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Synopsis The measurement and analysis of phenotypes is

often a rate-limiting step for many integrative organismal

studies but engaging undergraduate researchers can help

overcome this challenge. We present a practical guide to

implementing a quantitative specimen-based Course-based

Undergraduate Research Experience (CURE), which trains

students to collect phenotypic data and mentors them

through the entire scientific process using the data they

help to collect. Direct access to specimens is not necessary

to implement this undergraduate research experience, as

recent efforts to digitize museum collections along with

online image archives allow data extraction to take place

in any classroom. We focus in particular on hypothesis

development and quantitative skills, as they are essential

for modern biological discovery but are rarely emphasized

in traditional lecture-based classes. We have implemented

this experience, focusing on collecting and analyzing body

shape data across fishes, at two institutions with a total of

39 students. It has so far resulted in 14 talks and 4 posters

presented by students at local symposia and 2 scientific

papers in preparation with undergraduate co-authors.

Moreover, the students had a positive experience that,

according to their own assessment, improved their critical

thinking and analytical skills as well as their knowledge of

science and the scientific process.

French synopsis La caract�erisation et l’analyse de ph�eno-

types peuvent imposer des contraintes temporelles impor-

tantes dans le cadre d’�etudes int�egratives sur la biologie

des organismes. Une solution avantageuse pour pallier ce

problème est de solliciter la participation d’�etudiant(e)s-

chercheur(e)s de premier cycle universitaire. Nous propo-

sons un guide pratique afin de mettre en œuvre une

exp�erience de recherche par cours pour des �etudiant(e)s

de premier cycle (CURE ¼ Course-based Undergraduate

Research Experience) fond�ee sur l’analyse quantitative de

sp�ecimens. Au cours de cette exp�erience, nous entraı̂nons

les �etudiant(e)s �a r�ecolter des donn�ees ph�enotypiques qui

sont ensuite utilis�ees afin de leur enseigner l’ensemble des

�etapes du processus scientifique. Consid�erant les efforts

r�ecents investis dans la digitalisation de collections

mus�eales et la disponibilit�e de bases de donn�ees d’images

en ligne, l’accès direct �a des sp�ecimens n’est pas fonda-

mental �a la compl�etion de cette exp�erience de recherche,

les donn�ees n�ecessaires pouvant être extraites d’internet

dans n’importe quelle salle de classe. Nous focalisons par-

ticulièrement sur l’�elaboration d’hypothèses et le

d�eveloppement d’aptitudes en analyses quantitatives, puis-

que ces comp�etences sont essentielles aux d�ecouvertes con-

temporaines en sciences biologiques malgr�e qu’elles ne

reçoivent g�en�eralement que peu d’emphase dans les for-

mations traditionnelles dans le domaine. Nous avons

r�ealis�e cette exp�erience dans deux institutions universi-

taires avec un total de 39 �etudiant(e)s afin de r�ecolter et

d’analyser des donn�ees morphologiques �a travers l’ensem-

ble des poissons. Jusqu’�a pr�esent, les r�esultats de ces anal-

yses ont fait l’objet de 14 pr�esentations orales ainsi que 4

affiches scientifiques dans des conf�erences r�egionales, et

nos �etudiant(e)s de premier cycle seront co-auteur(e)s de

2 articles scientifiques en cours de pr�eparation. De plus, les

�etudiant(e)s ont appr�eci�e cette exp�erience et ont affirm�e

avoir vu une am�elioration dans leur capacit�e �a exercer une

pens�ee critique, dans leurs aptitudes analytiques, ainsi que

� The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/

by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Integrative Organismal Biology
Integrative Organismal Biology, pp.1–10
doi:10.1093/iob/obaa004 A Journal of the Society for Integrative and Comparative Biology

http://orcid.org/0000-0002-1389-8521
https://academic.oup.com/


dans leurs connaissances de la science et du processus

scientifique.

Introduction
Phenomics, the measurement and analysis of a large

set of phenotypes, is necessary for many integrative

organismal studies. It is particularly important for

evo-devo and genomic studies, as the phenotypes

of hundreds to thousands of individuals need to be

measured to link genotype to phenotype (Houle

2010; Houle et al. 2010). Similarly, phenotypic data

on hundreds to thousands of species are required to

address evolutionary and ecological questions across

large temporal, spatial, and phylogenetic scales

(Chang and Alfaro 2016). The rate-limiting step for

all of these studies is the amount of time it takes to

collect the phenotypic data (Mu~noz and Price 2019)

but engaging undergraduate researchers can help

overcome this challenge. However, training students

to reliably collect phenotypic data takes time and

requires commitment by both the undergraduate

and senior researchers. We therefore developed a

Course-based Undergraduate Research Experience

(CURE) that not only trained students to collect

large amounts of data but also mentored those

same students to develop, test, and present scientific

hypotheses using the data. This means that students

were an integral part of the scientific discovery as

well as the data collection, ensuring their investment

in the success of the project. Moreover, pedagogically

we were able to provide students with the important

but rare opportunity to learn the scientific process

through practice (Seymour et al. 2004; Lopatto and

Tobias 2010). In this paper we present a practical

guide to implementing a quantitative specimen-

based CURE. We emphasized hypothesis develop-

ment, analytical skills, and the presentation of

results, as they are rarely covered in traditional

lecture-based classes but are essential aspects of

modern biological science.

