidence that increased maternal 
exposure to scGOS/lcFOS in pregnancy may be associated with 
reduced offspring wheeze. Hogenkamp et al. supplemented the 
feed of Balb/c mice with scGOS/lcFOS during pregnancy, then fed 
offspring with a normal diet, and observed lower lung resistance 
in response to methacholine challenge (27). In humans, scGOS/
lcFOS have been shown to reduce recurrent wheeze in high-risk 
children supplemented from birth (28); however, similar effects 
on offspring of mothers supplemented during pregnancy have 
not been reported, and the comprehensive 2016 World Allergy 
Organization review found a lack of evidence to support the use 
of prebiotics during pregnancy (20).

Probiotics are products containing live microbes designed 
to confer a health benefit. Studies of Lactobacillus rhamnosus 
GG supplementation demonstrated maternal and infant fecal 
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TABLe 1 | evidence that maternal bacterial exposures during pregnancy are associated with immune programming and offspring asthma.

Bacterial exposure Result category Result Reference

Farm effect Bacterial exposure Increased endotoxin exposure in house Protection against Allergy-STUdy in 
Rural Environments study (6)

Increased bacterial prevalence in mattress dust Prevention of Allergy Risk factors for 
Sensitization In children related to 
Farming and Anthroposophic Lifestyle 
(7, 9); Genetic and Environmental 
Causes of Asthma in the European 
Community Advanced Study (8, 10)

Fetal immune 
programming

Alterations in cord blood cytokines (16)

Increased regulatory T lymphocytes (Tregs) (15)

Asthma Decreased childhood asthma (5) (review), (11, 14)

Decreased offspring asthma (17)

Prebiotic short-chain 
galactooligosaccharides/
long-chain 
fructooligosaccharides

Fecal microbiome Maternal supplementation associated with increased bifidobacteria (26)

Immune function in 
other autoimmune 
conditions

Increased T-helper 1 interferon-gamma production
Treg induction

(23, 24)

(22, 24)

Asthma Maternal supplementation associated with improved offspring lung function 
in mice

(27)

Supplementation in infants from birth associated with decreased childhood 
wheeze

(28)

Probiotics Fecal colonization Maternal transfer of colonization to offspring (29, 30)

No maternal transfer of colonization (31) (meta-analysis)

Immune function Alterations in breast milk cytokines (32, 33)

Asthma No associations found maternal supplementation with offspring asthma (45) (meta-analysis)

Antibiotics Fecal microbiome Reduced richness and diversity (48–50)

Asthma Childhood use associated with increased childhood asthma (50–52)

Maternal use during pregnancy associated with increased offspring asthma (53, 56)
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colonization with the strain (29, 30), although the small number 
of subjects in each trial limits the generalizability of these find-
ings. A recent meta-analysis of studies in healthy adults found 
a lack of evidence for an effect of probiotic supplementation on 
fecal microbiota (31). There is evidence suggesting that probi-
otic supplementation influences the maternal immune system. 
A study of Lactobacillus casei DN11401 supplementation during 
pregnancy found an association between supplementation and 
changes in maternal serum natural killer cells and decreased 
breast milk tumor necrosis factor alpha (32). Other studies 
have demonstrated changes in breast milk cytokines following 
probiotic supplementation (33). Despite evidence of alterations 
in fecal bacteria and effects on immune development, several 
clinical trials (33–44) and a well-conducted meta-analysis (45) 
have not found an association between probiotic supplementa-
tion in pregnancy and childhood asthma. The major limitation 
of trials of probiotic supplementation during pregnancy is that 
supplementation is not commenced until late in pregnancy, after 
a critical window of fetal immune development (46). The results 
of a planned trial of supplementation with L. rhamnosus HN001 
from the first trimester of pregnancy (47) may provide clearer 
evidence for associations between probiotic supplementation in 
pregnancy, fetal immune development, and offspring asthma.

