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Detecting changes in facial 
temperature induced by a sudden 
auditory stimulus based on deep 
learning-assisted face tracking
Saurabh Sonkusare1,2, David Ahmedt-Aristizabal   3, Matthew J. Aburn1, Vinh Thai Nguyen   1,  
Tianji Pang4, Sascha Frydman1, Simon Denman3, Clinton Fookes3, Michael Breakspear1,5 & 
Christine C. Guo   1,4

Thermal Imaging (Infrared-Imaging-IRI) is a promising new technique for psychophysiological research 
and application. Unlike traditional physiological measures (like skin conductance and heart rate), it 
is uniquely contact-free, substantially enhancing its ecological validity. Investigating facial regions 
and subsequent reliable signal extraction from IRI data is challenging due to head motion artefacts. 
Exploiting its potential thus depends on advances in analytical methods. Here, we developed a novel 
semi-automated thermal signal extraction method employing deep learning algorithms for facial 
landmark identification. We applied this method to physiological responses elicited by a sudden 
auditory stimulus, to determine if facial temperature changes induced by a stimulus of a loud sound can 
be detected. We compared thermal responses with psycho-physiological sensor-based tools of galvanic 
skin response (GSR) and electrocardiography (ECG). We found that the temperatures of selected facial 
regions, particularly the nose tip, significantly decreased after the auditory stimulus. Additionally, 
this response was quite rapid at around 4–5 seconds, starting less than 2 seconds following the GSR 
changes. These results demonstrate that our methodology offers a sensitive and robust tool to capture 
facial physiological changes with minimal manual intervention and manual pre-processing of signals. 
Newer methodological developments for reliable temperature extraction promise to boost IRI use as an 
ecologically-valid technique in social and affective neuroscience.

Our lexicon is abundant with phrases that ascribe emotions to bodily changes: “pounding heart” for fear, “sweaty 
palms” for anxiety, or “going red in the face” for embarrassment. These phrases embody various distinct physio-
logical systemic changes. In psycho-physiological research, the measures to capture heart related changes (heart 
rate-HR) and sweat related responses have been traditionally quantified with well validated measures such as 
electro-cardiogram (ECG) and skin conductance (galvanic skin response-GSR) respectively. However, the face 
is a primary region for the expression of emotional states, leading to changes in facial cutaneous blood flow 
(“blushing” or “turning pale”). In mammals, surface body temperature is constantly influenced by the autonomic 
nervous system (ANS) through the control of blood perfusion to the surface of the skin, supporting the use of 
thermal imaging (infra-red-imaging-IRI) in psychophysiological research1–4. A thermal imaging technique uses 
an infra-red camera to capture temperature variations. IRI of face thus has the potential to be a complimentary 
tool to GSR and HR to quantify physiological status of the body.

Psychophysics measurement techniques are essential to the investigation of the bodily responses that are 
an integral component of emotional experience5 and their dysfunctions in patients with affective disorders6,7.  
However, most conventional psychophysics techniques (GSR, HR) require sensors attached to the body 
and could compromise the emotional experience and reduce the ecological validity of the experiments8. 
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Non-invasive imaging technologies like IRI could overcome the requirement for attaching sensors and improve 
the ecological-validity of psychophysics studies. Although IRI remains largely unexplored, a few studies have 
demonstrated its utility in ecologically valid studies to quantify the facial temperature profiles during discrete 
socio-emotional states9–11. However, being contact free, IRI also poses unique methodological challenges, for 
example motion tracking of the face and the reliable extraction of temperature signals from specific facial regions 
(nose, cheeks). This has perhaps stalled its widespread adoption in psychophysiological research.

Previous IRI studies of face have mostly relied on manual tracking to locate and extract thermal data, such 
that investigators manually place regions of interest (ROIs) on the intended region frame by frame12. This method 
depends heavily on clear facial landmarks to guide the manual ROI placement and is thus user dependent and 
time consuming, especially if data is acquired at a high sampling rate. Other tracking methods have used a 
cross-correlation template matching to automate tracking but which still requires visual inspection to reliably 
extract temperature profiles9,10. Moreover, these limitations are further exacerbated in ecological experiments if 
participants are free to move, requiring substantial manual interventions to correct head motion artefacts9,13. This 
has, perhaps, resulted in existing IRI literature focusing mainly on the nose tips, where landmarks are obvious, 
and is limited and inconsistent for other facial regions like cheeks or forehead where landmarks cannot be easily 
defined. While recent studies have begun to overcome these limitations using semi-automatic methods, they 
remain vulnerable to subjective bias and dependent on substantial manual labour.