It is important to note that direct access to speci-

mens is not necessary to implement this undergrad-

uate research experience. This may be particularly

useful for biologists at teaching institutions that

may have limited research infrastructure and budget-

ary support. Recent efforts to digitize museum col-

lections (e.g., Integrated Digitized Biocollections

www.iDigBio.org), along with online data archives

for 3D scans (e.g., www.morphosource.org) and

other phenotypic data including 2D images (e.g.,

www.morphobank.org) enable data extraction to

take place in any classroom. Data can be obtained

from images using free software available online such

as ImageJ (Rasband 1997–2018) for linear measure-

ments or tpsDIG2 (Rohlf 2015) and the R packages

geomorph (Adams et al. 2018) and stereomorph

(Olsen and Westneat 2015) for geometric morpho-

metric approaches. In addition, shorter classroom

research experiences, emphasizing hypothesis devel-

opment and testing, could be developed using exist-

ing phenotypic datasets. We provide some additional

resources in Online Appendix S1.

It is well established that research experiences for

undergraduates are critical for providing a better un-

derstanding of the scientific process, promoting the

development of critical thinking skills and self-

confidence as well as creating pathways to science

careers (e.g., Seymour et al. 2004; Lopatto and

Tobias 2010). These effects are magnified for women

and other students from underrepresented groups

(G�andara and Maxwell-Jolly 1999; Barlow and

Villarejo 2004; Villarejo et al. 2008). Traditionally,

to gain research experience undergraduates “intern”

in a laboratory and receive individual mentorship

from a graduate student, postdoctoral researcher,

or faculty member but this severely limits the num-

ber of students exposed to research (Wood 2003;

Desai et al. 2008; Harrison et al. 2011). Therefore,

CUREs, which engage an entire class in a research

question (Wei and Woodin 2011), have become in-

creasingly popular (e.g., Oufiero 2019) due to the

increased accessibility of research opportunities to a

larger number of students (Rowland et al. 2012).

According to Auchincloss et al. (2014) CUREs are
defined by the use of scientific practices, the process

of discovery, the potential to contribute relevant sci-

entific knowledge to the field, collaboration among

students and mentors, and the ability to revise and

repeat analyses based on initial results. In other

words, the students do actual science. CUREs are

typically added to the regular undergraduate curric-

ulum and implemented like any other class, meeting

several times a week for a few hours. Our implemen-

tation used an extended format, allowing the stu-

dents to take our CURE course in addition to their

regular class schedule, as our participants were from

several different majors and departments. We met

for just 60–90 min a week over an 18-month period,

giving a total classroom time of somewhere between

40 and 60 h, which is roughly equivalent to most

single semester CUREs. We have run this experience

at two institutions with a total of 39 students, di-

vided into three separate cohorts starting at 12-

month intervals.
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We developed this CURE to recruit undergraduate

researchers to aid in measuring specimens of thou-

sands of fish species, enabling us to generate a mor-

phospace of body shapes across teleostean fishes

(Price et al. 2019). There are about 31,000 species

of teleost and we aimed to sample broadly across the

phylogeny measuring and photographing up to 20%

of the valid, living species. This was an enormous

undertaking, over the past 3 years (summers 2016,

2017, and 2018) we spent a total of 7 months at the

Smithsonian National Museum of Natural History

and during this time 27 researchers participated in

the data collection, two-thirds of whom were under-

graduates. Our back of the envelope calculations es-

timate that we invested over 6000 person-hours in

the generation of the dataset at the museum, mea-

suring and photographing a total of 16,609 speci-

mens from 6144 species across 394 families. While

machine learning holds promise for rapid and auto-

matic phenotyping (Macleod 2017), recent studies

that have generated large phenotypic datasets for

macroevolutionary analyses have focused on crowd-

sourcing data collection from images or scans using

the general public either in the form of volunteers

(https://www.markmybird.org/ see Cooney et al.