Antibiotic use is associated with alterations in fecal bacteria 
and increased risk of asthma. Antibiotics rapidly alter fecal 
bacteria in adults and children, thereby leading to reduced 

richness and diversity (48, 49). A Finnish cohort study of 236 
children found macrolide antibiotic use was associated with 
alterations in specific bacterial phyla, with a reduction in phylum 
Actinobacteria and an increase in phylum Bacteroidetes (50). 
Reductions in bacterial richness were found to persist for more 
than 2  years after exposure. This study also demonstrated that 
early macrolide use was associated with subsequent increased 
risk of asthma. An increased risk of asthma following childhood 
antibiotic use has also been reported for cephalosporins (51) and 
for antibiotics in the International Study of Asthma and Allergies 
in Childhood Phase III study (52). Maternal antibiotic use during 
pregnancy may influence offspring asthma. A study utilizing the 
West Midlands General Practice Research Database, a large birth 
cohort of 24,690 children, demonstrated an association between 
maternal antibiotic use during pregnancy and increased risk of 
allergic disease, with two or more courses of antibiotics during 
pregnancy carrying a hazard ratio of 1.68 for offspring asthma 
(53). This finding has since been supported in large studies using 
the Copenhagen Prospective Study on Asthma in Childhood 
(COPSAC) cohort and the Danish Birth Registry, which demon-
strated that maternal antibiotic use during pregnancy was associ-
ated with a dosage-related increase in risk of offspring asthma 
(54–58). There is clear evidence that maternal antibiotic use in 
pregnancy leads to altered fecal bacterial phyla, reduced fecal 
bacterial species diversity, and increased risk of offspring asthma.

Summary of evidence in this section is found in Table 1.
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FiGURe 1 | Mechanisms by which maternal bacteria may influence fetal immune development.
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PART 2

Putative Mechanisms for Maternal Gut 
Bacterial influence on immune 
Programming and Offspring Asthma 
(Figure 1)
Fetoplacental Microbiome
Bacteria have been identified throughout the fetoplacental unit 
that may interact with the developing fetal immune system. 
Chorioamnionitis, an infection of the placenta, membranes, or 
amniotic fluid associated with prolonged rupture of the mem-
branes, is a cause of preterm birth and neonatal infection. Until 
recently, this condition was thought to indicate bacterial invasion 
of previously sterile tissues. Evidence of bacterial colonization has 
now been found in the placenta (59), placental membranes (60), 
amniotic fluid (61), and cord blood (62). Bacterial genetic material 
has been identified in the placental membranes of preterm and 
term deliveries with and without prior labor, indicating bacterial 
colonization of these tissues prior to delivery (60). Bacteria may 
colonize the fetoplacental unit early in pregnancy, as bacterial 
genetic material has been identified in the amniotic fluid follow-
ing amniocentesis (61), although bacteria have not been cultured 
from this site in humans. Evidence from mice indicates that meco-
nium and cord blood may also be colonized with bacteria during 

pregnancy. Humanized mouse mothers were orally inoculated 
with a labeled strain of Enterococcus faecium from human breast 
milk, and the organism subsequently cultured from amniotic 
fluid (62) and offspring meconium (63). Bacterial genetic mate-
rial has also been recently identified in the human placenta (59), 
although this finding was questioned on the basis of low read 
counts and possible contamination with environmental bacteria 
at the time of collection (64). Bacteria have not been successfully 
cultured from the placenta to date (65). The presence of bacte-
rial genetic material at these sites remains an important finding, 
with evidence that bacterial DNA may be sufficient to effect fetal 
immune modulation. Unmethylated CpG motifs in bacterial DNA 
have been demonstrated to exert immunostimulatory effects via 
toll-like receptor (TLR) 9 (66, 67). TLRs are expressed in many 
leukocytes and have an established role in innate immune stimu-
lation (68). TLRs are also important in adaptive immunity, with 
dendritic cells releasing regulatory cytokines in response to TLR 
binding to promote a Th1 phenotype (68) and a number of TLRs 
identified on Tregs including TLRs 4, 5, 7, and 8 (69). Early and 
persistent exposure of the fetoplacental unit to maternal bacteria 
and bacterial genetic material during pregnancy is likely to be an 
important mechanism of fetal immune programming. This effect 
may be enhanced by mechanisms described below that increase 
transplacental transport of bacterial components, cytokines, and 
bacterial metabolites.
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TABLe 2 | Putative mechanisms for maternal gut bacterial influence on 
immune programming and offspring asthma.

Putative 
mechanism

Description Reference

Fetoplacental 
microbiome

Bacteria present throughout the 
fetoplacental unit

(59), (64) 
(placenta), 
(60) (placental 
membranes), (61) 
(amniotic fluid), 
(62) (cord blood)

Immunostimulatory effects of bacterial 
DNA

(66, 67)

Maternal 
immunoglobulin 
G-bound bacterial 
components

Transplacental transport of bacterial 
components from modified E. coli in 
mice

(71)

Fetoplacental 
immune alignment

Correlation between regulatory 
T lymphocytes (Tregs) and interleukin-10 
in mother–child dyads

(72)

Short-chain fatty 
acids

Tolerogenic immune state (90–95)

Increased Treg population and function (103–106)