Recent research in computer vision has made substantial progress in automatic face recognition from images 
captured in uncontrolled conditions (referred to as “in-the-wild”)14. The core step of these techniques is facial 
landmark detection (detection and localization of certain key points on the face). With recent deep learning 
algorithms, automatic facial landmark detection can closely match human manual annotation15–18. While these 
approaches are well validated on high-fidelity, full colour facial images, application to thermal imagery has been 
largely unexplored. Infra-red facial images are sensitive to the surrounding temperature and contrast and they 
do not provide the clear geometric and appearance patterns of faces that are present in visible spectrum images19. 
This transfer of knowledge from visible spectrum domain to thermal domain is thus a non-trivial problem. Here, 
we develop a novel deep learning-assisted facial landmark detection method for IRI of the face, which in turn 
is used to extract thermal signals from the facial regions. To validate our method, we apply it to quantify phys-
iological response induced by a sudden auditory stimulus of a loud sound, which evokes a robust and reliable 
physiological response20. While previous IRI studies have reported temperature decreases in the nose tip21,22, 
comprehensive analyses across facial regions, especially the temporal dynamics, are few and inconsistent4,22,23. 
Hence, we use this new technique here to characterise dynamic changes in temperature across different facial 
regions (nose-tip, right and left cheeks, forehead) and bench-mark these against conventional GSR and HR 
measurements.

Materials and Methods
Subjects.  20 healthy human adult participants (11 females, aged 22–30 years, mean = 25.7 years) were 
recruited for this study. Written, informed consent was obtained from all participants. All participants had nor-
mal or corrected-to-normal vision. Exclusion criteria were habitual cigarette smoking and chronic illness (e.g., 
cardiovascular or thyroid conditions), psychological disorders (e.g. depression or anxiety) or regular medications 
assessed by self-report. The study was approved by the Human Research Ethics Committee of QIMR Berghofer 
and performed in agreement with the Declaration of Helsinki. The subjects were given the choice to withdraw 
from the study at any time. Each study participant was compensated with an AUD $50 supermarket voucher 
for their time. Informed consent to publish identifying images (RGB and thermal) was obtained from subject 
concerned.

Equipment.  The experimental room was kept at a steady temperature and humidity (22 ± 2 °C; 55–70% rela-
tive humidity). ECG and GSR recordings were acquired using National Instruments (NI). GSR was recorded with 
two Ag/AgCL electrodes (0.8–1 cm diameter) filled with a conductive paste and attached to the distal phalanges 
of the index and ring fingers of the subject’s left hand. GSR was recorded using a standard constant voltage system 
of 0.5 V and recordings were continuously digitized by an A/D converter with a sampling rate of 2 KHz. To collect 
ECG data, electrodes were attached to the mid-upper right arm, left wrist, and a mid-upper left arm. To minimize 
motion artefacts, participants’ hands rested on chair hand-rests. ECG data was also recorded with a sampling rate 
of 2 KHz.

Infra-red images of face were acquired using a FLIR A615 camera with a 15 mm lens, 640 × 480 pixels, tem-
perature range −20 to 2000 °C and NEDT (noise equivalent differential temperature) < 0.05 °C @ 30°. Emissivity 
was set at 0.98 and this camera had emissivity correction variable from 0.01 to 1.0. The sampling rate was 5 Hz. 
Red-Green-Blue (RGB) visible spectrum video images of the face were acquired by Allied Vision PIKE camera, 
35 mm lens, and resolution of 800 × 1000 pixels at a sampling rate of 5 Hz.

A novel in-house integrated hardware and software experimentation platform, LabNeuro, was used to inte-
grate these multimodal data. CompactDAQ modular IO hardware and software for the system was written using 
NI LabVIEW and NI Biomedical Toolkit.