2017) or people receiving micropayments through

websites like Amazon Turk (Chang and Alfaro

2016). However, we believe that working with a

team of undergraduate researchers benefited our sci-

entific goals in several ways not possible with crowd-

sourcing or machine learning approaches. Firstly, it

allowed us to take a large team of researchers to a

museum where photographs and measurements

could be taken directly from specimens. Direct meas-

urements on specimens provided a dataset in three

dimensions available for immediate analysis and

photographs resulted in a 2D image dataset for fu-

ture analysis. Previous studies either focused on

scanning the specimens and then processing the

images (Cooney et al. 2017) or were constrained by

the taxonomic samples of pre-existing image data

collections (Chang and Alfaro 2016). Secondly, we

were able to carefully select and fully train our

data collectors and supervise the data collection, en-

couraging them to ask for advice if they were having

problems identifying anatomical structures. Thirdly,

our data collectors were invested in the data quality,

as they were using it to conduct their own scientific

research. Finally, it increased our scientific produc-

tivity, as the students gave talks and posters at local

symposia and some have also been involved as coau-

thors on two scientific papers that are currently in

preparation for publication. While our research fo-

cused on data collection across many species to

address macroevolutionary questions, the generation

of large phenotypic datasets provides opportunities

for discovery across a broad spectrum of ecological,

evolutionary, and organismal research.

Methods
Recruiting a diverse research team

Every research team should aim to recruit a diversity

of students to broaden participation, promote inclu-

sion, and enhance team performance. We targeted

students in their first or second year and used several

strategies to recruit from a broad pool. Following

recommendations for recruiting women and under-

represented groups (see review by Ahmad et al.

2019) adverts encouraged students of all back-

grounds to apply to join our research team, the ap-

plication process was short, requiring just a CV and

an email saying why they were interested, and listed

few requirements except enthusiasm for experiencing

research. We also explicitly mentioned it was ideal

for students with no previous research experience.

Adverts highlighted the possibility of being invited

to participate in paid summer research, emphasizing

that the museum experience was not just available to

those that could afford to volunteer for a month. We

generated a broad audience for the advert by print-

ing it out and placing it around life sciences build-

ings, sending it to groups on campus that work with

under-represented and first generation students in

STEM and asking instructors in the Introductory

Biology series and/or Vertebrate Biology to send

out the advert to all of their students.

The principal investigator (PI) and usually one

graduate student mentor met in-person with every

applicant for 20–30 min. We described the project,

explaining both the science and the vision for the

team to hopefully excite the student’s interest and

set them at ease. This was followed by a discussion

about their general and specific interests. Offers were

made based on their meeting and were not based

purely on their application, GPA, and test-scores, a

practice which may also improve the recruitment of

under-represented candidates (e.g., G�andara and

Maxwell-Jolly 1999). The students were ranked by

their enthusiasm, potential, and their availability

for the duration of the program. As all people

have implicit biases (e.g., Staats 2016) that can neg-

atively influence the recruitment of diverse under-

graduates, the rankings were explicitly reevaluated

by asking ourselves what the potential sources of

bias may be for each candidate and whether any of

our comments or rankings may have been influenced

by them. If we determined that our perceptions may
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have been biased, the rankings and comments were

amended. This personal interrogation of our assess-

ments did lead to several changes in ranking. We

aimed to recruit approximately twice the number

of students that we needed to participate in the

data collection each summer, this allowed for stu-

dents choosing not to participate due to other com-

mitments or lack of interest, as well as providing us

with the opportunity to identify and invite the stu-

dents that were best suited to the work at the

museum.

Promoting student ownership

Student ownership is important for individuals per-

sisting in science and medicine (Hanauer et al.

2012). To promote ownership students were

recruited to become members of our research team

(in contrast to just taking a class) and throughout we

emphasized that they were integral to the success of

our overall scientific mission. The students were told

that the mentors (faculty, postdocs, and graduate

students) were there to guide, train, and inform

but not to direct them. The students understood

that their primary goal was to work together to de-

velop and test a scientific hypothesis suitable for

publishing as a scientific paper, using the fish body

shape data they were helping to collect. However,

they were also made aware that there are a lot of

variables outside of our control that may prevent the

publication of their findings. Students were also in-

volved on a more practical level with the organiza-

tion of the research. The students identified when

the team would meet, finding a time that worked

with all of their schedules. Through discussion they

also helped to set major deadlines throughout the

experience, such as the date on which they would

pick the hypothesis and when they wanted to have

a draft of their presentations ready for feedback.

Engaging in the process of science

The process of science involves asking questions, de-

veloping hypotheses and making predictions, collect-

ing data with which to test the predictions, and then

re-evaluating the hypotheses, predictions, data, and

analyses in light of the findings. Every student

recruited to the CURE participated in this process

by progressing through four equal sections: (A) data

collection training, (B) hypothesis development, (C)

analytical methods, and (D) interpretation, evalua-

tion, and presentation. The body shape data collec-

tion at the museum occurred between sections A and

B, it was an extra “paid internship” that was neither

guaranteed nor required for participation in the

CURE. The timeline differed slightly for each insti-

tution, as one is on the quarter system and the other

has semesters (see Online Appendix S2). Data collec-

tion training came first out of necessity, as we

needed our team trained and ready to collect data

in the summer. However, we still recommend this

sequence, as it enabled the students to gain some

background knowledge prior to embarking on hy-

pothesis generation. Through the data collection

training they became more familiar with the diversity

of their study organisms, the data, and some of the

generally expected relationships between ecology and

morphology. Grading depended on the institution

and the way we were able to implement a course

that allowed students to receive both research and

class credit (each semester was a total of two credits).