Offspring asthma (108)
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Maternal Immunoglobulin G (IgG)-Bound Bacterial 
Components
Transplacental transport of gut bacterial components bound 
to maternal immunoglobulin influences the developing fetal 
immune system and reduces inflammatory responses in offspring. 
Studies in mouse models have demonstrated that transplacental 
transport of allergen-specific IgG is associated with reduced 
offspring asthma (70). There is now evidence to support trans-
placental transport of bacterial components bound to maternal 
IgG. Gomez de Aguero et  al. transiently colonized the gut of 
a pregnant germ-free mouse with a modified strain of E. coli 
HA107 that could not persist, returning the mice to a germ-free 
state prior to delivery (71). They observed no changes in offspring 
adaptive immune cell numbers but found increases in intestinal 
innate lymphoid and mononuclear cells, suggesting that even 
transient colonization was linked to fetal immune modulatory 
effects. Serum from transiently infected mothers was transferred 
to unexposed pregnant mothers, with a subsequent increase in 
offspring intestinal innate lymphoid cells. When the serum was 
depleted of IgG prior to transfer, this effect was lost, indicating 
the importance of IgG-mediated transfer of bacterial compo-
nents. An increase in intestinal mononuclear cells was observed 
in offspring regardless of serum IgG depletion, suggesting that 
antibody-mediated transfer is part of a group of transplacental 
signals responsible for fetal immune programming.

Fetoplacental Immune Alignment
Transplacental cytokine signaling promotes maternal–fetal 
immune alignment. Santner-Nanan et al. examined serum from 
parents and their offspring, comparing the percentage of periph-
eral Tregs at term in mother–child dyads with that in father–child 
dyads (72). A high correlation was found between mother–child 
dyads but not father–child dyads. A high correlation was also 
identified for interleukin (IL)-10 levels, as well as an upregulation 
of IL-10 receptor alpha in the mother–child dyads, suggesting 
that the mechanism for Treg alignment is transplacental signal-
ing by IL-10. Cytokine signaling appears to be another important 
mechanism influencing the developing fetal immune system.

Maternal Gut Bacterial Metabolites
Transplacental action of gut bacterial metabolites influences many 
host functions, including fetal immune development. Gut bacte-
ria produces numerous metabolites that are critical mediators of 
host function, influencing processes such as immune modula-
tion, inflammation, epigenetic changes, and energy production 
(73, 74). SCFAs derived from MACs are a key group of metabo-
lites involved in immune modulation and have attracted much 
research attention. The three most common SCFAs produced in 
the gut are acetate, propionate, and butyrate (75), of which the 
majority are butyrate. SCFAs are produced in abundance as a 
by-product of bacterial carbohydrate fermentation and are a key 
energy source for the human host, supplying approximately 10% 
of total energy requirement (76). Further discussion of SCFAs in 
fetal immune development and subsequent offspring asthma is 
detailed in Part 3 of this review (77).

Summary of evidence in this section is found in Table 2.

PART 3

evidence that Maternal Diet and Bacterial 
Metabolites during Pregnancy influence 
Offspring Asthma
Diet Influences Fecal Bacterial Composition
Short-term dietary change alters fecal bacterial composition 
rapidly, but reversibly, while long-term dietary change is associ-
ated with irreversible alterations. Subjects fed either a plant or 
animal-based diet exclusively for 5 days had alterations in fecal 
bacterial composition, with an animal-based diet leading to a 
relative reduction in bacteria from phylum Firmicutes (78). This 
change was rapid, occurring within the first day of a new diet; 
however, fecal bacteria reverted its original composition 2 days 
after ceasing. This finding is supported by other human studies 
indicating short-term dietary changes have temporary effects 
on fecal bacterial composition (79). However, elegant work by 
Sonnenburg et al. has suggested that long-term dietary change 
may alter fecal bacterial composition irreversibly (80). Mice 
were fed restricted diets across several generations, demonstrat-
ing increased loss of bacterial diversity with each successive 
generation. Bacterial diversity loss was only partly reversible 
with a return to a broader diet. These findings are consistent 
with changes in fecal bacterial composition identified in modern 
industrialized societies. Studies in humans comparing the fecal 
bacteria of hunter–gatherer with modern societies have consist-
ently found increased microbial diversity in the hunter–gatherer 
groups, considered to reflect differences in dietary staples (2, 81, 
82). Nakayama et  al. have recently demonstrated that a wide-
spread geographic distribution of populations is not required 
for these differences to emerge (83). Fecal bacterial composition 
in children from different Asian countries was analyzed, and 
associations were identified between fecal bacterial composition 
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and either regional or national dietary differences. Differences in 
fecal bacterial composition were also found between rural and 
metropolitan populations within Thailand, with the authors pro-
posing that differences in dietary fruit intake may explain these. 
Evidence from mouse and human studies has demonstrated that 
diet influences fecal bacterial composition. Dietary changes that 
affect fecal bacterial composition may also affect the production 
of bacterial metabolites such as SCFAs.