Experimental protocol.  Subjects were asked to avoid alcoholic and caffeinated beverages for at least 2 hours 
prior to the experiment to minimize the vasoactive effects of these substances on skin temperature. Testing was 
only performed in the afternoon between 2–5 pm to avoid potential effects of the circadian rhythm. Prior to 
the experiment, subjects sat quietly in a chair for about 5 minutes to acclimatize to the experimental setting. 
Subjects were requested to assume a comfortable posture in the chair while the ECG and GSR electrodes were 
attached to arms and fingers respectively. The IRI camera and a video camera were then manually focused on 
the face. The researcher then left the room but retained a visual contact with the participant via a wall-mounted 
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camera. Participants were requested to passively view a 60-second video of ocean waves. A loud gun-shot sound 
[80 dB (sound pressure level-SPL)] was presented at the 40th second unbeknownst to the subjects (Fig. 1). The 
calming ocean video was chosen to relax the subject, as there can be spontaneous fluctuations in GSR levels 
depending on subject’s mental status. Prior reports employing different paradigms, thermal imaging hardware, 
sampling rate and analytical methodology, varied considerably regarding the latency and recovery of thermal 
imaging responses4,21–25. Twenty seconds post-stimulus was thus deemed to be sufficient time to prompt a thermal 
response. Stimuli were presented on a 24′ computer screen placed approximately 40 cms in front of the subject. 
The sound was presented via two loudspeakers each placed beside the stimulus screen. Only one trial of a sudden 
auditory sound was presented. The duration of the sound stimulus was 1 second with an instantaneous rise (rise 
time of 0.03 seconds) and fall time of 0.36 seconds.

Data acquisition and pre-processing.  The ECG signal was pre-processed using QRSTool software26 to 
detect the R peaks with the ability to manually correct for missed peaks. Inter-beat interval (IBI) time series was 
then computed from this and converted to individual subject’s Z-scores. R peak data were further analysed using 
HRVAS toolbox27 to obtain heart rate variability (HRV) frequency domain measures. These were calculated via 
the auto-regressive method using a window size of 16 seconds, with 15 samples overlap, nfft of 1024 and cubic 
spline interpolation rate of 2 Hz. Time-frequency decompositions of IBI are typically categorised as high fre-
quency (HF) from 0.15 to 0.4 Hz, low frequency (LF) from 0.04 to 0.15 Hz, and very low frequency (vLF) from 
0.003 to 0.04 Hz28. HR data metrics were computed for the whole 60 seconds but analyses focussed upon a 5 sec-
ond baseline interval before the audio stimulus and the 10 second window immediately post-stimulus.

GSR data were extracted and pre-processed offline using custom programs in MATLAB (The Mathworks, 
USA). The GSR signal was de-trended and low pass filtered at 5 Hz using a zero phase FIR filter EEGLAB29 to 
remove motion artefacts. To minimise inter-subject variability in skin conductance, GSR signals were converted 
to individual Z-scores.

The facial thermal images were visually inspected to assess quality. The image of each thermal video frame 
was converted to a .MAT file of 640 × 480 pixels with each pixel having a temperature value precise to 2 decimal 
places.

Thermal image data extraction and analysis.  A block diagram of the method is displayed in Fig. 2. 
In each sampled frame of the thermal video, key anatomical points on the face, called landmarks, were detected 
using a framework that combines two artificial neural networks (Section 2.5.1). The midpoint between the two 
medial eyebrow landmarks was used as the reference to define four ROIs for each subject (Section 2.5.2). Finally 
the mean temperature in each ROI was computed at each frame, and these four temperature time series, after 
pre-processing, were used to statistically compare pre- and post- stimuli data. RGB images acquired, at the same 
time as the thermal images, were not used for thermal signal extraction and were only used for comparison of 
landmark detection performance on thermal images.

Facial landmark estimation.  Facial landmark estimation techniques are a family of computer vision methods 
which automatically locate key anatomical points of the face, outputting X and Y coordinates of these landmarks 
in each video frame. To apply these techniques, a copy of each thermal image was first enhanced by normalising 
its range to the interval [0,1] and increasing the contrast using the MATLAB (The Mathworks, USA) imadjust() 
function with gamma = 1.0. Pilot testing showed superior landmark detection using this adjustment. The original 
copies of raw images were retained for temperature measurement.

