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Abstract

Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are clonal myeloid malig-

nancies that are characterized by dysplasia resulting in cytopenias as well as prolif-

erative features such as thrombocytosis or splenomegaly. Recent studies have better

defined the genetics underlying this diverse group of disorders. Trisomy 8, monosomy

7, and loss of Y chromosome are the most common cytogenetic abnormalities seen.

Chronicmyelomonocytic leukemia (CMML) likely develops fromearly cloneswithTET2

mutations that drive granulomonocytic differentiation. Mutations in SRSF2 are com-

mon and those in the RAS-MAPK pathway are typically implicated in disease with a

proliferative phenotype. Several prognostic systems have incorporated genetic fea-

tures, with ASXL1most consistently demonstrating worse prognosis. Atypical chronic

myeloid leukemia (aCML) is most known for granulocytosis with marked dysplasia and

often harbors ASXL1 mutations, but SETBP1 and ETNK1 are more specific to this dis-

ease. MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T) most

commonly involves spliceosome mutations (namely SF3B1) and mutations in the JAK-

STAT pathway. Finally, MDS/MPN-unclassifiable (MDS/MPN-U) is least characterized

but a significant fraction carries mutations in TP53. The remaining patients have clini-

cal and/or genetic features similar to the other MDS/MPNs, suggesting there is room

to better characterize this entity. Evolution from age-related clonal hematopoiesis

to MDS/MPN likely depends on the order of mutation acquisition and interactions

between various biologic factors. Genetics will continue to play a critical role in our

understanding of these illnesses and advancing patient care.
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1 INTRODUCTION

Myelodysplastic/myeloproliferative-overlap neoplasms (MDS/MPN)

are a group of clonal myeloid disorders with characteristics of

dysplasia, resulting in dysfunctional hematopoiesis and cytopenias,

as well as proliferative features causing increased cell counts,

organ infiltration, and constitutional symptoms. They include chronic

myelomonocytic leukemia (CMML), atypical chronic myeloid leukemia

(aCML), MDS/MPN with ring sideroblasts (RSs) and thrombocyto-

sis (MDS/MPN-RS-T), and MDS/MPN-unclassifiable (MDS/MPN-U) in

adults, while juvenile myelomonocytic leukemia (JMML) is exclusively

seen in pediatric populations.

With the advent of next generation sequencing technologies, the

genetics and clonal architecture ofMDS/MPNs have been increasingly

elucidated. Much like the myeloid disorders that is this group’s name-

sake, the mutations underlying the MDS/MPNs affect DNA methy-

lation, chromatin modification, RNA splicing, transcription regulation,

cytokine receptors, and proliferative signaling pathways.

Cytogenetically, these syndromes are most defined by the absence

of specific chromosomal abnormalities so as to exclude more preva-

lent diagnoses. For example, all diagnoses must exclude the presence

of the BCR-ABL fusion gene seen with t(9;22) [1]. Testing must also

be done to ensure there are no rearrangements involving platelet-

derived growth factor A (PDGFRA), PDGFRB, fibroblast growth factor

receptor 1 (FGFR1), or pericentriolar material 1 (PCM1)-Janus kinase

2 (JAK2) fusions in patients with eosinophilia to exclude this group of

myeloid neoplasms [1]. Finally, MDS/MPN-RS-T cannot have isolated

del(5q), t(3;3)(q21;q26), or inv(3)(q21q26) [1]. Cytogenetic abnormal-

ities are more prevalent in MDS/MPN-U and aCML than CMML and

MDS/MPN-RS-T, the most common of which are trisomy 8, monosomy

7/deletion 7q, and loss of Y chromosome [2–4].

Much of our initial understanding of these diseases was extrapo-

lated from studies of the relatively common MDS and MPNs. Subse-

quent studies, includingboth large collaborative and small single center

ones, further advanced the knowledge of genetic pathways and their

pathological consequences. In this review, we will discuss these find-

ings and their impact on disease prognosis and pathophysiology, then

discuss implications for disease characterization.

1.1 CMML

The most common of the MDS/MPNs, CMML is defined as a myeloid

stem cell neoplasm characterized by presence of greater than 1000

monocytes/µl in the peripheral blood (PB), with monocytes compris-

ing at least 10% of PB white blood cells (WBCs), evidence of dyspla-

sia in at least one lineage, and less than 20% blasts [1]. Monocyte

partitioning by flow cytometry may distinguish reactive from classical

monocytes and aid in diagnosis [5]. It is often diagnosed incidentally

or in the context of cytopenias or antecedent autoimmune illness [6,7].

