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Summary  
Psoriasis is characterized by alterations in both the epidermis and dermis of the skin. Epidermal 
keratinocytes display marked proliferative activation and differentiate along an "alternate" or 
"regenerative" pathway, while the dermis becomes infiltrated with leukocytes, particularly interleukin 
2 (IL-2) receptor-bearing "activated" T cells. Psoralens, administered by the oral route, have 
therapeutic effects in psoriasis when photochemically activated by ultraviolet A light (PUVA 
therapy). Recently psoralen bath therapy has been introduced to more effectively deliver this 
agent to the diseased skin. We have correlated the efficacy of PUVA bath therapy with its effects 
on specific molecular and cellular parameters of disease, in 10 consecutive patients with recalcitrant 
psoriasis. Rapid clearing of lesions occurred in 8 out of 10 patients. Biopsies were taken from 
lesional and nonlesional skin before and after a single round of therapy, and observation was 
continued in our Clinical Research Center at The Rockefeller University. Enumeration of cycling 
keratinocytes with the Ki-67 monoclonal antibody showed that PUVA reduced cell proliferation 
by 73%. The pathological increase in insulin-like growth factor I (IGF-1) receptors was reversed, 
whereas epidermal growth factor (EGF) receptors, which are also increased in psoriasis, remained 
unchanged. Keratinocyte proteins that are expressed in abnormal sites of the epidermis during 
psoriasis, i.e., keratin 16, filaggrin, and involucrin, were, after PUVA treatment, localized to 
their normal sites. Epidermal and dermal T-lymphocytes (CD3 +), as well as CD4 +, CD8 +, 
and IL-2 receptor + subsets, were strongly suppressed by PUVA, with virtual elimination of IL-2 
receptor + T cells in some patients. Consistent with diminished lymphocyte activation, HLA- 
D R  expression by epidermal keratinocytes was markedly reduced in treated skin. In comparison 
to cyclosporine treatment of psoriasis, PUVA therapy leads to more complete reversal of pathological 
epidermal and lymphocytic activation, changes which we propose to be the cellular basis for 
a more sustained remission of disease after PUVA treatment. 

p soriasis is a common skin disease characterized by marked 
changes in tissue architecture and by simultaneous acti- 

vation of a variety of distinct cell types, including epidermal 
keratinocytes, vascular elements, and leukocytes. Much of the 
clinical appearance of psoriasis (red, raised, scaly plaques) can 
be attributed to alterations in the growth and maturation 
of epidermal keratinocytes. The thickened psoriatic epidermis 
is characterized by keratinocyte hyperplasia and by a number 
of differentiation-related alterations, including maturation of 
keratinocytes with retained nuclei (parakeratosis), and altered 
expression of keratins and other differentiation-specific pro- 
teins along a "regenerative" or "alternate" pathway (1-3). It 
seems likely that important interaction occurs between psori- 
atic keratinocytes and T-lymphocytes, since psoriatic keratino- 
cytes inappropriately synthesize a number of immune-related 

molecules, including HLA-DR (4-6), intercellular adhesion 
molecule 1 (ICAM-1) (7, 8), and the IP-10 protein (9). Much 
of the cellular and molecular activation in psoriatic skin may 
be explained, in turn, by increased expression of cytokines 
or cytokine receptors within lesional skin (10-12). Psoriatic 
epidermis is characterized by increased expression of epidermal 
growth factor (EGF) 1 receptors (13), insulin-like growth 
factor 1 (IGF-1) receptors (14), and IL-1 receptors (15), all 
molecules which might directly regulate epidermal hyper- 

1 Abbreviations used in this paper: 8-MOP, 8-methoxypsoralen; EGF, 
epidermal growth factor; IGF-1, insulin-like growth factor 1; K16, keratin 
16; PUVA, psoralens plus ultraviolet A light. 
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proliferation. A complex milieu of cytokines is also present 
in psoriatic lesions. There is an increased production of TGF-ot, 
amphiregulin, IL-2, IL-6, IL-8, TNF-ot, and IFN-% each 
of which may contribute to activation of epidermal or im- 
munological cell types within active lesions (16). 