We first applied existing benchmark methods based on deep convolutional neural networks (DCNNs) trained 
for facial landmark localization using RGB (visible spectrum – red, green, and blue light) training images30–32. 
However, these benchmark methods failed to detect landmarks correctly when applied to the IR images 
(Fig. 3a,b).

Previous work on infrared based facial analysis and ROI tracking primarily explored the use of standard 
machine learning techniques33–36. These models allow optimal landmark detection in some cases but need further 

Figure 1.  Experimental paradigm. A calming ocean video clip was played for 60 seconds. A loud gunshot 
sound (80 dB) was played at 40 seconds to mimic a startle response. (An analogous image of the ocean video 
used for the experiment is shown due to copyright issues).
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Figure 2.  The framework for the landmark-based methodology to extract temperature profiles from regions of 
interest. (A) Thermal video of facial responses is acquired. (B) Facial landmarks are located automatically on the 
contrast-enhanced thermal images. For this, model 1 and model 2 are used in cascade framework (C) Four regions 
of interest (ROI) are defined relative to two medial eyebrow landmarks (black dots). (D) Temperature profiles are 
extracted from each ROI based on the mean of the temperature values inside the ROI and pre-processed.

Figure 3.  Facial landmark estimation. Selected samples of the landmarks estimated for (i) RGB and (ii) thermal 
images recorded synchronously. (a,b) Points detected using existing RGB facial landmark estimators illustrate 
the inaccuracy when RGB-trained systems are applied to thermal data (a) Dlib C++ Library31,32.  
(b) OpenFace30). (c) The cascaded-framework presented in this paper; for RGB and thermal images.
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improvement as they rely on data attributes (features) which in the case of IR facial images lack the details present 
in visible spectrum images. Therefore, it is necessary to combine features from visible images and thermal images 
for facial analysis. Hence, we employed this in our second approach and incorporated two landmark estimation 
models in a cascade framework which proved successful.

Model 1: We implemented a deep learning landmark estimation system first trained on publicly available RGB 
images and performed further feature learning to fine-tune it (i.e. to automatically adapt the learned parameters) 
for thermal images. Specifically, a framework known as task-constrained deep convolutional network (TCDCN) 
framework was used first, which is a facial landmark estimator system that returns precise landmark estimations 
of the face. It uses head pose estimation or facial attribute inference as supplementary information for robust 
landmark estimation. The TCDCN was pre-trained with images annotated with five landmarks then fine-tuned 
to predict the dense landmarks of 68 facial points. The feature extraction stage contains 4 convolutional layers, 3 
pooling layers, and 1 fully connected layer. The TCDCN model was trained and tested with the RGB image data-
bases as mentioned in a previous study37. Subsequently, we performed a fine-tuning of the earlier learned filters 
by further training the network with labelled thermal images. For this purpose, we used public thermal image 
databases33,38 as labelled training data. We first applied a face detector to the images to provide an initial config-
uration of the landmarks. The anatomical points labelled for landmarking on the thermal training data sets were 
consistent with the points used in a number of current RGB face image databases, allowing efficient re-training 
of the existing model.

Model 2: We used the OpenPose detector39, which locates facial landmarks by a recently developed method40 
that employs a robust multi-view bootstrapping architecture. This model outputs a confidence map (an image 
where the value at each pixel indicates the certainty of the detector) for each facial landmark and the final esti-
mated position for each landmark is obtained by finding the maximum of the confidence map.

These two models were then combined to improve the accuracy of the facial landmark detection and track-
ing across videos. This cascade framework follows previously established approach37,41. First, we use model 1 to 
detect the landmarks. Then, we eliminate all detected points for which the detection confidence score is lower 
than 0.65. After that, we perform a landmark detection refinement using the model 2. Where valid detections are 
recorded using both methods, the refined point locations are the average of the points detected by the two models. 
If neither detector is able to locate a point with sufficient confidence, then we use the landmark locations with 
the highest score among both models. The output for each frame is a set of 70 facial landmark locations, derived 
from the confidence maps for each detected keypoint. These 70 landmarks correspond to the Multi-PIE 68 point 
mark-up42, with the other two points being the centres of the pupils.