Patients may have a dysplastic phenotype characterized by low counts

or a proliferative one characterized by leukocytosis (≥13,000WBC/µl)
and hepatosplenomegaly. A notable characteristic observed in vitro is

hypersensitivity to granulocyte-macrophage colony-stimulating factor

(GM-CSF) [8], prompting study of the anti-GM-CSF monoclonal anti-

body lenzilumab [9].

Most genetic abnormalities in CMML involve mutations of a select

few genes involved in DNA methylation, splicing, and proliferative

signaling. Ten-eleven translocation-2 (TET2) is the most commonly

mutated gene, seen in 50%–70% of patients, [3,10,11] followed by

SRSF2 (∼50%) and additional sex combs-like 1 gene (ASXL1; ∼40%).

BiallelicmutationofTET2hasbeen frequently recognized [3,11].Muta-

tions in theRASpathway (e.g.,NRAS,KRAS, casitas B-lineage lymphoma

[CBL], PTPN11) are also frequently observed, in up to 40% of patients

[12]. Karyotype abnormalities exist in less than a quarter of CMML

patients [3,4] and typically involve chromosomes 7 and 8. Patients with

therapy-related CMML may have more frequent cytogenetic abnor-

malities but carry a similar mutation burden [13].

TET2 plays an important role in DNA methylation balance by per-

forming hydroxylation of methylated cytosine residues, facilitating

demethylation of these nucleotide residues. Mutations cause a loss

of function, resulting in aberrant DNA methylation, dysmyelopoiesis,

and clonal expansion [14–16]. One model of CMML pathogenesis sug-

gests that early clonal dominance of TET2-mutant (TETMT) clones pro-

motes granulomonocytic differentiation of immature progenitors [17],

whereas without this early dominance, additional mutations or other

stochastic factors cause evolution toward other phenotypes.

Given the increased presence of mutations associated with age-

related clonal hematopoiesis in CMML [18], notably TET2 and ASXL1,

CMML appears to stem from hematopoietic cells that stochasti-

cally acquire culprit mutations over time. Ancestral TET2 muta-

tions are most common [19] and are highly associated with bial-

lelic TET2 mutation and TET2-SRSF2 co-mutation [3]. Additionally,

ASXL1 has been found to be a common ancestral event [3,19].

The sequence of driver mutation acquisition and gene interactions

likely skews disease toward either a more proliferative or dys-

plastic phenotype [20] with RAS pathway mutations responsible

for the former [12] and SF3B1 occasionally associated with the

latter [21].

Genetic features have been incorporated into multiple prognostic

models. A large Spanish registry categorized cytogenetic risk based

on overall survival (OS) and progression to acute myeloid leukemia

(AML): low risk (normal karyotype or isolated loss of Y chromosome),

high risk (trisomy 8, abnormalities of chromosome 7, or complex kary-

otype [CK]), and intermediate (all other abnormalities) [22]. These

risk groups were later incorporated into the CMML-specific prognos-

tic scoring system (CPSS) [23]. Published the same year, the Groupe

Français des Myélodysplasies prognostic score included ASXL1 non-

sense and frameshift mutations because they conferred poor prog-

nosis in multivariate analysis [10], confirmed later in a larger study

[24]. Subsequently, ASXL1, NRAS, RUNX1, and SET-binding protein-

1 (SETBP1) were independently linked to worse OS and increased

risk of leukemic transformation. These mutations were integrated

with the established cytogenetic risk categories into a CMML-specific

genetic score, whichwas incorporated into the clinical/molecular CPSS

(CPSS-Mol) [25].
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Although a smaller study found that patients with TET2MT CMML-

1 had adverse prognosis [11], this has not been consistently observed.

In one large, multi-institutional study, not only was TET2MT dis-

ease associated with a significant survival advantage, but trun-

cating or multiple TET2 mutations were particularly advantageous

[26]. Additionally, the impact of ASXL1 was found to be amelio-

rated by co-mutation with TET2 in this study [26]. Finally, another

study found mutations in STAG2 and U2AF1 correlated with worse

survival [3].