Although one can point to specific alterations in cytokine 
circuits to explain many of the cellular features of psoriasis, 
it is not known whether psoriasis is intrinsically a disease 
of epidermal keratinocyte dysfunction or a disease triggered 
by inappropriate T-lymphocyte accumulation and activation 
within focal skin areas (17). Attempts to reproduce the 
histopathological features of psoriasis by overexpression of 
specific cytokines or HLA molecules in transgenic rodents 
has met with only limited success (18-20). As no animals 
develop psoriasis-like skin lesions, one of the few means to 
judge the relative contribution of different cellular elements 
to its pathogenesis is to study changes brought about by 
therapy-induced resolution of skin pathology. By studying 
the response of epidermal and immunological cells and 
regulating cytokines or receptors to different therapeutic 
agents, one can hope to identify critical pathogenic com- 
ponents. 

Two emerging therapies for severe psoriasis are treatment 
with cyclosporine (21--23) and bath PUVA (psoralens, ad- 
ministered in bath water rather than systemically, plus UVA) 
(24-26), forms of treatment that can produce clinical resolu- 
tion in a high percentage of individuals. In a recent study 
(27), we noted that cyclosporine induced marked reductions 
in T-lymphocytes, as well as in IL-2R + lymphocytes in 
affected psoriatic skin; however, molecular markers of 
epidermal activation such as keratin 16 (K16) and TGF-c~ con- 
tinued to be variably overexpressed. These data suggested that 
the observed clinical improvement correlated more closely 
with reduced lymphocyte activation rather than reduced ker- 
atinocyte activation. However, in another recent study that 
compared the action of cyclosporine with systemic PUVA 
treatment (28), it was noted that psoriasis was improved by 
cyclosporine treatment without marked reductions in tissue- 
infiltrating T-lymphocytes, whereas PUVA treatment pro- 
duced marked reductions in T-lymphocytes. Although markers 
of epidermal activation were not examined, these authors sug- 
gested that the predominant action of cyclosporine might 
be on the epidermal compartment (28), a possibility supported 
by the direct effects of cyclosporine on epidermal keratino- 
cytes (29). 

To better dissect the relative mechanistic actions of PUVA 
and cyclosporine in psoriasis, we have now examined the ability 
of bath PUVA to modulate cellular and cytokine activation 
in a group of 10 consecutive patients with recalcitrant dis- 
ease. Bath PUVA is a new form of PUVA administration in 
which psoralen is applied to the skin from bathing in a dilute 
aqueous solution, instead of administering psoralen to the 
skin from systemic dosing. Compared with systemic adminis- 
tration, bathing selectively concentrates the psoralen in the 
epidermis (for a review see reference 30), and thus, bath PUVA 
may have more selective effects on epidermal cells compared 
with PUVA treatment using systemic psoralens. We report 
that bath PUVA treatment leads to a more complete reversal 
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of the pathologic alterations in epidermal and immune cells, 
especially when compared with cyclosporine treatment. 
Specifically, we describe how bath PUVA leads to: (a) a pro- 
found reversal of several molecular markers of keratinocyte 
disease; (b) a virtual elimination of tissue-infiltrating T lym- 
phocytes; and (c) a longer suppression of clinical disease ac- 
tivity relative to cyclosporine. 

Materials and Methods 

Patients. A protocol using topical/bath water delivery ofpso- 
ralens plus UVA irradiation in patients with moderate to severe 
psoriasis was approved by The Rockefeller University Hospital In- 
stitutional Review Board. All patients entered into this protocol 
had either failed management with topical agents or had such ex- 
tensive disease that management with topical agents was not feasible. 
Patients were at least 18 yrs old (ranging from 28 to 74 yr of age) 
and had no pre-existing photosensitizing diseases, history of mela- 
noma/squamous cell carcinoma, or evidence of cataracts before 
therapy. If patients were skin types I or II, or if they were on any 
potentially photosensitizing medications, a small area on their backs 
was phototested before the initiation of therapy. 