To improve the stability of the facial landmark detection across frames, we performed a final point correction 
similar to the method previously employed30. This uses multiple initialization hypotheses at different orientations 
and picks the final location with the maximum likelihood. If the estimated location in the current frame was 
within five pixels of the previous location, the point was labelled as valid. If a point was rejected, the nearest suit-
able point inside the five pixel radius was selected.

Region of interest (ROI) location.  The medial eyebrow landmarks showed the most consistent and reliable detec-
tion confidence values among all the landmarks and were hence chosen as anchor points for ROI definition. The 
midpoint between the two medial eyebrow landmarks was used as the reference point to define four ROIs: fore-
head, right cheek, left cheek and nose-tip. The size of all ROIs was a circle of 10-pixel radius. Figure 2C illustrates 
the location of the ROIs.

Extraction of temperature profiles.  The mean temperature across all pixels in the ROI was calculated per frame. 
For the frames in which landmarks were not detected, temperature values from previous frame’s ROIs were used. 
Each time series was then corrected for outliers (any point more than 5 standard deviations from the mean of the 
time series), replacing these using cubic spline interpolation. The resulting signal values were converted to the 
individual subject’s Z-scores. For statistical comparison, the pre-stimulus duration of 5 seconds and post-stimulus 
interval of 10 seconds was used. A post-stimulus duration of 10 seconds for comparison is justified as previous 
investigation on facial temperature response to startle response indicated a latency as quick as 300 milliseconds4 
while other reports suggested a response of around 10 seconds3. Significance testing for changes in HR responses, 
GSR and thermal responses was performed using paired t-tests on the mean values for pre- and post- stimulus.

Results
Landmarks could not be reliably and accurately estimated for 3 subjects and landmark estimation was lost at 
critical periods post-stimulus for 2 other subjects. Hence data from 15 participants were used.

Facial landmark accuracy.  The accuracy of the facial landmark estimation was assessed against a ground 
truth by comparing its performance on a randomly selected input frames to manually annotated landmarks using 
a previously validated method37. We randomly selected the IR facial images of one of the subjects on which to 
perform this analysis. A landmark point was considered correctly detected if the distance between the predicted 
and the ground truth location was within five pixels. The cascade-framework reached an average accuracy of 
92%, i.e. 92% of all facial points were correctly detected to within 5 pixels of the ground truth on the test images. 
The accuracy was even higher if points from eyes, nose and outer-mouth were excluded (96% for the 33 points). 
Figure 3c demonstrates the facial landmark detection using various algorithms.

Physiological changes.  Increases in GSR and IBI.  Skin conductance showed a robust increase post-stimulus  
across all the subjects. This increase peaked between 5–10 seconds post-stimulus, and was significant compared 
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to the 5 seconds pre-stimulus interval (Figs 4b, 5; Table 1). Skin conductance gradually decreased back to baseline 
after 10 seconds.

The IBI showed a significant increase 10 seconds post-stimulus as compared to 5 seconds pre-stimulus (Fig. 5; 
Table 1). In addition, frequency domain HRV also showed changes, with LF HRV decreasing and HF HRV 
increasing following the auditory stimulus, although these changes were not statistically significant (Figs 4c, 5; 
Table 1). This trend reversed after 10 seconds.

IRI response to auditory stimulus.  We then examined the IRI responses to the auditory stimulus. Visual inspec-
tion of the time series for all the ROIs showed an irregular increase/decrease in temperature immediately 

Figure 4.  Physiological responses to the sudden auditory stimulus. (a) Temperature signals extracted from 
the right (i) and left cheek (ii), the nose-tip (iii) and forehead (iv). (b) GSR. Time is indicated on x-axis and 
z-scores indicated on y-axis. Time is indicated on x-axis and z-scores indicated on y-axis (c) HRV: high 
frequency component (HF HRV) (blue), low frequency component (LF HRV) (red). Time indicated on 
x-axis (note different time scaling: data not computed for the last 7 seconds to avoid edge effects in frequency 
decomposition) and percentage power on y-axis. Vertical line at 0 seconds indicates the onset of auditory sound 
stimulus. Shading indicates SEM.

