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Superwetting surfaces have received increasing attention because of their rich

practical applications. Although various superwettabilities are independently achieved,

the relationship between those superwettabilities is still not well-clarified. In this

mini-review, we show that superhydrophilicity, underwater superoleophilicity, underwater

superaerophilicity, superhydrophobicity, underwater superoleophobicity, and underwater

superaerophobicity can be obtained on a same structured surface by the combination

of hierarchical surface microstructures and proper chemistry. The relationship and

interconversion between the above-mentioned different superwettabilities are also

well-discussed. We believe that the current discussion and clarification of the relationship

and interconversion between different superwettabilities has important significance in the

design, fabrication, and applications of various superwetting materials.

Keywords: superhydrophilicity, superhydrophobicity, underwater superoleophilicity, underwater

superoleophobicity, underwater superaerophilicity, underwater superaerophobicity

INTRODUCTION

As three common states of matter, solid, liquid, and gas form different kinds of solid/liquid/gas
interfaces. The materials with extreme wettability have received increasing attention
because of their wide practical applications in waterproof coating (Yong et al., 2017c),
anti-icing/snowing/fogging (Lv et al., 2014; Kreder et al., 2016; Chu et al., 2019), self-cleaning
coating (Nishimoto and Bhushan, 2013; Yong et al., 2013c, 2014b; Ragesh et al., 2014), the
manipulation of small droplets (Wang et al., 2011; Yong et al., 2013b, 2015b), corrosion resistance
(Pan et al., 2013; Zhan et al., 2018), oil/water separation (Xue et al., 2014; Wang B. et al., 2015; Yong
et al., 2016a,b, 2018e, 2019c; Bian et al., 2020), fog collection (Zhang et al., 2017), cell engineering
(Stratakis et al., 2011; Shen et al., 2012), anti-biological adhesion (Genzer and Efimenko, 2006;
Yong et al., 2018f), drag reduction in water (Shi et al., 2007), lab on a chip (Kwon et al., 2007;
Vitale et al., 2013), microfluidic system (Songok et al., 2014; Wang S. et al., 2015), liquid patterning
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(Jokinen et al., 2008; Yong et al., 2015c), enhanced buoyancy
(Yong et al., 2014c; Zhan et al., 2019), submarine gas
collection (Yong et al., 2018c,d). After billions of years of
evolution, creatures in nature have nearly perfect structure
and function. Wherein, many organisms have evolved special
surface wettability. For example, lotus leaf has the self-cleaning
function (Barthlott and Neinhuis, 1997), water strider can walk
on water surface (Gao and Jiang, 2004), the butterfly can shake
off raindrops and fly in the rain (Zheng et al., 2007), the eyes of
mosquito can repel fog (Gao et al., 2007), the fish scale cannot
be polluted by oil in water (Liu et al., 2009; Yong et al., 2018b),
and desert beetle, cacti, and spider silk have the capacity of
harvesting water in dry air (Parker and Lawrence, 2001; Zheng
et al., 2010; Ju et al., 2012). It is demonstrated that the surface
wettability is primarily determined by the surface composition
and the surface morphology of a solid substrate (Yong et al.,
2013a; Bellanger et al., 2014; Jiang et al., 2015; Wen et al.,
2015; Su et al., 2016; Bai et al., 2020). The study related to the
surface wettability becomes a current research focus. Inspired by
animals and plants in nature, various kinds of superwettabilities
have been achieved by different microfabrication methods,
such as superhydrophobicity, superhydrophilicity, underwater
superoleophobicity and superoleophilicity, and underwater
superaerophobicity and superaerophilicity (Teisala et al., 2014;
Tian et al., 2014; Yong et al., 2014a, 2019b; Wang J. N.
et al., 2015; Liu et al., 2017). Water droplet, oil droplet, or
gas bubble on the material surfaces with superhydrophilicity,
superoleophilicity, or superaerophilicity has a contact angle
(CA) <10◦, while it has a CA larger than 150◦ on the
material surfaces with superhydrophobicity, superoleophobicity,
or superaerophobicity, respectively (Tian et al., 2014; Wen
et al., 2015; Yong et al., 2015a, 2017a,c; Su et al., 2016; Liu
et al., 2017). Although these superwettabilities are independently
achieved, the relationship between different superwettabilities
is still not well-discussed. The clear relationship between
different superwettabilities is important for the design of
various superwetting materials and the interconversion between
different superwettabilities.