Procedures. If patients met entry criteria, they underwent 
pretreatment biopsies and were begun on therapy three times per 
week. Patients bathed in 200 liters of water at body temperature, 
to which the dissolved 8-methoxypsoralen (8-MOP) had been added 
(final concentration, 0.5 rag/liter). UVA was delivered with a pho- 
totherapy unit (model 57000; Psoralite, Columbia, SC) using an 
initial UVA dose of 0.5 J/cm 2 as recently described (30). Clinical 
evaluations and photographs were performed weekly to assess 
efficacy. Disease activity was assessed by quantitating percent body 
coverage by degrees oferythema, scaling, and skin thickness in the 
psoriatic plaques. Each was rated by assigning a score from 1 to 
7 based upon severity as follows: 1, absent; 2, trace, 3, mild; 4, 
mild to moderate; 5, moderate; 6, moderate to severe; and 7, se- 
vere. The scores for erythema, scaling, and skin thickness were 
summed for a maximum obtainable score of 21 and a minimum 
of 3. The sum was called the severity index (27). The patients were 
treated until complete resolution of their disease took place, or until 
it became clear that treatment was ineffective. 

Immunoperoxidase Studies. Immunoperoxidase studies of fresh- 
frozen skin biopsies were done using the Vectastain ABC kit (Vector 
Laboratories, Burlingame, CA) as described (4, 31). IL-2R +, CD3 § 
CD4 +, and CD8 + T cells were quantitated by averaging the 
number of positively staining cells in three x40 fields in each of 
three regions-epidermis, dermo-epidermaljunction, and dermis. 
Statistics were performed using either the Parametric t test, or the 
Wflcoxon Sign Rank Test if the data were not normaUy distributed. 
The antibodies directed against HLA-DR (4), IL-2R (4), Langerhans 
cells (4), K16 (2, 32), TGF-cx (33), involucrin (34), filaggrin (34), 
Ib6 (31), IGF-I receptors (35), and EGF receptors (35) have been 
reported previously. 

Epidermal Thickness. Measurements were made directly on 
cryostat-processed biopsy specimens using a calibrated microscope 
micrometer. The thickness of the stratum corneum, and stratum 
Malpighi were calculated in four separate areas of each biopsy and 
averaged. Pre- and posttreatment measurements were performed 
on lesional and nonlesional skin. 

In Vitro Cell Culture and UVA Irradiation. Human keratinocytes 
were cultured as previously described in keratinocyte growth 
medium (KGM; Clonetics, Corp., San Diego, CA) (35) and were 
used after the first or second subculture. Mononuclear leukocytes 
from human blood were prepared by centrifugation on Ficoll den- 
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sity gradients and were activated with PHA for 3 d in RPMI 1640 
medium containing 10% fetal bovine serum as previously described 
(29). 8-MOP dissolved in ethanol was added directly to PBS so 
that ethanol did not exceed 0.01% final concentration and diluted 
8-MOP solutions were incubated with cultured cells for 15 min 
before UVA irradiation. Standard UVA fluorescent bulbs with a 
peak emission at 360 nm and a power output of 10 mW were used 
to irradiate cultures after the light was passed through a 335-nm 
bandpass glass filter (WG335, Shott Glass, Germany), which re- 
moved all detectable ultraviolet below 320 nm. The light intensity 
at the culture surface was measured with a calibrated UVA detector 
(IL 1700; International Light, Inc., Newburyport, MA). After 
incubation of cells for 24 h after UVA irradiation, cell proliferation 
was measured by incorporation of [3H](methyl) thymidine, 1 
#Ci/ml (3-ml/assay) in the appropriate medium for 4 h, or by 
direct cell counting of trypsinized keratinocytes as previously 
described (35). 