Short-chain fatty acids are produced by the fermentation of 
MACs. MACs may be consumed in the host diet, produced by 
the host or by other bacteria. The bulk of these carbohydrates 
are found in dietary fiber that resists digestion by the host, 
although MACs are found in small amounts in many foods (84). 
A proportion of MAC is also derived from the mucous layer of 
the gut, a key bacterial substrate in periods of low dietary MAC 
availability (85, 86). Until recently, studies have used the terms 
dietary fiber or fermentable fiber as a catchall to describe this 
“microbiota food” (86); however, this terminology is problematic. 
First, it assumes the presence of the appropriate microbial species 
to perform the fermentation, which may not exist in a limited 
bacterial population. Second, it implies that fiber intake is an 
adequate surrogate marker of MAC intake; however, total dietary 
MAC intake is not currently accurately quantified by dietary 
surveys such as the Food Frequency Questionnaire (FFQ) (86). 
Finally, there are many other substrates that contribute these 
carbohydrates that are not considered fibers, such as resistant 
starches or human milk oligosaccharides (84). To address these 
difficulties, Sonnenburg et al. have proposed the term MAC (80, 
87). This is preferred as it does not have an implied link to total 
dietary fiber and highlights the importance of these substrates in 
determining the gut bacterial species mix (87).

Increased dietary MACs promote a gut microbiome char-
acterized by SCFA-producing bacteria and increased fecal 
SCFAs. In their landmark study, De Filippo et  al. compared 
the fecal bacterial composition of children living in a village in 
Burkina Faso with the fecal bacterial composition of a group of 
Italian children (88). The Burkina Faso village was chosen for 
its similarity to a pre-agrarian, hunter–gatherer society, whose 
high dietary fiber intake closely resembled that of the Neolithic 
period prior to widespread cultivation of food. Feces from 
children in the African group had markedly increased phylum 
Bacteroidetes and reduced phylum Firmicutes in comparison to 
European counterparts. De Fillipo et al. also indicated that the 
high-fiber diet of the Burkina Faso group was associated with 
increased fecal SCFAs, with a fourfold increase in fecal butyrate 
and propionate. Analysis of fecal bacterial composition of other 
hunter–gatherer populations in Malawi and Venezuela has found 
a high number of bacterial genes associated with digestion of 
MACs (81). Following on from these observational studies, 
in  vitro experiments with a model human colon populated 
with fecal bacteria have demonstrated an association between 
increased proportions of genus Bacteroides and Prevotella (both 
from phylum Bacteroidetes) and propionate concentrations (89). 
Diet influences fecal bacterial composition, with a diet high in 
MACs associated with increased SCFA-producing phyla and 
increased fecal SCFAs.

SCFAs Produced by Maternal Gut Bacteria Influence 
Fetal Immune Development and Offspring Asthma
Short-chain fatty acids produced by maternal gut bacteria 
indirectly influence T  lymphocytes to produce a tolerogenic 
immune environment in the offspring. SCFAs bind three G 
protein-coupled receptors [also termed free fatty acid receptors 
(FFARs)], GPR41/FFAR3, GPR43/FFAR2, and GPR109a (niacin 
receptor), of which only GPR43 is specific to leukocytes. SCFAs 
influence neutrophils and eosinophils by binding GPR43 (90) and 
through direct inhibition of histone deacetylase (HDAC), result-
ing in apoptosis (91). Butyrate and propionate have been shown 
separately to regulate dendritic cell function by this mechanism, 
reducing stimulation of T  lymphocytes (92, 93), and the same 
pathway was found to operate in colonic inflammatory responses 
(94). Butyrate also stimulates the niacin receptor GPR109a with 
GPR109a-deficient mice exhibiting reduced IL-10-producing 
T lymphocytes (95).