In this review, the relationship and the interconversion
between different superwettabilities are discussed and
summarized. Taking the hydrophilic Al substrate and the
hydrophobic polydimethylsiloxane (PDMS) substrate as the
examples, we show that various kinds of superwettabilities
can be obtained on the same structured surface. The
formation mechanism of different superwettabilities and
their interconversion are well-discussed and clarified.

ACHIEVEMENT OF VARIOUS
SUPERWETTABILITIES

Superwettability can be designed by combining proper surface
microstructures and chemistry (Yong et al., 2013a, 2017c;
Bellanger et al., 2014; Jiang et al., 2015; Wen et al., 2015; Su
et al., 2016; Bai et al., 2020). Al is a typical hydrophilic substrate.
Figures 1A,B shows the scanning electron microscopy (SEM)
images of the Al surface with rough surface microstructure

(Yong et al., 2019a). The surface microstructure is created by
laser ablation. There are periodic microgrooves with a width of
∼35µm, a depth of ∼21µm, and a period of 40µm forming on
the Al surface. The top of the ridges between the microgrooves is
randomly coated with rich nanoparticles. A small water droplet
spreads out on the structured Al surface after touching the
surface, with a final water CA (WCA) of 1.7◦ (Figure 1C). The
surface microstructure is fully wet by water, so the rough Al
surface shows superhydrophilicity. The underwater wettability of
such a superhydrophilic Al surface is investigated by immersing
the sample in water. Oil droplets can maintain a ball-like shape
on the sample and the oil CA (OCA) is measured to be 155.1◦

in a water medium (Figure 1D). Once the sample is tilted by
1.9◦, the oil droplet can roll away freely, so the sliding angle
(SA) is only 1.9◦. The result reveals that the rough Al surface
exhibits underwater superoleophobicity and very low adhesion to
oil. Such an underwater superoleophobic surface has an excellent
oil-repellent ability in a water medium. The behavior of the
bubble on the superhydrophilic Al surface in water is similar to
that of underwater oil droplets. Underwater superaerophobicity
is exhibited by the structured Al surface. The bubble on the
sample surface has a bubble CA (BCA) of 154◦ (Figure 1E)
and SA of 0.5◦ in water. Therefore, a hierarchical rough Al
substrate simultaneously has superhydrophilicity, underwater
superoleophobicity, and underwater superaerophobicity.

Fluoroalkylsilane modification is usually adopted to lower
the surface energy of a material. The fluoroalkylsilane treatment
switches the structured Al surface from a superhydrophilic state
to a superhydrophobic state. The water droplet on the resultant
surface has a WCA of 155.3◦ (Figure 1F) and can roll off
easily with a SA of 6.3◦. The fluoroalkylsilane-modified rough
Al surface exhibits ultralow adhesive superhydrophobicity and
excellent repellence to water. As the superhydrophobic surface is
dipped into water, a mirror-like reflectance appears on the sample
surface, because a layer of air persists the superhydrophobic
surface and the water (Larmour et al., 2007; Zhao et al.,
2010). When an oil droplet touches the microstructure of the
superhydrophobic surface in water, it will spread out along the
sample surface and wet the surface microstructure. The OCA
is as low as 2.5◦ to this oil droplet, indicating that the surface
shows superoleophilicity underwater (Figure 1G). Similar to the
underwater oil wettability, if a small bubble is dispensed on the
superhydrophobic Al surface in water, it will also spread out
and like being absorbed by the surface, with the BCA of 9.4◦

(Figure 1H). The surface exhibits underwater superaerophilicity
to bubbles. Therefore, the fluoroalkylsilane-modified structured
Al surface simultaneously has superhydrophobicity, underwater
superoleophilicity, and underwater superaerophilicity.

Different from the inherently hydrophilic Al substrate, the
PDMS is a kind of intrinsic hydrophobic substrate. Figures 1I,J
shows the SEM images of a structured PDMS surface (Yong
et al., 2017b). The surface texture is also induced by laser
microfabrication. The structured surface is coated with a
large number of microscale coral-like structures with several
micrometers in size. The surface of the microcorals is further
decorated with rich nanoscale protrusions. The hierarchical
rough microstructure endows the PDMS surface with excellent
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FIGURE 1 | Different superwettabilities on the structured surface. (A,B) SEM images of the hydrophilic Al substrate with a hierarchical surface microstructure. (C,F)

Water droplet on the structured Al surface in air. (D,G) Underwater oil droplet on the structured Al surface. (E,H) Underwater gas bubble on the structured Al surface.