Results 
10 patients with recalcitrant psoriasis were enrolled into 

our PUVA bath therapy protocol. The majority (80%) of 
patients showed remarkably good clearing of their psoriasis 
after an average of 17 treatments. In these patients, the severity 
index was reduced from an average of 13.6 before treatment 
to 3.7 after treatment, with 6 of 8 showing complete clearing 
of their disease. Before treatment, an average of 28% of the 
skin surface area was affected by psoriasis, whereas after treat- 
ment only 4% was affected. Patients 9 and 10 (Table 1) had 
only 16-20% improvement in their psoriasis severity indices 
and were considered treatment failures. However, one of these 
patients was poorly compliant with therapy and received only 
intermittent PUVA treatment. The average time-to-clearing 
was ~6  wk (17 treatments) in patients responding to this 
form of PUVA therapy. 

Effects of PUVA Treatment on Immunological Parameters. 
Since psoriasis is defined in pathological terms by inappropriate 
activation of immunological and epidermal cells, we sought 
to characterize the effect of PUVA bath therapy on expres- 
sion of aberrant immunological and keratinocytic components 
in affected skin. Immunological alterations in active psori- 
atic skin include heavy infiltration of epidermal and dermal 
tissue by T-lymphocytes, many expressing IL-2Rs, and induced 
expression of HLA-DR and IP-10 proteins in epidermal ker- 
atinocytes. Fig. 1 shows a representative histopathological anal- 
ysis of CD3 + lymphocytes and IL-2R + lymphocytes in 
psoriatic tissue before and after PUVA treatment (A-D). There 
are marked reductions in total T-lymphocytes and in those 
expressing IL-2Rs after PUVA therapy. Table 1 presents a quan- 
titative analysis of CD3 + , CD4 § , CD8 + , and IL-2R + lym- 
phocytes in nonaffected skin and in psoriatic lesional skin for 
each patient before and after PUVA therapy. Lymphocyte 
numbers were counted separately in the epidermis, the dermis, 
and in the region of the epidermal-dermal interface (Table 
1). The distribution of T cells infiltrating psoriatic lesions 
was about one-third in the epidermis and two thirds in the 
dermis. Independent quantification of CD4 § and CD8 § 
cells indicates that CD8 + cells preferentially infiltrate the 
epidermis, e.g., in patients 1-8, the CD4/CD8 ratio was 0.95 
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in the epidermis, whereas it was 1.86 in the dermis. All T 
cell subsets were reduced in psoriatic tissue by PUVA bath 
therapy. In the interface region, those patients with good 
clinical responses (nos. 1-8) averaged a mean reduction in 
total T cells by 10.5-fold and a reduction in T cells expressing 
IL-2Ks by 14.2-fold. Concomitant reductions in CD4 + and 
CD8 + lymphocyte subsets were observed (Table 1). It is in- 
teresting that PUVA bath therapy induced larger relative reduc- 
tions in epidermal T-lymphocytes compared with effects on 
dermal T-lymphocytes (Table 1). In patients responding to 
therapy, epidermal CD3 § T cells were reduced by an average 
of 14.9-fold, whereas dermal cells were reduced by an av- 
erage of 4.7-fold. Marked reductions in HLA-DK expression 
by epidermal keratinocytes were also present in PUVA-treated 
psoriatic skin (Fig. 1, E and F, and Table 1), but constitutive 
expression of HLA-DR by epidermal Langerhans cells was 
not apparently affected. As HLA-DR is induced in keratino- 
cytes by IFN-% which is synthesized by activated T-lym- 
phocytes, its reduction might be caused by either immunosup- 
pressive effects of PUVA on T-lymphocytes or direct effects 
of PUVA on HLA-DR production by epidermal cells. 