Regulatory T  lymphocytes produce a tolerogenic immune 
profile and promote a Th1 phenotype protective against the 
development of asthma (96). Traditionally, the adaptive immune 
system was described as either Th1 or Th2 dominant, with asthma 
associated with the Th2 phenotype. The Th2 phenotype is associ-
ated with increased IgE production, eosinophilia, and production 
of cytokines IL-4, IL-5, IL-9, and IL-13 (97). These cytokines 
activate an allergic inflammatory response to encountered aer-
oallergens and infections that produces the symptoms of asthma 
(98). Early studies identified a reduced population of serum 
Tregs in asthmatic patients (99, 100). Mouse models of allergic 
airways inflammation have shown that introduced Tregs inhibit 
disease development and suppress established disease (101). A 
key mechanism for Treg-mediated immune modulation and Th1 
skewing is the transcription factor forkhead box p3 (Foxp3). In 
the presence of allergenic stimulation, Treg cells expressing high 
amounts of Foxp3 produce IL-10 and transforming growth factor 
beta, suppressing the activity of dendritic cells and other T-cells 
and subsequently reducing allergic responses (102).

Short-chain fatty acids directly influence Treg population and 
function. Acetate and propionate promote colonic Treg produc-
tion with an associated increase in Foxp3 and IL-10 expression 
in these cells (103). This effect is mediated through inhibition of 
HDAC, resulting in increased acetylation of Foxp3 and associated 
increased stability and expression at cell surfaces. This mechanism 
has been identified in other studies in which mice fed butyrate 
and propionate increased the number of extrathymic (104) and 
colonic Tregs (105). SCFAs have both indirect and direct effects 
on T lymphocytes promoting a tolerogenic immune profile, with 
increased Treg populations and activity (106).

Mouse models have demonstrated an association between 
increased maternal dietary MACs, SCFA exposure during 
pregnancy, and reduced offspring asthma. Trompette et al. and 
Thorburn et  al. demonstrated that increased maternal dietary 
MACs were associated with reduced severity of allergic airway 
inflammation in offspring (107, 108). Trompette et al. reproduced 
the mechanism of SCFA action through GPR43 and associated 
changes to dendritic cell population and T lymphocyte activity 
(107). The study by Thorburn et al. was unique in finding that 
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pregnant mice exposed to a high MAC diet or acetate have 
offspring that appear protected from developing allergic airways 
disease and that this effect persists into adulthood (108). A 
follow-up small human component (n = 61) of the same study 
showed an association between reduced recalled maternal dietary 
fiber intake and reduced serum acetate levels. A separate com-
ponent (n = 40) showed an association between serum acetate 
below median level and increased doctor visits for cough/wheeze 
and wheeze in offspring in the first year, although a reverse trend 
appears for the other SCFAs measured. The author’s choice of 
respiratory health outcome in the human components is notable. 
Two or more episodes of GP reported cough in the first year may 
be associated with maternal serum acetate but is unlikely to yield 
a distinct clinical phenotype that is predictive of subsequent risk 
of asthma (108). In demonstrating an association between mater-
nal dietary MACs, antenatal exposure to SCFAs, and offspring 
asthma, these mouse experiments have suggested a possible tar-
get for interventions to reduce the burden of respiratory illnesses 
such as asthma; however, further human studies are required.

Other Maternal Dietary Factors during Pregnancy  
Are Associated with Immune-Modulating Effects  
and Offspring Asthma
Maternal exposure to increased vitamin D during pregnancy may 
influence fetal immune and lung development and reduces off-
spring wheeze. Vitamin D receptors are found in many immune 
cells (109), and early studies showed that vitamin D was able to 
promote specific Treg populations (110) as well as numerous 
other effects on innate immune pathways (111). The effect of 
maternal vitamin D on fetal immune development is less clear 
with recent studies finding that high maternal serum vitamin D 
associated with decreased Foxp3-expressing Tregs in cord blood 
(112). Any association found with offspring asthma is compli-
cated by the effect of vitamin D on fetal lung development, with 
low vitamin D associated with reduced lung volumes in mouse 
models (113). Evidence from birth cohort studies indicates that 
high maternal dietary vitamin D intake is associated with reduced 
offspring wheeze (114–117). Recent well-designed, double-blind, 
randomized, control studies failed to find a similar association 
for vitamin D supplementation, although the control group in 
both cases was receiving the recommended daily dose of vitamin 
D throughout (118, 119). Maternal vitamin D exposure, either 
from diet or supplementation, influences fetal immune and lung 
development and the risk of offspring wheeze.