We essentially treated it as a pass–fail class, if full

grades were required a student received an A if they

participated by attending class and submitting the

required work.

It should be noted that not every student recruited

finished the four sections, some attrition is inevitable

when requiring such a long-time commitment. Each

year we lost one student after completing the first

semester/quarter usually due to scheduling conflicts

or the need to focus on their required classes. We

were surprised more didn’t quit when they weren’t

chosen for the museum internship and we didn’t

notice any divisions in later sections between the

students that went to the museum and those that

did not. The third cohort lost two additional stu-

dents at the end of the second semester when one

graduated early and another was working off-campus

for an internship.

Data collection training

It is likely that most students will have little to no

experience working with specimens or identifying

and measuring phenotypic traits, so they need care-

ful training to collect reliable and accurate data. We

began each training day with a short (<20-min) lec-

ture and demonstration explaining the various func-

tions of the structures they were measuring, but the

rest of the time was spent working with the speci-

mens in pairs learning to take the measurements

discussed in the lecture. During the practical sessions

the mentors need to be highly interactive, walking

around asking and answering questions and checking

that the students are taking the measurements cor-

rectly. We ended with several days of mock data

collection where the students had to take all the

measurements on as many different fishes as possi-

ble. Without direct access to specimens, this could be

replicated using photographs or scans of museum
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specimens and training the students to take linear

measurements using image analysis software or col-

lect shape data by placing morphometric landmarks

on homologous points and semi-landmark curves

using various geometric morphometric packages.

Every student received this training and their perfor-

mance during the data collection exercises, along

with other things like teamwork, ability to ask ques-

tions when uncertain and overall interest in the proj-

ect, helped us to identify who we invited to join the

data collection team at the museum. Our top-five

tips for training undergraduates to measure pheno-

types are included in Box 1.

Hypothesis development

The hypothesis development section consisted of two

phases, the first helped the students to develop the

necessary skills to use the scientific literature for gen-

erating hypotheses (Phase 1) and the second focused

on producing and choosing a hypothesis (Phase 2).

Before beginning phase 1 we led a brain-storming

session of all the factors the students could possibly

think that may influence the body shape of fishes.

We did this first to remind the students of their

ultimate goal of developing and then testing a hy-

pothesis about fish body shape evolution. A large list

was generated on the whiteboard and despite most

students not having taken an ichthyology or verte-

brate anatomy class the students did surprisingly well

at generating a comprehensive list. This was perhaps

due to their experiences during the data collection

training, as our short lectures at the beginning of

each training day included some discussion of the

hypothesized ecological role of the structures they

were learning to measure. The list of factors was

saved to act as a starting point for the hypothesis

development in phase 2.

Phase 1: developing the necessary skills to engage with
scientific literature

We began by discussing the differences between sci-

entific questions, hypotheses, and predictions. We

also talked about the ways in which students thought

scientists got inspiration for their work: reading

papers, observing nature, running experiments, de-

riving mathematical models, talking to other scien-

tists, etc. We focused on reading papers, as it is an

essential skill for scientists to develop but undergrad-

uates in their first few years rarely get an opportunity

to fully engage with the scientific literature (Hoskins

et al. 2011). Over a series of weeks, we led our un-

dergraduate researchers through a set of mini-

lectures, discussions, and exercises to train them to

use the scientific literature (Table 1).

Our research focus is macroevolution and the data

are at the species-level, so that was the perspective

we presented but we always encouraged students to

read a wide-variety of papers from microevolution,

ecology, and organismal biology, as inspiration can

be derived from many sources.

Phase 2: developing hypotheses

To help the students to develop and critique the

hypotheses, we brainstormed a list of all the things

to take into account when developing and choosing

a hypothesis or set of hypotheses around which a

paper will be written. This hypothesis checklist in-

cluded critical aspects, such as ensuring the predic-

tions are testable, as well as other factors associated

with feasibility and “publishability” (example in

Online Appendix S4), which are practical

Box 1

Top-five tips for training undergraduates to measure

phenotypes

(i) Choose phenotypic traits that are relatively easy to reliably

identify and measure. The more difficult the phenotype the

more time needed for training and practice.

(ii) Go slow. Start by demonstrating how to handle specimens

and use all the equipment necessary for taking the measure-

ments. Depending on the number and type of measure-

ments you may not want to explain all of them at the start.