There have been multiple attempts to use genetic and epigenetic

signatures to predict response to therapy. While somatic mutations

did not predict response to hypomethylating agent (HMA) therapy

in one international study, methylation profiling of mostly non-

promoter regions distinguished responders from non-responders

[27]. Gene profiling of the responders found that expression of cell

cycle-related genes were upregulated. In other evaluations, muta-

tions in RUNX1 and CBL predicted worse OS in patients undergoing

HMA therapy, but TET2MTand ASXL1-wildtype (ASXL1WT) geno-

types had better outcomes [28,29]. Interestingly, HMA therapy

does not appear to alter disease mutation burden or be cytotoxic to

cancer cells but instead alters gene expression through epigenetic

changes [30]. Finally, genetics impact response to hematopoietic

stem cell transplantation: patients with high overall mutation bur-

den (>10 mutations) were found to be at higher risk of relapse

[31]. In a recently developed prognostic model, ASXL1 and NRAS

mutations independently worsened survival in CMML patients post-

transplant [32].

1.2 JMML

Unlike CMML, JMML is a disease of infancy and early childhood char-

acterized by organ infiltration of malignant cells resulting in lym-

phadenopathy, hepatosplenomegaly, cutaneous lesions, as well as con-

stitutional symptoms and infectious sequelae. Its canonical feature is

hypersensitivity to GM-CSF [33], as seen in CMML, thought to be

related to its nature as a RASopathy. Indeed, most cases arise from

somatic or germlinemutations in genes involving the RAS-MAPKpath-

way: PTPN11, N/KRAS, NF1, or CBL are seen in about 90% of cases

[34]. Mutations involving other signal transduction pathways, splic-

ing, transcription, and polycomb repressive complex 2 have also been

described [35]. Two-thirds of patients will have normal karyotype,

but the remaining will have monosomy 7 (26%) and 10% with other

aberrancies [36].

1.3 aCML

This entity is characterized by neutrophilia with severe dysgranu-

lopoiesis, along with bone marrow findings of hypercellularity and

granulocytic dysplasia [37]. Perhaps due to significant clinical, mor-

phologic, and genetic overlap with the MPN chronic neutrophilic

leukemia (CNL) [38], WHO guidelines advise that granulocyte

precursors (promyelocytes, myelocytes, and metamyelocytes)

should comprise at least 10% of PB WBCs [1]. To exclude CML

and CMML, there must be no or minimal absolute basophilia or

monocytosis as well as no evidence of BCR-ABL [1]. This disease

is considered relatively aggressive, with a median OS of about

11–14 months [37,39,40] and a known propensity for leukemic

transformation.

aCML is most specifically associated with mutations in SETBP1 and

ethanolamine kinase 1 (ETNK1), which typically are found in 23%–

38% and 3%–9% of patients, respectively [3,4,41–43]. As SETBP1 has

a lower prevalence in other MDS/MPN except CMML or CNL, and

ETNK1 is onlyotherwise seen inCMMLandsystemicmastocytosis [43],

these genetic markers can be useful to distinguish aCML from other

myeloid neoplasms. Less specific but far more prevalent is ASXL1, the

most frequently mutated gene (60%–90%) [3,4]. SETBP1 was found

to be equally codominant or secondary to ASXL1 in aCML as ASXL1

mutations were found in a high percentage (>90%) of ancestral clones

[3]. Other common mutations in aCML are TET2 (43%), SRSF2 (34%),

NRAS (31%) [4], EZH2 (>30%) [3], RUNX1 (20%) [3,4], and CBL (8%)

[44]. Althoughmutations in thegranulocyte-colony stimulating factor3

receptor (CSF3R) were previously thought to be closely linked to both

aCML and CNL [45], it is now recognized to be more common in CNL

[1,46,47]. About 40% of aCML patients have an abnormal karyotype

[3,4,40].

Evaluation of the most aCML-specific mutations has yielded insight

into the pathophysiology of this disease. For instance, SETBP1, found

on the long arm of chromosome 18, plays a role in cell proliferation by

producing a nuclear protein that binds SET and inhibits the tumor sup-

pressor gene PP2A [42,48]. Overexpression of this gene is associated

with poor outcome in AML, and it may represent a unique mechanism

in leukemogenesis [48,49].