A number of previous studies (36-41), most using oral 
dosing or higher topical psoralen concentrations, have sug- 
gested that PUVA treatment largely destroys epidermal Lang- 
erhans cells. However the focal expression of HLA-DK in 
PUVA bath-treated skin suggested the continued presence 
of Langerhans cells. Thus, we investigated the distribution 
of CD1 + (Langerhans) cells within nonlesional and lesional 
psoriatic epidermis before and after PUVA bath treatment 
(Fig. 2). In lesional psoriatic skin (Fig. 2 A), CD1 + cells 
were primarily located in the mid-to-upper spinous layer of 
the epidermis. No obvious decrease in density of epidermal 
CD1 + cells occurred in PUVA-treated lesional skin (Fig. 2 
B). In two patients, comparison of pretreatment normal skin 
(Fig. 2 C) with posttreatment normal skin (Fig. 2 D) showed 
a marked reduction in epidermal Langerhans cells. However, 
in normal skin of all other patients studied, there was little 
difference in the distribution of CD1 + epidermal cells in 
pre- vs. posttreatment normal skin (Fig. 2, E and F). This 
analysis, while not rigorously quantitative, certainly suggests 
that low psoralen concentrations employed in PUVA bath 
therapy do not uniformly reduce the abundance of epidermal 
Langerhans cells. Thus, there was no consistent relationship 
between the abundance of epidermal Langerhans cells and 
either psoriatic disease activity or induction of disease 
remission. 

Effects of PUVA Therapy on Epidermal Parameters. PUVA 
therapy also strongly modulates the psoriatic epidermal pheno- 
type. Pathological features of psoriatic epidermis include: (a) 
increased keratinocyte proliferation (hyperplasia); (b) a tremen- 
dously thickened (acanthotic) epidermis with elongated fete; 
(c) an altered sequence of keratinocyte differentiation called 
"the alternate differentiation pathway" or "regenerative matu- 
ration" which is associated with altered transcription of 
numerous keratinocyte genes; and (aT) an altered epidermal 
structure which includes an absent granular layer, retention 
of keratinocyte nuclei in the stratum corneum (parakeratosis), 
and focal accumulation of leukocytes within the stratum 
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Figure 1. PUVA therapy suppresses immunolog- 
ical activation in psoriatic lesional skin. The expres- 
sion of IL-2R + T cells (A and B), CD3 + T cell (C 
and D), and HLA-DR molecules (E and F) is shown 
in pretreatment psoriatic lesional skin (A, C, and E) 
vs. posttreatment skin (B, D, and F). Note thinner 
epidermis after PUVA treatment and reduced numbers 
of CD3 + and IL-2R + lymphocytes in PUVA-treated 
psoriatic lesions, as well as absence of keratinocyte 
HLA-DR staining, x200. 

corneum (microabscesses). We thus examined the effect of 
PUVA therapy on these epidermal parameters, which com- 
bined with T-lymphocyte infiltration, define psoriasis as a 
unique disease entity. 

Psoriatic epidermal acanthosis is strongly reversed by PUVA 
therapy. Overall epidermal thickness and the thickness of living 
epidermal layers (stratum Malpighi) and the stratum corneum 
were measured in histological sections of normal and lesional 
psoriatic skin before and after PUVA therapy (Fig. 3). There 
was an overall reduction of epidermal acanthosis in lesional 
psoriatic skin by 58%. Thinning of both the stratum Mal- 
pighi and stratum corneum occurred in psoriatic lesional skin 
(Fig. 3). PUVA treatment of lesional psoriatic skin also led 
to return of a granular layer, restoration of keratinocyte matu- 
ration with nuclear elimination (orthokeratotic maturation), 
and elimination of neutrophils from the stratum corneum. 
In contrast, PUVA treatment of nonlesional skin led to a slight 
overall increase in epidermal thickness (Fig. 3). It is interesting 
to note that this slight acanthosis could all be attributed to 
a statistically significant increase in the thickness of the stratum 
corneum (p <0.025). Histological sections showing this effect 
of PUVA therapy on nonlesional skin can be seen in Fig. 2, 
C and D. 