The samples in (C–E) are originally structured Al surface, while the samples in (F–H) are further treated by hydrophobic modification. (I,J) SEM images of the

hydrophobic PDMS substrate with a hierarchical surface microstructure. (K,N) Water droplet on the structured PDMS surface in air. (L,O) Underwater oil droplet on

the structured PDMS surface. (M,P) Underwater gas bubble on the structured Al surface. The samples in (K–M) are originally structured PDMS surface, while the

samples in (N–P) are further treated by hydrophilic modification. Reproduced from Yong et al. (2019a) with the permission of Guo et al. Reproduced from Yong et al.

(2017b) with the permission of Chen et al.

superhydrophobicity. The water droplet on the structured surface
has a WCA of 155.5◦ (Figure 1K) and a SA of 2◦. In a water
medium, when an oil droplet or a bubble is released onto the
superhydrophobic PDMS substrate, the oil droplet or a bubble
can spread out immediately and be completely absorbed by
the sample surface. The measured OCA and the BCA are only
6.5◦ (Figure 1L) and ∼0◦ (Figure 1M), respectively. Therefore,
the underwater superoleophilicity and superaerophilicity are
also exhibited by the structured PDMS surface. The surface
energy of the PDMS can be increased by short-time oxygen
plasma irradiation (Wu et al., 2011; Cai et al., 2014). Oxygen
plasma irradiation switches the structured PDMS surface from
a superhydrophobic state to a superhydrophilic state. The water
droplet can fully wet the surface with aWCA of 4.5◦ (Figure 1N).
Such a superhydrophilic PDMS surface has great repellence
to both oil droplets and gas bubbles in water. Underwater
oil droplet and bubble have a spherical shape on such PDMS

surface, with the OCA of 158◦ (Figure 1O) and BCA of 156◦

(Figure 1P), respectively. Both oil droplets and bubbles can easily
roll away from a 3◦ tilted sample surface (SA = 3◦). Therefore,
the superhydrophilic PDMS surface also exhibits underwater
superoleophobicity and superaerophobicity.

RELATIONSHIP BETWEEN DIFFERENT
SUPERWETTABILITIES

Different superwettabilities (e.g., superhydrophilicity,
underwater superoleophilicity, underwater superaerophilicity,
superhydrophobicity, underwater superoleophobicity, and
underwater superaerophobicity) have been achieved by
combing hierarchical microstructure and proper chemistry.
The relationship between these different superwettabilities is
summarized in Figure 2 (Yong et al., 2017b). The rough surface
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FIGURE 2 | Relationship and interconversion of different superwettabilities. (A) Water droplet on the superhydrophilic microstructure. (B,E) Immersion of the

superhydrophilic surface in water. (C) Placing an oil droplet on the superhydrophilic microstructure underwater. (D) Variation of the oil droplet in (C) over time. (F)

Releasing a gas bubble on the superhydrophilic microstructure underwater. (G) Variation of the bubble in (F) over time. (H) Water droplet on the superhydrophobic

microstructure. (I,L) Immersion of the superhydrophobic surface in water. (J) Placing an oil droplet on the superhydrophobic microstructure underwater. (K) Variation

of the oil droplet in (J) over time. (M) Releasing a gas bubble onto the superhydrophobic microstructure underwater. (N) Variation of the bubble in (M) over time.

Reproduced from Yong et al. (2017b) with the permission of Chen et al.

microstructure can amplify the natural wettability of a substrate
(Yong et al., 2013a; Bellanger et al., 2014; Jiang et al., 2015;
Wen et al., 2015; Su et al., 2016; Bai et al., 2020). The intrinsic
hydrophilicity of a substrate can be enhanced to extreme state
(i.e., superhydrophilicity) by surface microstructure; that is, the
synergistic effect of the rough microstructure and high-surface-
energy chemical composition produces a superhydrophilic
surface (Figure 2A). Water droplets can completely wet the
superhydrophilic surface microstructure at the Wenzel state
in the air (Wang and Jiang, 2007; Yong et al., 2017c, 2018a).
After the immersion in water, the superhydrophilicity allows
the surface to be fully wet by water and the space of the
microstructure to be filled with water (Figures 2B,E). The water
likes being trapped by the surface microstructures, forming a
tapped water cushion. As an oil droplet or a bubble is released
on the superhydrophilic surfaces in water, the trapped water
cushion filled in the interspaces of the surface microstructures
will prevent the oil droplet/bubble from effectively touching

the surface microstructure, because of the inherent repellence
between water and oil droplet/bubble. The oil and bubble are
only allowed to touch the peak part of the surface microstructure
(Figures 2C,F). The underwater oil droplet and bubble just
maintain near-spherical shapes to reach minimum free energy.
Their shapes are not changed over time (Figures 2D,G). In
such a three-phase (solid/water/oil or solid/water/gas) system,
the underwater oil droplet (bubble) is at the underwater
version of Cassie state on the structured surface (Wang
and Jiang, 2007; Yong et al., 2017c, 2018a). As a result, the
superhydrophilic microstructure presents superoleophobicity
and superaerophobicity underwater.