Figure 5.  Change in physiological signals induced by auditory stimuli. Mean change of 10 seconds post-
stimulus from baseline (5 seconds pre-stimulus stimulus) for all physiological measures used in this study. IBI: 
inter-beat interval, LF HRV: low frequency heart rate variability, HF HRV: high frequency heart rate variability, 
GSR: galvanic skin response, RC: right cheek temperature signal, LC: left cheek temperature signal, NT: nose tip 
temperature signal, F: forehead temperature signal. Error bars indicate SEM.
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post-stimulus. Subsequently, a gradual decrease in temperature was observed. Statistical comparison of the aver-
age signals in the 10 second post-stimulus window was significantly lower than in the 5 seconds pre-stimulus 
baseline in the nose tip (Figs 4a, 5; Table 1). The signal of the left cheek, right cheek showed a similar trend but did 
not reach significance whereas forehead signal did not show a substantial change (Figs 4a, 5; Table 1).

Latency of IRI responses compared to GSR.  Previous studies suggested that facial thermal responses were delayed43. 
However, using our algorithm, we sought to further quantify the relative temporal dynamics of facial thermal 
responses. We applied cross-correlation analysis to the facial thermal response and GSR response curves (10 seconds 
post-stimulus) in our dataset, to determine the relative time delay (phase lag) between the onsets of auditory stimu-
lus induced changes in two signals. The time lag between the response onsets in signals is indicated by the time point 
at which the cross-correlation value is maximum for positively correlated signals or minimum for negatively cor-
related signals. Nose-tip and bilateral cheek responses were used for this analysis as the forehead thermal response 

Figure 6.  Cross-correlation of thermal responses versus (vs.) GSR (a) Cross correlation between IRI and GSR 
responses for 3 ROIs for 10 seconds post-stimulus. (i) right cheek, (ii) left cheek, (iii) nose tip. Black dots on 
the plots represent 10 minimum values of correlation. Shading indicates SEM (b) mean of time lags between 
temperature response and GSR corresponding to minimum 10 values of cross-correlation. RC: right cheek 
temperature signal, LC: left cheek temperature signal, NT: nose tip temperature signal. Error bars indicate SEM.

Modality

Mean SEM

T stat p value Effect sizePre-stimulus Post-stimulus Pre-stimulus Post-stimulus

IBI −0.40 0.36 0.18 0.15 −5.14 0.0001*** 1.22

LF-HRV 0.15 0.53 0.25 0.19 −0.97 0.32 0.43

HF-HRV −0.22 −0.54 0.23 0.19 0.84 0.34 0.38

GSR −1.19 0.31 0.13 0.18 −7.99 0.00001*** 1.55

RC 0.43 0.17 0.21 0.11 1.29 0.31 0.39

LC 0.62 0.12 0.23 0.11 2.18 0.09 0.80

NT 0.72 0.11 0.20 0.11 2.63 0.02* 0.89

F 0.04 0.03 0.28 0.12 0.03 0.97 −0.01

Table 1.  Statistical analysis to compare baseline and post-stimulus condition. IBI: inter-beat interval, LF 
HRV: low frequency heart rate variability, HF HRV: high frequency hear rate variability, GSR: galvanic skin 
response, RC: right cheek temperature signal, LC: left cheek temperature signal, NT: nose tip temperature 
signal, F: forehead temperature signal. ***p < 0.001, **p < 0.01, *p < 0.05. Thermal data corrected for multiple 
comparisons (FDR, p = 0.05).
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showed minimal change in temperature post-stimulus. The average correlation curve showed minimum correlation 
at time lags of around 0–2 seconds (Fig. 6a). This lag was minimal for nose-tip (Fig. 6b). These results demonstrated 
that thermal response onset latency are only slight delayed compared to the GSR (<2 s).

Discussion
In this study, we developed a novel method to extract the dynamic temperature profiles from key facial regions 
using deep learning and applied this to investigate the physiological responses to a sudden auditory stimulus. We 
found 1) our face tracking and temperature extraction methodology worked reliably without motion correction 
of the facial images but rather adaptive landmark detection; (2) minimal manual requirement for initial place-
ment of ROIs; (3) a continuing, regionally specific decrease in temperature for up to 15 seconds in response to 
auditory stimulus; (4) a short delay of approximately 2 seconds of thermal responses in comparison to GSR.