For example, we began with overall size measurements,

then divided the fish up into head, body, tail, and fins each

of which we covered on a separate day.

(iii) Start with a short lecture/demonstration (<20min) cov-

ering how to identify and measure the phenotypes, as well

as the diversity, function, and the hypothesized ecological

role of the structures involved and then get the students

to work in pairs to take the measurements on a variety of

specimens.

(iv) Make sure the students experience the diversity of phe-

notypes that they will encounter during their data collec-

tion, as homologous structures can look very different

across taxa.

(v) Have several practice data collection exercises where the

students have to take all of the measurements on as many

different specimens as possible within a set time period.

Multiple mentors should measure these same specimens to

provide a set of values that can be compared with the

student measurements. This allows you to identify if there

are particular traits that are problematic (and if so, provide

additional training) and also, which students are able to

quickly and reliably take accurate measurements and thus

are ready to begin data collection.
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considerations of the process of science that are not

talked about explicitly, especially with undergradu-

ates. The students were then tasked with developing

a number of hypotheses that they wanted to test

using our dataset, along with citations for the articles

that they had used to generate each hypothesis

(Fig. 1). We suggested they should start by looking

for papers that provided support for the factors

identified during the initial brainstorming session

as possible drivers of body shape change. The process

outlined in Fig. 1 was repeated until there were 5–10

hypotheses that had the potential to be developed

Table 1 Training students to use the scientific literature

Topic Active participation

What is a scientific paper

and why do we write and

read them?

Brainstorm what can be gained from reading a scientific paper.

How to read a scientific

paper.

Read each section of a relevant article in class and discuss what important knowledge could be gained from it,

driven by specific questions posed to the students. See Online Appendix S3 for an example.

How to find scientific papers

using Boolean search

terms and how to deter-

mine if they are from a

trustworthy source.

Series of quick-fire exercises to find the most relevant articles on a variety of topics, e.g., find an empirical

paper that demonstrates how diet influences body shape in any animal, repeat but now for fish, etc.

Students had to develop their own search terms, choose their bibliographic search engine and to be aware

of predatory journals, checking the various whitelists and blacklists of journals, e.g., Cabells https://www2.

cabells.com.

How to write a hypothesis

based on a scientific paper.

(1) Read a relevant article in class and discuss the hypotheses that could be generated from it. Identify

whether hypotheses could be tested with the data currently being collected and if not identify what

kind of additional experiments or data would be needed to test it. We repeated this with a different paper

for homework.

(2) Read three abstracts and use the information within them to develop hypotheses that could be tested

with the dataset being generated.

Fig. 1 The repeated process of hypothesis development involving students and mentors. It took between 4 and 5 weeks to achieve the

goal of 5–10 hypotheses with potential to become the class project.
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into a publishable scientific paper. As a group the

students then used the hypothesis checklist (Online

Appendix S4) to critique hypotheses and then choose

two (or more depending on the size of the cohort)

to develop into a project proposal. One of the most

common critiques concerned the accessibility of ad-

ditional ecological or environmental data needed to

test the hypothesis, particularly as they were under a

major time constraint. Once the group had agreed

on the two strongest ideas, students assorted them-

selves into roughly equal sized groups to work on

the project proposal presentation. The presentation

had to provide appropriate citations and include

four sections (i) introduction and background, (ii)

hypotheses and predictions, (iii) methods: data and

taxonomic scope, and (iv) conclusions: assessment of

feasibility and “publishability.” It was particularly

important that the students identified the taxonomic

scope of the project, as the comparative method

relies on having multiple independent evolutionary

events and may determine feasibility if they needed

to collect additional ecological/environmental data to

test their hypothesis. Students were given no restric-

tions on the use of the dataset; they could develop

hypotheses within specific clades or across all of tele-

osts, although the amount of data available to each

cohort varied. The first cohort only had access to the

clades we measured during the first summer

(Ovalentaria, Carangimorpharia, and Anabantaria),

the second cohort had access these as well as most

of Eupercaria, and the third had access to all 6000þ
species. At the end of the presentations, each student

filled out written evaluations of the two projects, and

through discussion the group generated a table of

the strengths and weaknesses of each proposal. The

mentors supplied additional points made in the writ-

ten assessments (if the student was quiet) or asked

questions about particular strengths and weaknesses,

if they thought the class was missing something im-

portant. Once the group felt they were ready, a vote

was taken, and a project chosen.

During the hypothesis development process, we

found that the single most important thing we did

was generate the anonymous list of hypotheses

(Fig. 1). This is because it allowed: (i) students to

not feel awkward about directly critiquing another

student’s idea, (ii) students that didn’t like to talk

in class to still participate in suggesting hypotheses,

and (iii) mentors to read the hypotheses and if there

were obvious gaps the students weren’t exploring, to

add a few hypotheses to the list that could be cri-

tiqued by the class without the bias of knowing it

was included by their mentors.