Maternal dietary vitamin E intake influences fetal immune and 
lung development and risk of offspring wheeze. Vitamin E has 
been found to have effects on many immune pathways, reducing 
inflammation (111). Vitamin E has tolerogenic effects on T lym-
phocytes, reducing their stimulation by interferon-gamma (120) 
and promoting their survival (121). Devereux et al. identified that 
high maternal dietary intake of vitamin E during pregnancy was 
associated with a decreased Th cell proliferative response in cord 
blood mononuclear cells (122). Vitamin E intake in pregnancy 
has been associated with reduced wheeze in children in a number 
of studies (123–126). Vitamin E also has effects on lung function, 
with an association between increased maternal vitamin E intake 

and higher offspring forced expiratory volume in 1 s (FEV1) at 
5 years (124). Maternal exposure to decreased dietary vitamin E 
during pregnancy increases offspring cord blood mononuclear 
cell proliferation and is associated with reduced offspring wheeze 
and improved lung function.

Maternal intake of polyunsaturated fatty acids (PUFAs) 
may alter fetal immune development and is associated with 
offspring asthma. The most researched group of PUFAs is the 
N-3 (omega-3 fatty acids) which may promote a Th1 phenotype 
and stimulate Tregs and the N-6 (omega-6 fatty acids), associ-
ated with increased inflammation and Th2 skewing (127). It 
has been hypothesized that reductions in the ratio of dietary 
N-3:N-6 PUFAs in Western societies may be responsible for 
an increase in allergic disease (128). Evidence in mice suggests 
that maternal PUFAs may influence fetal immune function. van 
Vlies et al. fed mice mothers differing ratios of N-3:N-6 PUFAs 
and found that both a high and low ratio reduced offspring Th2 
response (129). Studies measuring PUFAs in the serum of preg-
nant women found minimal evidence of an association between 
PUFA ratios and childhood respiratory outcomes (130, 131). 
Two similar studies by Nwaru et al. and Lumia et al. within the 
same study population examined dietary intake of PUFAs and 
found conflicting results. Nwaru et al. reported an association 
between low PUFA intake and allergic rhinitis but not asthma 
in offspring at 5 years (132). Lumia et al. reported an association 
between low PUFA intake and asthma at 5  years (133). Oily 
fish such as salmon and herring contain increased ratios of 
N-3:N-6; however, until recently, trials of supplementation with 
fish or fish oil during pregnancy had found only weak evidence 
of an association with reduced offspring asthma (134–139). In 
2016, Bisgaard et  al. reported from the COPSAC cohort that 
supplementation with N-3 PUFA during the third trimester of 
pregnancy was associated with a relative risk reduction for per-
sistent wheeze or asthma in offspring of 30.7% (140), although 
there was no associations found with other allergic outcomes 
and the level of supplementation was 15 times greater than the 
expected average intake by pregnant mothers (141). Maternal 
supplementation with fish-derived N-3PUFAs may alter fetal 
immune development and is associated with reduced offspring 
asthma.

Summary of evidence in this section is found in Table 3.

PART 4

Challenges for Future Research into the 
Maternal Diet, Gut Bacteria, Microbial 
Metabolites, and Offspring Asthma
There are currently no validated methods to estimate dietary 
exposure to MACs. The FFQ is the most widely used measure of 
diet in the studies discussed in this review. FFQ allows an estima-
tion of dietary exposures to many specific foods, food groups, 
or micronutrients; however, dietary exposure to MACs is more 
difficult to estimate. MACs defy traditional categorization into 
fibers or carbohydrates due to their ubiquity in small amounts 
across a range of foods and food types, and there is currently 
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TABLe 3 | Maternal dietary factors during pregnancy associated with immune modulation and offspring asthma.

Dietary factor Result category Result Reference

Vitamin D Immune function Vitamin D enhances regulatory T lymphocyte (Treg) activity (110), (111) 
(review)

Fetal immune 
programming

Increased maternal serum vitamin D associated with reduced offspring forkhead box p3-expressing Tregs (112)

Offspring asthma Increased maternal dietary vitamin D intake associated with reduced offspring wheeze (114–117)

Maternal vitamin D supplementation not associated with offspring wheeze (118, 119)

Vitamin E Immune function Vitamin E reduces inflammation (111) (review)

Vitamin E reduces T lymphocyte stimulation by interferon-gamma (120)

Vitamin E increases T lymphocyte survival (121)

Fetal immune 
programming

Increased maternal dietary vitamin E decreases T helper response in cord blood (122)

Offspring asthma Increased maternal dietary vitamin E intake associated with reduced offspring wheeze (123–126)

Increased maternal dietary vitamin E intake associated with improved offspring lung function (124)

Polyunsaturated 
fatty acids 
(PUFAs)

Fetal immune 
programming

Increased and decreased N-3:N-6 PUFA ratio associated with reduced offspring Th2 response in mice (129)

Offspring asthma Maternal serum PUFAs not associated with offspring asthma (130, 131)

Increased maternal dietary PUFAs or supplementation with fish or supplementation with lower dosage of 
fish oil not associated with offspring asthma

(132–139)

Maternal supplementation with high dosage of fish oil associated with reduced offspring asthma (140)
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no validated method for this estimation (142). Establishing an 
accurate estimate of MAC exposure from diet remains the subject 
of current research efforts (143) and is critical to investigating any 
association between MACs and other outcomes.