In active psoriatic skin, keratinocyte differentiation is shifted 
into an alternate or regenerative pathway. As epidermis can 
display a regenerative phenotype without showing gross 

histopathological alterations (2, 34), we sought to determine 
whether PUVA therapy reversed regenerative epidermal acti- 
vation in psoriasis. Three markers of regenerative matura- 
tion were studied: K16, expressed only in hyperplastic epi- 
dermis, and the differentiation-related proteins filaggrin and 
involucrin, expressed by granular layer keratinocytes in normal 
epidermis and lower spinous-to-granular layer keratinocytes 
in regenerative epidermis (2). Micrographs depicting expres- 
sion of the regenerative markers in lesional psoriatic skin before 
and after PUVA therapy are displayed in Fig. 4. In active, 
lesional psoriatic skin, K16 is strongly expressed throughout 
the stratum Malpighi (Fig. 4 A); involucrin and filaggrin are 
expressed by keratinocytes from lower spinous-to-granular 
keratinocytes (Fig. 4, C and E). In lesional psoriatic skin ex- 
posed to PUVA therapy, the expression of each of these pro- 
teins is altered. K16 expression by suprabasal keratinocytes 
is eliminated (Fig. 4 B). The staining of basal and acrosyrin- 
geal keratinocytes with K16 antibodies in posttreatment skin 
(Fig. 4 B) also occurs routinely in normal epidermis and is 
due to an apparent cross-reaction of these antibodies with 
basal-specific keratins (2). The expression of involucrin (Fig. 
4 D) and filaggrin (Fig. 4 F) in spinous keratinocytes is elim- 
inated and these proteins are expressed by granular layer ker- 
atinocytes, as in normal skin. Table 2 summarizes the effects 
of PUVA therapy on regenerative maturation markers in le- 
sional psoriatic skin for each patient studied. Although PUVA 
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Figure 2. Effect of PUVA therapy 
on Langerhans cell distribution in non- 
lesional and lesional psoriatic epidermis. 
Pretreatment skin tissue (A, C, and E) 
is paired with post-PUVA treated tissue 
(B, D, and F) from the same patient. 
All have been reacted with CD1 anti- 
bodies. Biopsies from lesional psoriatic 
skin (A and B); biopsies from unin- 
volved areas of skin (C-F). x200. 

altered keratinocyte differentiation in nonlesional skin, it did 
not activate alternative or regenerative epidermal maturation 
(data not shown). 

Active psoriasis is also characterized by epidermal hyper- 

plasia. In lesional psoriatic epidermis, a higher fraction of 
germinative keratinocytes is proliferating and the cell cycle 
length is dramatically shortened compared with  nonlesional 
or normal skin (1). We assessed the ability of  PUVA bath 
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Figure 3. PUVA therapy reverses epidermal 
acanthosis in lesional psoriatic skin. Thickness of 
entire epidermis (solid bars), thickness of stratum 
Malpighi or living epidermal layer (hatched bars), 
and thickness of stratum corneum (open bars) was 
measured in histological sections of lesional and 
uninvolved psoriatic skin before and after PUVA 
treatment. Error bars show standard deviation of 
measurements. 
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Figure 4. PUVA therapy reverses regenerative phe- 
notype of lesional psoriatic skin. Pretreatment skin 
biopsies (/1, C, and E) are compared with posttreat- 
ment skin biopsies (B, D, and F) from the same pa- 
tient. Reaction with antibodies to K16 (A and B), in- 
volucrin (C and D), and filaggrin (E and F) are shown. 
(D and F) Arrowheads mark the epidermal-dermal 
junction (note that involucrin and filaggrin are ex- 
pressed in the granular layer of the epidermis in PUVA- 
treated skin, whereas they are expressed by lower 
spinous keratinocytes in psoriatic lesions before treat- 
ment). As in normal skin, K16 is not expressed by 
suprabasal keratinocytes in PUVA-treated psoriatic le- 
sions. Thus keratin expression and epidermal differen- 
tiation in PUVA-treated psoriatic epidermis are like 
those found in normal human skin. x 200. 