In 2015, heterozygous mutation of ETNK1 was recognized as an

abnormality largely unique to aCML [43]. As this enzyme is the first

in a specific phospholipid biosynthesis pathway, its loss of catalytic

function may impact cell membrane architecture, cytokinesis during

cell division [50], and optimal respiratory chain performance in the

mitochondrial inner membrane [51]. In fact, a recent study found that

the metabolic product of ETNK1 attenuates mitochondrial activity,

with loss of function driving increased production of reactive oxy-

gen species (ROS) and mutagenesis. In vitro experiments suggested

a normal phenotype can be restored by administering the under-

produced enzyme product or the antibiotic tigecycline [52], which is

known to inhibit synthesis of mitochondrial proteins that enable ROS

production.

Despite evidence that SETBP1 confers worse prognosis in myeloid

malignancies in general [53,54] and aCML specifically [42], its impact

has not been found deleterious in all studies [3,40]. The frequent coex-

istence ofmutations inASXL1 and CBLwith SETBP1 suggests an associ-

ation with worse outcomes; [41,42] CBLmutation alone suggests more

aggressive disease [44]. Notably, TET2mutation is independently asso-

ciatedwithworseOS in aCML [40], althoughmaybemutually exclusive

with mutations in SETBP1 [41]. Finally, SRSF2mutations may correlate

with better OS while those in RUNX1, NRAS, and CUX1 suggest poor

outcomes [3].
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TABLE 1 Overview of diagnostic, clinical, and genetic features of theMDS/MPN overlap syndromes. MDS/MPNs all must have<20% blasts in
PB and BM, with the RS-T subtype only allowing for<1%PB and<5%BMblasts. No evidence of the BCR-ABL1 fusion gene, PDGFR, FGFR1, and
PCM1-JAK2 is permitted. No history of cytotoxic or growth factor therapy is permitted in the RS-T or U subtypes

Disease

2016WHOdiagnostic

criteria Clinical features Cytogenetics Molecular genetics Other

CMML - PB

monocytosis> 1000/ul

withmonocytes≥10% of

WBCs

- One of the below 4:

- ≥1myeloid lineagewith

dysplasia

- Acquired clonal genetic

abnormality present

- Monocytosis persisting

≥3months with other

causes excluded

- Classical

(CD14+/CD16-)

monocyte

immunophenotype by

flow cytometry

- May be associatedwith

antecedent

autoimmune disease

- Organomegaly,

effusions are

proliferative features

seen

- PBWBC defines

proliferative

(≥13,000/µl) versus
dysplastic (<13,000/µl)
types

- Majority (∼70%)

patients have NK

- Abnormal karyotype

more common in

therapy-related

disease

- Most common

abnormalities:+8,

monosomy 7,−Y,+21,

del(20q)

- Low risk abnormalities:

NK,−Y

- High risk

abnormalities:+8,

chromosome 7

abnormalities, CK

- Most common: TET2
followed by SRSF2,
ASXL1

- RAS pathway

mutations also

commonly seen in

proliferative disease

- High risk mutations:

- ASXL1,NRAS, RUNX1,
and SETBP1

- ASXL1 andNRAS linked
to worse HCT

outcomes

- PBWBC and blast %

(in PB and BM) affect

prognosis

- Methylation profiling

may distinguish HMA

responders from

non-responders

- Oligomonocytic

CMML (PBmonocyto-

sis< 1000/µl)
recognized but not

defined

- Ruxolitinib under

study as novel therapy

(NCT03722407)

JMML - PBmonocyte

count> 1000/ul,

splenomegaly, absence

of BCR-ABL1
- One of the below:

- Somatic mutation in

PTPN11, KRAS, orNRAS
- NF1 diagnosis orNF1

mutation

- Germ line CBLmutation

and LOH of CBL

- Chromosomal

abnormality such as

monosomy 7

- Two of the following:

HbF increased for age,

myeloid or erythroid

precursors on PB smear,

GM-CSF

hypersensitivity on

colony assay,

hyperphosphorylation of

STAT5

- Disease of infancy and

early childhood

- Clinical findings

include

lymphadenopathy,

hepatosplenomegaly,

cutaneous lesions,

constitutional

symptoms

- Majority (∼75%) of

patients have NK

- Monosomy 7most

common abnormality

- RAS-MAPK pathway

mutations common

(85% of patients):

PTPN11,N/KRAS,NF1,
or CBL

- PTPN11most common

- Coexisting RAS-MAPK

mutations found in

about 1/10 of patients

- SETBP1, JAK3 rarely
found

- Associatedwith

congenital diseases

such as Noonan

syndrome,

neurofibromatosis

type 1, and a germline

syndrome associated

with the CBLmutation

aCML - PB leukocytosis with

increased neutrophils

and granulocytic

precursors with≥10%

WBCs

- Basophils are<2%

WBCs

- Monocytes are<10%

WBCs

- Notmeeting criteria for

otherMPN

- Hypercellular BMwith

granulocytic dysplasia

- Relatively aggressive:

Median overall survival

11–14months

- Clinical findings

include leukocytosis

and neutrophilia

- High rates of leukemic

transformation

- Majority (∼60%) of

patients have NK

- Most common

abnormalities:+8,−7,

CK

- Most common: ASXL1,
TET2, SRSF2,NRAS,
EZH2, RUNX1, CBL

- Most specific: SETBP1,
ETNK1

- CSF3Rmore common

in CNL than aCML

- High risk mutations:

- SETBP1, ASXL1, CBL,
TET2

- Normal role of SETBP1
involves inhibition of

tumor suppressor gene

PP2A
- ETNK1 involved in

phospholipid

biosynthesis has

downstream impact on

mitochondrial function

(Continues)
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TABLE 1 (Continued)

Disease

2016WHOdiagnostic

criteria Clinical features Cytogenetics Molecular genetics Other

MDS/MPN-

RS-T
- Anemia with erythroid

lineage dysplasia

- ≥15%BMRS

- Persistent

thrombocytosis≥450K

- Presence of SF3B1
mutation

- If not present, patient

must not have history of

cytotoxic or growth

factor therapy

- No t(3;3), inv(3), del(5q)

- No history of myeloid

clonal neoplasm (aside

fromMDS-RS)

- Relatively better

prognosis

- Clinical findings

include arterial and

venous thrombosis,

vasomotor symptoms,

bleeding from aVWS

- Majority (∼90%) have

NK

- High risk

abnormalities: any

cytogenetic

abnormality

- Most common:

- Splicingmutations,

namely SF3B1
- JAK-STAT pathway

mutations: JAK2, CALR,
MPL

- ASXL1,DNMT3A, TET2
- High risk mutations:

ASXL1, SETBP1

- SF3B1 specifically
associatedwith

increased thrombosis

risk

MDS/MPN-

U
- Dysplastic features in at

least one blood cell type

- Prominent

myeloproliferative

feature(s)

- No isolated del(5q)

- Not fitting any other

category

- MedianOS 12.4

months

- Outcomesmore

favorable in

patients< 60 years old,

with thrombocytosis,

without circulating

blasts,<5%BMblasts

- Most patients have NK

(49%–71%)

- Most common

abnormalities: trisomy

8,−7, CK

- Most common: ASXL1,
TET2, JAK2, EZH2,
SRSF2,NRAS, SETBP1,
RUNX1, STAG2,U2AF1,
TP53

- High risk: presence of

onemutation, TP53

- Studies have identified

subgroups based on

genetic/clinical

features resembling

otherMDS/MPNs

Abbreviations: aCML, atypical chronic myeloid leukemia; aVWS, acquired von Willebrand syndrome; BM, bone marrow; CK, complex karyotype; CMML,

chronicmyelomonocytic leukemia; CNL, chronic neutrophilic leukemia;HCT, hematopoietic cell transplantation;HMA, hypomethylating agents; JMML, juve-

nile myelomonocytic leukemia; LOH, loss of heterozygosity; MDS, myelodysplasia; MPN, myeloproliferative neoplasm; NK, normal karyotype; OS, overall

survival; PB, peripheral blood; RS-T, ring sideroblasts with thrombocytosis; U, unclassifiable.

1.4 MDS/MPN-RS-T

Only upgraded from a provisional entity in the 2016 WHO classifi-

cation of myeloid neoplasms [1], MDS/MPN-RS-T is essentially the

epitome of overlap between these two disease spectrums. As its name

suggests, greater than 15% RSs are found on marrow iron stain [1].

These erythroid precursors have a perinuclear ring of blue granules on

Prussian blue stain, reflective of mitochondrial iron overload resulting

in dyserythropoiesis [55]. Proliferative mutations drive elevated

platelet counts, arterial and venous thrombosis [56,57], vasomotor

symptoms, and bleeding from acquired vonWillebrand syndrome [58].

Relative to the other MDS/MPNs, prognosis is better (median OS 76

months) [57].

Similar to its phenotype, the genotype of this disease is a meld-

ing of stereotypical dysplastic and proliferative genetic aberrations.