Gut bacterial composition is inferred from the fecal micro-
biome. When assembling this review, we identified a single 
prospective study that examined the relationship between mater-
nal fecal bacteria and offspring asthma as its primary outcome. 
Lange et al. examined fecal bacteria from 60 mothers during the 
third trimester and found evidence of an association between 
higher total aerobes and enterococci and infant wheeze (144). 
The small study size, use of a culture-dependent method, and 
assessment of only very early respiratory outcomes limits the 
interpretation of these findings. These limitations do not detract 
from the importance of demonstrating an association between 
maternal gut bacteria in pregnancy and offspring asthma using a 
culture-dependent method. Culture-independent methods based 
on bacterial genetic material have largely replaced such studies.

Current studies of gut bacteria use bacterial genetic material 
extracted from fecal samples and analyzed using next-generation 
techniques to determine a fecal microbiome. The microbiome 
is a detailed picture of the species, relative abundance, diversity, 
and metabolic functions of all the microbiota present in the gut, 
inferred entirely from genetic material collected from feces. There 
are two principal approaches to the analysis of the gut micro-
biome: shotgun metagenomic sequencing and 16S sequencing. 
Shotgun metagenomic sequencing extracts all the DNAs from a 
fecal sample, fragments it, and sequences on one of several avail-
able massively parallel sequencing (MPS) platforms. Resulting 
reads are then assembled into longer sequences and aligned to 
databases of known and predicted genes, thus inferring the func-
tional potential of the microbiota and giving an approximation of 
the taxa present in the sample. At present, this approach suffers 

from a high cost per sample; but it is reasonable to think the price 
will decline in the next few years.

16S sequencing targets a few hundred bases of a gene believed 
to be common to all bacterial species, the 16S ribosomal subunit. 
Variability within this gene has been the gold standard for taxo-
nomic classification for bacteria. The selected fragment of 16S 
rDNA is extracted from the DNA in a sample, amplified via PCR 
and usually ligated to barcode DNA oligomers for multiplex MPS 
sequencing. Resulting reads are demultiplexed, clustered into 
operational taxonomic units (collections of sequence that satisfy 
a similarity criterion designed to avoid spurious variation due 
to sequencing errors) and aligned to comprehensive databases of 
16S rDNA sequences. 16S sequencing gives a putative taxonomic 
profile of the species present in the sample; however, functional 
information has to be inferred.

The fecal microbiome is highly likely to be representative of 
the gut bacterial composition in the lumen of the lower diges-
tive tract but may not reflect the full complexity of human gut 
bacteria and may be contaminated with environmental bacte-
rial genetic material or the genetic material of dead bacteria. 
Furthermore, as the fecal microbiome is only a proxy measure 
of the gut microbiota, absolute quantitative information is dubi-
ous. Relative quantitative comparisons between samples may be 
valid, provided samples have been stored and treated uniformly. 
Numbers of reads assigned to a taxon should be treated with cau-
tion as PCR biases, gene copy number variation, and variability 
in regions surrounding the formal “variable” regions can affect 
primer efficiency. Software tools comparing the composition of 
samples either use straightforward statistical tests for a  priori 
hypotheses, more sophisticated statistical analyses (usually 
derived from techniques used in RNA-seq analysis, and perhaps 
sub-optimal for microbiome analysis) for discovery of differen-
tial abundances between experimental conditions, or biological 
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outcomes, or use machine-learning approaches to detect more 
subtle patterns among bacterial composition, treatments, and 
outcomes. There is currently no consensus in the field as to which 
methods represent best practice, and there is substantial scope for 
more mature techniques.