IRI response.  Blood flow changes are visible as specific facial colour patterns perhaps assisting in decoding of 
emotion44. For instance, fear causes paling of face, anger can cause flushing of facial skin45,46 and embarrassment 
is known to cause blushing47,48. These perfusion changes are caused by blood re-distribution via cutaneous blood 
vessels which are richly innervated by sympathetic nerves. The sympathetic activity thus seems to be responsible 
for the rich repertoire of subtle physiological changes induced by emotions.

Many previous studies have used an acoustic stimulus as part of the acoustic startle paradigm4,23,49,50. 
Responses induced by these stimuli could be considered a case of “fight-or-flight” reaction in response to envi-
ronmental stressors mediated by the sympathetic nervous system49,51. As part of this response, sympathetic nerve 
fibres trigger an increase in heart rate and blood pressure52, as an animal’s defence mechanism for survival and 
thus heightening blood flow to the musculoskeletal system and other essential tissues. In this study, we induced 
a response with a sudden acoustic stimulus. Although we did not record EMG activity to know with certainty if 
the response induced was indeed a startle response, a sudden loud sound was used as stimulus to mimic such a 
physiological reaction.

Physiological changes mentioned above are consistent with peripheral blood blow being directed towards the 
major organs of the body. Previous studies have reported a decrease in nose, maxillary and cheek temperature and 
increases in peri-orbital and supraorbital temperature2,22. Our results are, thus, consistent with the temperature 
decreases in nose-tip, left cheek and right cheek regions in response to such a sudden stimulus.

GSR signals are considered the gold standard in peripheral neurophysiological and psycho-physiological studies, 
providing a valuable benchmark for IRI research. GSR has a rapid response profile with a delay of 1–3 seconds after 
stimulus onset53. In earlier studies, thermal responses have been seen to be sluggish. For instance, thermal response 
latency in non-human primates have been reported to be around 10 seconds3. However, that study used data points 
at 10 second time windows, compromising the temporal accuracy of the response profiles. Merla and colleagues 
(2007) reported a facial thermal latency of approximately 4–6 seconds compared to GSR latency24. Pavlidis et al. 
(2001) studied the thermal response of peri-orbital regions underlying the startle response and suggested that tem-
perature changes were observed within 300 milliseconds4 but they presented data from only one point in time before 
and one point after stimulus presentation and reported no statistical significance of temperature differences. Overall, 
these diverse findings – with differences in stimuli and analysis methods – make it difficult to reach a definite conclu-
sion about the facial thermal response latency compared with GSR. With the improved algorithm for facial tempera-
ture extraction employed in this study, the detailed temporal profiles of facial thermal responses were comparable to 
that of GSR. Nose-tip thermal response latency was similar to that of GSR (around 2–3 seconds after stimulus) and 
the cheek thermal latency was about 1–2 seconds lagging behind that of GSR.

Nose-tip showed the most robust and rapid thermal response when compared to cheeks and forehead. 
Previous studies have also reported nose-tip to show consistent thermal variations in response to emotional 
activations2. Anatomically, nose-tip is unique among facial regions being devoid of subcutaneous facial muscles. 
It is thus less affected by artefacts due to muscle contraction than the cheeks and forehead. Moreover, it is well 
vascularised with abundant arteriovenous anastomoses making it sensitive to subtle blood flow variations54,55. On 
the other hand, airflow during breathing may cause temperature changes at nose-tip. Recording of ventilation or 
breathing rate should additionally be undertaken in future studies to address this. Therefore, examining thermal 
responses across different facial regions is thus recommended to confirm if the temperature changes induced by 
the stimuli are consistent.

HR response.  Resting HR is slower than the intrinsic pace-making activity, reflecting predominant inhib-
itory control from the parasympathetic system and thus a dominant high frequency component (Fig. 4c). In 
response to the sudden auditory stimulus, we found an immediate heart rate decrease and that the balance of 
HF and LF components reversed for up to 10 seconds. This is in line with previous findings that initial stages 
(within seconds) of startle response are characterized by bradycardia56–58. Subsequently as threat becomes more 
imminent, the heart rate decrease reverses the direction of change to cardiac acceleration by either sympathetic 
increase or parasympathetic withdrawal59. Our frequency domain results show increase in LF component sug-
gesting former whilst simultaneous decrease in HF component suggesting the latter. These components reversed 
to baseline level after 10 seconds.