Founder mutations are frequently in genes involved in RNA splicing:

SF3B1 is found in about 90% of patients [4], and SF3B1WT patients typ-

ically harbor other spliceosome mutations [59]. SF3B1 encodes sub-

unit 1 of the splicing factor 3b complex and may cause RS formation

via downregulation of key mitochondrial gene networks [60]. Curi-

ously, in vitro experiments showed hotspot SF3B1 mutations induce

cellular metabolic changes by aberrant mRNA splicing, causing defects

in the synthesis of the non-essential amino acid serine and thereby

inducing a vulnerability to serine deprivation [61]. Proliferative fea-

tures are attributed to mutations involving the JAK-STAT pathway,

with about half of patients having JAK2 V617F(59) or less frequently

(<10%)mutations inCALR orMPL [1]. Onemodel suggests that disease

develops from an SF3B1MT clonewith RSs, which then develops throm-

bocytosis following somatic mutation in the JAK-STAT pathway [62].

Mutation in DNA (cytosine-5)-methyltransferase 3 alpha

(DNMT3A), a gene involved in epigenetic regulation via DNA methy-

lation, is associated with both MDS/MPN-RS-T and myelodysplasia

with RSs (MDS-RS) [63]. Palomo et al found that DNMT3A was always

the founder mutation inMDS/MPN-RS-T patients who had it, whereas

ASXL1 and TET2 never originated prior to SF3B1 [3]. Perhaps DNMT3A

mutation is well-suited to promoting a RS phenotype; patients with

a DNMT3AMT/SF3B1MT genotype were found to have a higher per-

centage of RS than DNMT3AWT/SF3B1MT cases [59]. Although JAK2

mutation is classically associated with thrombosis in MPNs, there is

evidence that SF3B1 also increases the thrombosis risk in both MDS-

RS and MDS-RS-T [56,63]. Unlike CMML, the RAS-MAPK pathway is

not commonly affected inMDS/MPN-RS-T [3].

Like in CMML, cytogenetic abnormalities are uncommon and found

in about only 10%–20% of patients [3,4,55]. Abnormal karyotype and

mutations in ASXL1 and SETBP1 are associated with worse OS in this

population [3,64]. These mutations were found in 29% and 13% of

patients in one cohort, respectively [64]. EZH2 also correlates with

worse OS [3].
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F IGURE 1 Diagram depicting theMDS/MPN as defined by genetic and clinical features, whichmay overlap themselves due to genetic
heterogeneity or early-stage disease.Within these are several entities (in quotationmarks) that represent diseases with similar genetics and
clinical characteristics, but not meetingWHO criteria
Abbreviations: aCML, atypical chronic myeloid leukemia; CMML, chronic myelomonocytic leukemia; CNL, chronic neutrophilic leukemia; JMML,
juvenile myelomonocytic leukemia;MDS, myelodysplastic syndrome;MPN, myeloproliferative neoplasm;MDS-RS, myelodysplasia with ring
sideroblasts; MDS/MPN-RS-T, ring sideroblast with thrombocytosis; MDS/MPN-U, unclassifiable.

1.5 MDS/MPN-U

The leastwell-defined of the chronicmyeloid neoplasms,MDS/MPN-U

is defined as a malignancy with dysplastic features in at least one cell

lineage, prominent myeloproliferative features (either platelet count

≥450,000/µl or WBC ≥13,000/µl), and <20% blasts in blood and bone

marrow. Splenomegaly may be seen. Patients must not have a history

of eitherMDS orMPNnor recent cytotoxic growth factor therapy. The

median OS is 12.4 months with thrombocytosis being an independent

positive prognostic factor [65].

Thegenetic abnormalities found inMDS/MPN-Uarebroad.ASXL1 is

the most frequent mutation, occurring in about 30%–50% of patients.

Others includeTET2, JAK2,EZH2, SRSF2,NRAS, SETBP1,RUNX1, STAG2,

U2AF1, and TP53 [2–4,66]. Diploid cytogenetics are seen in 49%–71%

of patients [2–4,65], and about 12% of patients have CK [2,3,65]. CBL

andTP53 are independent risk factors forworseprognosis [2],whereas

ASXL1, EZH2, and STAG2 mutations are associated with worse sur-

vival [3].