This was by far the most difficult aspect of the

experience, oftentimes students struggled to identify

appropriate hypotheses that could be tested with the

morphological data they had collected as part our

larger scientific enterprise to understand the drivers

of teleostean body shape evolution. It also seemed

that students felt out of their depth, not sure if

they were doing it right. Some asked for feedback

on their hypotheses before the submission deadline

and others just appeared to be slightly frustrated by

the experience. We quickly noticed students had a

tendency to ignore simple hypotheses, such as

“habitat influences body shape,” most likely because

they thought these were not clever enough and fa-

vored convoluted and complex ideas that were diffi-

cult to test, especially in the given timeframe.

However, as the process progressed, and they were

able to begin to discuss and critique the ideas with

the checklist, they were able to identify which hy-

potheses were testable and feasible. Therefore, even if

the hypothesis they chose was one the mentors ini-

tially added to the anonymous list the students rec-

ognized its potential and developed it further.

Analytical methods training

Quantitative ability is critical for biological discovery

and widely recognized as important for success in

medical (Alpern et al. 2009) and graduate biology

programs but undergraduates in biological sciences

often don’t receive appropriate training (Bialek and

Botstein 2004; Barraquand et al. 2014). We chose to

use the R software environment for statistical com-

puting (R Core Team 2019) to implement our ana-

lytical methods training for a number of reasons.

First, it provides the opportunity to train the stu-

dents in basic command-line and computer pro-

gramming concepts, which are an essential part of

modern biology that needs to be more widely incor-

porated into the undergraduate biology curriculum

(e.g., Pevzner and Shamir 2009; Tan et al. 2009;

Goth 2010; Libeskind-Hadas and Bush 2013).

Additionally, R is freely available, so the students

will be able to continue using it after they graduate

from the university moreover the development of

coding skills is transferable to many fields of research

and employment. R is also commonly used by ecol-

ogists (Lai et al. 2019) and evolutionary biologists. In

particular, the specific the macroevolutionary hy-

potheses our students were developing involved

modern phylogenetic comparative methods, many

of which are available in R (Paradis 2011, https://

CRAN.R-project.org/view¼Phylogenetics).
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Time constraints precluded teaching a full statis-

tics course, so we focused on visualization, analytical

reasoning, data interpretation, and understanding

basic programming concepts. The majority of stu-

dents had no experience with any programming lan-

guage or command line programs, so we went very

slowly. The first day was an introduction to the R

interface, basic mathematical functions, how data are

stored in objects, and the types of object. This was

followed by a day on introductory plotting and an-

other on basic statistics. We then had a free day for

the students to apply all they had learned so far to

exploring their hypothesis. We then moved on to

visualizing data on phylogenies, and several weeks

of phylogenetic comparative methods, focusing on

the reasons why we need to use a phylogeny for

statistical analyses across species. We always ended

with the undergraduate researchers running the spe-

cific phylogenetic comparative analysis needed for

their studies, with a basic understanding of how to

read and interpret the output. Toward the end of the

analytical methods training, it was also helpful to

work with the students to generate a workflow for

all the steps in the analysis that they had learned,

either as R code or a summary diagram. Our anno-

tated R code from the last iteration of the experience

is provided as example in Online Appendix S5, sub-

divided into 90-min sessions.

In our experience this section was the most vari-

able in terms of student engagement. The realization

of the importance and power of knowing how to use

R occurred at different times. For some, it was when

they added data to a phylogeny and made figures

that looked like ones in the papers they had read

and could start making evolutionary inferences. For

others it wasn’t until they actually analyzed the full

dataset and generated their own results for their pre-

sentations that they realized how much they had

learned. At the end of the experience not every stu-

dent felt comfortable in R. For some, the command-

Box 2

Top-10 tips for teaching R to undergraduates

(i) At the very start spend time explaining about files and

folder systems. We quickly realized that students aren’t

familiar with setting up a folder and storing all of their

documents (datasets and code) in one place, so they can

find what they did in previous classes. Also, make sure they

are not just typing into the R console but are saving an

executable R script.

(ii) Provide an R script document that contains all the notes

for that day but with gaps to fill in with code as you go

along. Share the full script with the code afterward so they

have one that runs with no mistakes, which they can use

for future reference and to understand where they made

mistakes in their own code.

(iii) Spend time at the beginning explaining how the data are

represented in vectors, dataframes, matrices, and lists,

making sure to show them how to access data from

each. If they can’t do this, then they will not be able to

independently write code to run analyses. Keep reiterating

this point throughout.

(iv) Go over all jargon/terms in detail and repeat them. Many

of the terms (e.g., function, package, object, class, library,

etc.) are completely new to students and can be a barrier

to learning and comprehension.