By lowering surface energy (such as fluoroalkylsilane
modification), the superhydrophilic microstructure can be
switched to a superhydrophobic state. The superhydrophobicity
results from the synergistic action of the rough hierarchical
microstructures and the low-surface-energy chemical
composition. Water droplets cannot wet the superhydrophobic
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surface and can just touch the peaks of the surface microstructure
(Figure 2H). The wetting between the water droplet and the
superhydrophobic surfaces belongs to the Cassie state (Wang and
Jiang, 2007; Yong et al., 2017c, 2018a). An air cushion trapped
in the superhydrophobic microstructure forms underneath the
water droplet. The trapped air layer will develop to a surrounding
air layer on the sample surface once the superhydrophobic
surface is dipped into water, no matter the superhydrophobic
surface faces down or up (Figures 2I,L). In a water medium, if an
oil droplet is dispensed onto the superhydrophobic surfaces, the
capillary action and pressure will drive the oil to enter into the
trapped air layer and immediately spread out along this air gap
(Figure 2J). As the oil droplet fully spread out, a very small OCA
value is obtained (Figure 2K). Therefore, the superhydrophobic
surface reveals underwater superoleophilicity. The behavior of an
underwater bubble is very similar to that of oil droplets. Once a
small bubble touches the superhydrophobic surface underwater,
the gas in the bubble will enter into the trapped air layer under
pressure (Figure 2M) and finally merge with the air previously
trapped on the surface microstructure (Figure 2N). The bubble
likes being completely absorbed by the superhydrophobic
surface, resulting in the underwater superaerophilicity of the
sample surface.

It is demonstrated that the superhydrophobic surface
usually exhibits both underwater superoleophilicity and
superaerophilicity. By contrast, the superhydrophilic
surface usually shows both underwater superoleophobicity
and superaerophobicity. The superhydrophilicity and
superhydrophobicity of a structured surface can be
transformed from one state to another state by simple
hydrophobic or hydrophilic modification. As a result, the
reversible transformation between different wettabilities
can be achieved. For example, the laser-structured
PDMS surface shows superhydrophobicity, underwater
superoleophilicity, and underwater superaerophilicity
(Yong et al., 2017b, 2018c). Hydrophilic modification (e.g.,
oxygen plasma irradiation) changes the surface wettability
to superhydrophilicity, underwater superoleophobicity,
and underwater superaerophobicity. Interestingly, after
hydrophobic modification (e.g., storage in the air), the
original superhydrophobicity, underwater superoleophilicity,
and underwater superaerophilicity can completely recover.
Therefore, the same rough microstructure can have various
superwettabilities. The superhydrophilicity, superoleophilicity,

and superaerophilicity enable thematerials to have the capacity of
capturing, absorbing, and collecting water droplets, oil droplets,
and gas bubbles. On the contrary, the superhydrophobicity,
superoleophobicity, and superaerophobicity allow the materials
to greatly repel water, oil, and bubble.

CONCLUSIONS

In conclusion, we discuss and clarify the relationship and
the interconversion of superhydrophilicity, underwater
superoleophilicity, underwater superaerophilicity,
superhydrophobicity, underwater superoleophobicity,
and underwater superaerophobicity. These different
superwettabilities can be designed on a same structured surface
by the combination of hierarchical surface microstructures
and proper chemistry. It is revealed that the superhydrophobic
surfaces usually exhibit both underwater superoleophilicity and
superaerophilicity, whereas the superhydrophilic surfaces usually
show underwater superoleophobicity and superaerophobicity.
The superhydrophilicity and superhydrophobicity of a structured
surface can be transformed from one state to another state by
simple hydrophobic or hydrophilic modification. Therefore,
various superwettabilities can be achieved on a same rough
microstructure and reversibly convert from one state to other
states. We believe that the relationship between different
superwettabilities has great guiding significance for the design
of superwetting materials and the applications of the artificial
superwetting materials.
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