Novel face tracking and temperature extraction methodology.  The primary advantage of ther-
mal imaging in psycho-physiological research is its contact free property. Free movements, however, make data 
extraction and signal processing challenging. Here, we addressed this issue using landmark detection algorithm 
trained on publicly available RGB and thermal images for use on thermal images acquired in our study. Using 
these landmarks for ROI placement for thermal signal extraction required minimal manual intervention which 
was specifically needed only once on the first frame for each subject. This method also enabled temperature 
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extraction from multiple regions of the face. Overall, our work established a semi-automated pipeline for thermal 
imaging analysis, requiring much less manually intervention than previous studies1,9,10,13.

Furthermore, the temperature signals were minimally pre-processed without the need of excessive fil-
tering or smoothing, demonstrating the robustness of our methodology to capture meaningful physiological 
changes. Substantial smoothing has often been employed in previous studies9,13, to improve signal to noise ratio 
and remove breathing related artefacts. Breathing can affect the temperature signal of the face, especially the 
nose-tip. Previous efforts to overcome this problem involve low-pass filtering the signal below 0.15 Hz to avoid 
breathing-related oscillations13. We chose not to use such aggressive filtering techniques as it likely removes rele-
vant signals. Interaction between startle reflex and respiration has been shown50 and thus its effects on blood per-
fusion of face, could still be a part of the relevant signal following the startle stimulus. However, a previous study 
showed that even when respiration rate changed two-fold as a result of heavy breathing, no temperature change 
was observed on the nose of monkeys43. None the less, in the absence of strong evidence, a cautious approach 
argues against strict low-pass filtering of thermal imaging data to remove breathing artefacts.

Limitations
We recorded the thermal and physiological measures for 20 seconds post-stimulus. While this allows quantifica-
tion of response onset in this study, longer post-stimulus recording would have been beneficial for characterizing 
the recovery of thermal responses.

The thermal signals from all the regions showed a spike-like increase or decrease 1–3 seconds post-stimulus. 
Although we are uncertain about the cause of this, use of a high sampling rate of 10 Hz or above may be able to 
determine if this is in fact an immediate physiological response. Alternatively, this could be attributable to motion 
artefacts induced by the sudden auditory stimulus but which requires further investigation.

We have shown that facial landmarks are consistently detected across the thermal images in the majority of 
participants. However, landmark detection failed in some subjects, perhaps because their temperature profiles 
were quite different from the training data. This suggests that a larger training dataset with a variety of ther-
mal patterns may significantly improve performance. With the introduction of a new public database of anno-
tated high resolution thermal face images60, the robustness afforded by our system could be further enhanced. 
Additionally, other machine learning techniques such as deep transfer feature learning61 may help to improve 
performance. Transfer feature learning approaches aim to adapt models from one domain to another (i.e. visible 
images to thermal) with minimal data for the new domain. This may reduce the need for large thermal image 
training data sets by transferring a model trained on a very large visual domain corpus to the thermal domain 
more effectively than the fine tuning approach used in this work.

Conclusion and Future Directions
IRI is an exciting new technique in the tool kit of a psycho-physiologist. Use of thermal imaging of the face offers 
new avenues for face-specific physiological changes, such as flushing with anger of blushing in embarrassment. 
Its contact-free nature and hence advanced ecological validity encourages for its wide use in affective research. 
Reliable, easy and efficient extraction of facial temperature still limits its widespread use. However, as we have 
demonstrated, using information from visible spectrum images is an efficient way to help extract reliable and sen-
sitive facial temperature profile from thermal images using advanced machine learning algorithms. Furthermore 
while existing studies are predominantly focused on specific ROIs, physiological responses in other regions of 
the face could also be informative. Future work could look into spatial decomposition of thermal signals from all 
facial regions for a compressive investigation on facial thermal physiology.
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