(v) Go slow, no matter how much you think you will cover,

you probably won’t be able to do it all!

(vi) Use real data so the students are making discoveries as

they go along and can start to interpret the results too. It

also reminds them why they are learning to use R and

keeps them focused on their questions.

(vii) Start each day with follow-along code demonstrations,

interspersed with mini-lectures if there is a topic that

needs explanation. Explain absolutely everything you

are doing and deliberately make mistakes so that students

can learn how to debug issues and not just give up be-

cause “I’m useless with computers”. Afterward get stu-

dents to suggest how they might repeat what they have

just done on a different column of data or what the prob-

lem might be with the code. Next, give them an exercise

using exactly the same techniques you demonstrated but

with a new dataset or different columns in the dataset.

(viii) Have at least two mentors experienced with R regardless

of how small your class is. One instructor should be lead-

ing the class through the exercises and the other acts as

the “TA” on the look-out for anyone struggling during the

follow-along sections, as it is so easy to make a typo and

not see where the problem is and get behind. It is also

helpful to make the sessions as interactive as possible, and

to ask questions about the results that the students are

generating on their personal computers. This helps to

ensure that students are not left behind because some

are reticent to let the instructors know when they en-

counter errors in their code. Both mentors should be

walking around and talking to the groups during exercises

in order to identify anyone having problems and help

trouble-shoot issues.

(ix) Allow students to work in pairs; many that felt uneasy with

programming and took comfort in working with someone

else, realizing others were struggling too.

(x) Focus on visualization, as a lot can be inferred from inter-

preting basic graphs and data plots. In macroevolutionary

analyses, morphospaces (scatter plots with each axis repre-

senting a morphological variable, like an individual trait, ra-

tio, or principal component analysis axis, which describes

some character of the organism) with phylogenetic relation-

ships linking the species (phylomorphospaces) and phyloge-

nies with trait data plotted at the tips, are particularly useful

for making evolutionary inferences.
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line remained an obstacle and they didn’t understand

how objects were stored and could be accessed and

manipulated, so they struggled throughout.

However, the majority of the class were able to use

R to make their own graphs and run analyses for

their presentations. Our top-10 tips for teaching an-

alytical methods in “R” are given in Box 2.

Interpreting and presenting results

Depending on the research question, sometimes the

students were able to run all of the initial visualiza-

tions and preliminary analyses themselves and other

times the analyses to test their hypothesis were too

computationally intensive, so we had to run them on

the high-performance computing (HPC) cluster. In

the latter case we would set-up, run, and compile the

output from the complex HPC batches and then

return the data to the students. The students would

interpret the raw output from the analyses or if the

complexity of the output was too great, we would

generate more readable output such as simplified

tables or figures that we would present to the class.

The students would discuss their interpretation of

each result, whether they supported or contradicted

their predictions.

The students were strongly encouraged to present

their preliminary findings as either a poster or a talk

at a local student conference. All students that par-

ticipated in the experience over the 3 years chose to

present their research and most picked to work in

pairs. As a group, we figured out how to split up the

research topic, so that each student would be pre-

senting on something slightly different, but we did

always talk to the conference organizers to make sure

we could give consecutive talks. In total, 14 talks and

4 posters were given over the 3 years by undergrad-

uate researchers, either at the UC Davis

Undergraduate Research, Scholarship and Creative

Activities Conference or the Clemson Biological

Sciences Annual Student Symposium. While prepar-

ing for the presentations we emphasized the power

of storytelling for communicating science (e.g.,

Dahlstrom 2014; Olson 2015). Because we had no

control over when the conferences were held, it

was often a bit of a rush to generate preliminary

results to present but it was worth it, as it was the

point at which the students took full ownership of

the research and realized how much they had

learned. Preparing for the talk or poster made the

students synthesize all that they had learned

throughout the experience and revisit the hypotheses

and background literature to construct a narrative.

Moreover, for many students the presentation was a

highlight of the research experience, as it gave them

the opportunity to demonstrate their mastery of the

subject to the community. We think it is particularly

important that students are given the opportunity to

share what they have been working on for the past

year or more with friends and family, who may not

have any experience with scientific research. Based

on our observations, we believe that this chance to

celebrate their success with their friends and family

may be especially impactful for first generation

students.

Following their presentations, the students dis-

cussed their preliminary results: how robust they

thought they were, whether they were concerned

about any issues with the data or analyses, and

whether we need to add more analyses or check

the data. When necessary, the additional analyses

were run and discussed. Not every project led to

publishable results but for those that did, the scien-

tific paper was written after the CURE was com-

pleted, with one of the mentors leading the writing

but with input from the students. In one case we are

still waiting on the final analyses, as we needed the

completed dataset and the necessary computational

resources have been difficult to acquire.