Measurement of SCFA production by gut bacteria and SCFA 
exposure in humans is challenging. The majority of SCFAs 
produced are rapidly consumed by colonocytes. A unique study 
by Cummings et al. carried out in cadavers demonstrated that 
the concentration of SCFAs, particularly butyrate, significantly 
diminishes between the cecum and rectum (145). Colonocyte 
consumption of butyrate does not produce a specific marker 
or by-product to allow total butyrate consumption during 
gut transit to be measured. Colonocyte consumption is also 
dependent on cellular energy requirements that vary under 
different conditions. Subsequently, fecal SCFAs are a limited 
marker of total SCFA exposure. Serum SCFAs are also an inad-
equate measure of total SCFA exposure. Colonocyte consump-
tion prevents the majority of butyrate reaching the serum and 
proportionally more acetate and propionate are found in the 
serum. Cummings et al. found significant differences in acetate 
and propionate concentrations at different blood sampling sites 
with the highest concentrations found in the portal vein and the 
lowest concentrations found in the peripheral veins indicating 
acetate and propionate are subject to first-pass hepatic metabo-
lism (145). Acetate and propionate are primarily utilized by the 
liver in gluconeongenesis, along with many other substrates. 
SCFA utilization in gluconeogenesis does not produce a specific 
marker or by-product to allow total acetate and propionate con-
sumption to be measured. Despite these limitations, measures 
of SCFAs in feces and serum are currently used to indicate total 
host SCFA exposure. Further research is needed into alternate 
methods to measure SCFA exposure, and the limitations of 
serum and fecal SCFA measurement must be considered when 
describing SCFA-related associations.

Defining offspring respiratory health phenotypes that pre-
dict asthma that persists into later life may be difficult in infancy 
and early childhood. Childhood respiratory health has been 
defined using a variety of outcome measures in the studies dis-
cussed, including parent-reported symptoms; medication use, 
hospital presentations or physician diagnosis; and lung func-
tion testing. These measures have not been utilized consistently 
and case definitions of wheeze and asthma vary throughout 
the studies. Only a small number of studies performed lung 
function testing, likely reflecting difficulty in obtaining accu-
rate lung function measures in preschool children. Newer tidal 
volume techniques such as Multiple Breath Washout or Forced 
Oscillation Testing allow measurement in children from birth 
(146). Future studies must carefully consider the respiratory 
outcomes chosen and may benefit from tidal volume lung func-
tion techniques.

CONCLUSiON

There is evidence that antenatal interaction between maternal 
diet, gut bacteria, bacterial metabolites, and the developing fetal 

immune system influence offspring asthma. In mouse studies, 
these associations have been linked, providing evidence that 
dietary MACs select a gut bacterial composition that produces 
increased SCFAs. These SCFAs influence T  lymphocytes in the 
developing fetal immune system to produce a tolerogenic state 
that is associated with reduced risk of offspring wheeze and 
asthma.

Evidence from farm studies, probiotic supplementation, and 
antibiotic exposure has demonstrated the association between 
maternal bacterial exposures during pregnancy and offspring 
asthma. Maternal bacterial exposure in pregnancy influences the 
developing fetal immune system by a number of potential mecha-
nisms including bacterial exposure of the fetoplacental unit; 
immunoglobulin-related transplacental transport of gut bacterial 
components; cytokine signaling producing fetomaternal immune 
alignment; and transplacental action of gut bacterial metabolites 
such as SCFAs. Diet is a key determinant of gut bacterial com-
position and dietary MACs alter fecal bacterial composition to 
select SCFA-producing bacteria and influence SCFA production. 
There is consistent evidence for SCFA-mediated effects on the 
developing fetal immune system; however, an association has not 
been reported between maternal dietary MACs or SCFA exposure 
during pregnancy and offspring asthma in humans.

Current measures of MACs, gut bacterial composition, 
SCFAs, and offspring asthma have limitations. Estimating 
exposure to MACs and SCFAs is particularly difficult with the 
proxy measures available. The fecal microbiome, although now 
nearly ubiquitously used in studies of gut bacteria, must still 
be interpreted carefully. Developments in lung function testing 
may allow respiratory phenotype and asthma diagnosis to be 
more accurately predicted in early childhood, although these 
techniques still require further validation. Longitudinal birth 
cohort studies measuring maternal diet, gut bacteria, bacterial 
metabolite exposures during pregnancy, as well as fetal immune 
function and offspring asthma to school age are needed to exam-
ine the associations identified in this review. Respiratory health 
is determined by a combination of many antenatal and early-life 
influences, and it is difficult to predict the relative contribution of 
any single influence in isolation. Confounding factors influenc-
ing respiratory health should be included in any future study 
order to estimate the magnitude of any effects identified. Asthma 
is a complex multifactorial condition; however, it appears likely 
that dietary MACs, gut bacteria, and SCFAs are potential deter-
minants of offspring health. This research holds out the hope of 
simple, cost-effective interventions in pregnancy to reduce the 
incidence of offspring asthma.
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