In a large (n = 106) study of MDS/MPN-U clonal architecture,

unclassifiable cases actually segregated into subgroups that fit the

otherMDS/MPNs based on genetic and clinical features [3]: 17% had a

CMML-like signature, 33% were aCML-like, and 11% had MDS/MPN-

RS-T-like disease. The CMML-like disease, for instance, included

patients with either biallelic TET2 mutations, TET2 and SRSF2 co-

mutation, or RUNX1 and SRSF2 co-mutation; survival curves were sim-

ilar between this group and WHO-classified CMML patients. Patients

with mono- or biallelic mutations in TP53 segregated into a fourth

group (13%), characterizedbyworse anemia, higher bonemarrowblast

percentage, and worse prognosis [3]. Finally, the remaining 26% of

patients more frequently had mutations in JAK2, U2AF1, and ASXL1

and were more likely to have thrombocytosis. Survival in these “other”

patients trended worse than CMML-like patients but was better than

aCML-like patients.

2 DISCUSSION

It was not until 2001 that the WHO re-classified CMML from a sub-

set of MDS to the newly created MDS/MPN category [67]. Since then,

there have been significant advancements in understanding this group

of neoplasms (Table 1) and an increase in clinical trials targeting CMML

patients in particular. There remains a need to better characterize

MDS/MPNs by genetic features—to more accurately understand the

natural history of the disease and ensure patient eligibility for clinical

trials and FDA-approved treatment options [68]. Additionally, genetics

plays a critical role in disease prognostication; for instance, the worse
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outcomes seen among men with MDS/MPN as compared to women

may be explained by gender-related differences in somatic mutation

profiles [69]. Our review highlights the advances in our understanding

of the genetics of these diseases.

As observers of natural phenomena, our inclination is to categorize

disease based on features such as cell count abnormalities, morphol-

ogy, and genetic signatures. If the cutoffs for these characteristics are

not specific enough, then disease classifications become less meaning-

ful. However, if the prescribed cutoffs are too restrictive, meaningful

data about cases that fall outside rigid parameters may be lost into an

exclusionary “wastebasket” category. Thoughtfully liberalizing criteria

can notably help encompass cases that may be at a more immature

stage, as done in 2016: The criteria for MDS-RS were adjusted from

requiring≥15%RSonmarrowexamtoneeding≥5%RS in thepresence

of SF3B1mutation [1]. Conceivably, these cases represent disease that

may eventually progress to≥15%RS or simply have prognoses that are

not meaningfully different than those defined by the pre-2016 classifi-

cations.

Evidence suggests that such disease exists in theMDS/MPNs and is

frequently labeled under alternative categories (Figure 1). For exam-

ple, “oligomonocytic” CMML shares genetic and clinical features with

CMML but does not meet the WHO criteria due to absolute mono-

cytosis < 1000/µl [70,71], likely representing early-phase dysplastic-

type CMML. A similar example is found within a group of MDS/MPN-

U patients with ≥15% RS on bone marrow and enriched for JAK2 and

SF3B1 mutations. Although they did not meet criteria for MDS/MPN-

RS-T due to lack of thrombocytosis or other features, they had prog-

noses similar to an independent cohort of patientswithMDS/MPN-RS-

T [2].

Our current classifications likely do not allow for enough nuance,

too. Although there is evidence that the less well-defined chronic

myeloid malignancies are distinct entities based on cytogenetic risk

stratification and leukemia free survival [39], a more recent study

found significant heterogeneity among patients with CNL, aCML,

MPN-U, MDS/MPN-U, and CMML [15]. Based on whole exome and

RNA sequencing, researchers identified at least 15 groups of patients

with different combinatorial mutations patterns, suggesting these dis-

eases represent a continuum as opposed to distinct pathologies. Per-

haps disease classification for these more genetically diverse entities

should be more granular by specifying aberrations in their names, as

donewith some AML subtypes [1].

3 SUMMARY AND FUTURE DIRECTIONS

TheMDS/MPNs are rare and heterogeneous, making systematic study

more difficult relative to other myeloid malignancies. Advances in

gene sequencing technology along with large multi-institution col-

laborations have shed light on these illnesses: We now know that

most have signaling gene mutations responsible for proliferative phe-

notypes, and many have gene mutations affecting epigenetic regula-

tion, causing dysplastic features. These syndromes likely often evolve

out of preexisting clones that mature into neoplasms with pheno-

types based on the order of mutation acquisition and interaction

between epigenetic and genetic factors. Genetic studies will likely aid

in revising WHO criteria so as to more holistically classify the overlap

syndromes.
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