For every cohort, we also included at least one

professional development discussion. Depending on

interests, we provided a panel of graduate students,

PIs, postdoctoral researchers, and lab managers to

talk about academic careers and graduate school or

led a brain-storming session on how to write about

the experience in their applications to jobs or school.

The latter was particularly useful for many of the

students that were interested in pursuing careers in

medical fields, as the research topic did not have a

medical focus. It helped to identify all of the trans-

ferable skills they developed through the experience.

Assessing student experience

To assess the impact that the experience had on

students we used a survey loosely based on the class-

room undergraduate research experience survey

(Lopatto and Tobias 2010) that asked students to

assess their research skills, opinions on science, and

future plans. We asked a series of multiple-choice

questions, phrased as statements that they could

“strongly disagree,” “disagree,” “not sure/neutral,”

“agree,” or “strongly agree” with, as well as free re-

sponse questions. However, these types of survey

have limitations, and responses should be interpreted

with caution (Auchincloss et al. 2014). For example,

self-reported perceptions of learning show that stu-

dents in active classrooms feel like they learn less

when they are actually learning more (Deslauriers
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et al. 2019). The first year we attempted to quantify

the change in student’s self-assessed skills with a pre-

and post-course survey but the student responses to

the pre-survey concerning their current skills left lit-

tle to no room to show any improvement. We there-

fore relied on a post-course survey that asked the

students to assess their current skills and knowledge,

as well as the impact the research experience has had

on them (see Online Appendix S6 for survey). The

survey also contained a section comprised of open

questions about their research experience.

The research experience had a positive impact on

the student’s self-reported research skills, under-

standing of the scientific process and future plans

(see the table in Online Appendix S7). In terms of

skills acquired, one of the best supported and most

gratifying trends from the surveys was that the stu-

dents felt they had greatly improved in their critical

thinking abilities and their understanding of the sci-

entific process throughout this experience. In the free

responses and discussions with students many of the

them also expressed their appreciation for learning

basic programming skills. It was somewhat surpris-

ing to find that 18% of students disagreed to some

extent or were unsure about gaining satisfaction

from independent problem solving in science. In

terms of the impact that the experience had on stu-

dent’s career plans, we were pleasantly surprised to

find that 59% of students agreed or strongly agreed

that the experience “Increased the likelihood that

[they] will apply to graduate school specifically for

a Ph.D. or Masters in a scientific discipline” and

65% agreed or strongly agreed it “Increased the like-

lihood that [they] will pursue a career that involves

scientific research”.

In the written responses to questions such as

“What would you recommend to improve the expe-

rience?” and “Are there topics etc. that you wish we

had covered or covered in more detail?” The most

common answers were that they would have enjoyed

additional training in statistical analyses in R, as it

felt rushed at times and also that it would be prof-

itable to spend more time working on scientific writ-

ing skills.

Future developments
Now that we have finalized the traditional (linear)

morphometrics database from the museum, the

data-collection is switching to analyzing the photo-

graphs using geometric morphometrics. We are also

experimenting with streamlining the experience so

that students only have to commit to two semesters

(12 months), as many undergraduates are unable to

commit to three semesters or four quarters working

on a research project. For example, we are now pro-

viding a specific clade and broad topic to work on,

which should speed up the hypothesis development,

data collection, and analysis sections. This approach

will also focus students’ literature searches and

shorten the time spent becoming familiar with the

literature and developing their own potentially pub-

lishable hypothesis. As the students will not be work-

ing on the full dataset going forward, it will also

speed up the collection of any additional data they

need (e.g., diet or habitat information) and reduce

computational demands, as they will only have 200–

300 species to analyze, versus thousands.

We have also recently realized how important it is

to openly acknowledge at the start of the process that

it will be hard, and that sometimes they may feel

clueless but that those feelings are both normal

and okay. For example, students have to choose a

hypothesis before they know any comparative meth-

ods, so they have to trust us that there are methods

available to test the hypothesis until we can teach

them the required quantitative skills. We now em-

phasize that as they progress through the experience

things will become clearer and they should ask as

many questions as possible to get clarification,

help, and advice; perseverance is key. This is why

we believe preparing for the presentation of their

results is a pivotal point in the experience: by syn-

thesizing everything they have done the students fi-

nally take ownership of the research and realize just

how far they have come.

Conclusions
Careful training of undergraduate researchers to col-

lect phenotypic data in the context of a CURE has

major scientific and pedagogical benefits. Our work

demonstrates that this strategy enables the collection

of vast amounts of phenotypic data by generating a

workforce of knowledgeable and committed under-

graduate scientists with a vested interest in the data

quality. Moreover, it provides the undergraduate

researchers with the opportunity to experience the

entire process of science, from hypothesis develop-

ment through to the presentation of results. Through

this experience the students build key skills such as

critical thinking, quantitative reasoning, and public

speaking, all invaluable tools for modern scientific

discovery.
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