Table 2. Bath PUVA Decreases Keratinocyte Growth Activation 

Altered Expression after Bath PUVA* 

Patient I{16 Involucrin Filaggrin IGF-1R TGF-o~ EGF-R IL-6 

1 NL SRM NL NL U U U 

2 NL NL NL NL U U U 

3 NL NL NL NL U U U 

4 SRM NL NL $RM U U U 

5 NL NL NL $RM U U U 

6 NL $RM NL NL U U U 

7 NL $RM NL NL T U U 

8 NL NL NL NL $ U U 

9 NL NL NL NL T U U 

10 U U U U U U U 

No. patients 

Im~oved 9/10 9/10 9/10 9/10 1/10 0/10 0/10 

* Improved is defined as a reversion to, or a significant trend towards the phenotype seen in NL or noulesional skin. 
NL, normal expression; dRM, a trend towards NL expression with persistent evidence of RM; U, no change; 1", increase; ~., decrease. 
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therapy to reverse epidermal hyperplasia using nuclear staining 
with Ki67 antibody. The Ki67 protein is a proliferating cell 
nuclear antigen that is synthesized by ceils in mid-S phase, 
continues to be expressed at high levels throughout G2 and 
M phases, and is degraded rapidly upon cell entry into G1 
(42). Fig. 5, A and B illustrates representative micrographs 
of pre- and posttreatment psoriatic lesional skin reacted with 
Ki67 antibodies. Ki67 antibodies react with numerous basal 
and immediately suprabasal keratinocytes in active psoriatic 
skin (Fig. 5 A) in a pattern that is virtually identical to in 
situ labeling with [3H]thymidine (1). With PUVA treat- 
ment, there is a reduction in the density of Ki67 § keratino- 
cyte nuclei and positive cells reside largely in the basal epidermal 
layer (Fig. 5 B), similar to nonlesional skin or skin from normal 
controls (data not shown). Fig. 6 presents a quantitative analysis 
of the Ki67 + nuclei in pre- and posttreatment lesional psori- 
atic skin for all patients responding to PUVA bath therapy. 
The number of Ki67 + cells was reduced in each patient after 
PUVA treatment, with a mean reduction of 73% (p = 0.004). 

Even so, the number of Ki67 + keratinocytes in some post- 
treatment specimens was higher than in uninvolved psoriatic 
skin controls (Fig. 6). The effects of PUVA therapy on cell 
cycle length could not be calculated from these data, but if 
it also normalized this parameter, then the overall rate of ker- 
atinocyte production in posttreatment skin might be reduced 
by 15-fold or more compared with pretreatment lesional skin. 

Several growth factor or cytokine pathways are altered in 
lesional psoriatic skin and have been proposed as molecular 
regulators of psoriatic epidermal hyperplasia (10, 14, 31, 33, 
43). Accordingly, we sought to determine the relationship 
between expression of these putative growth-regulating path- 
ways and reversal of epidermal hyperplasia using PUVA 
therapy. IGF-1 receptors are expressed by basal keratinocytes 
in normal skin, but both basal and suprabasal keratinocytes 
in lesional psoriatic epidermis express membranous IGF-1 
receptors (Fig. 7 A), coincident with the increased keratino- 
cyte proliferative pool in psoriasis (1, and Fig. 5 A). Mem- 
branous IGF-1 receptor expression was restored to the basal 
epidermal compartment in lesional skin treated with PUVA 
(Fig. 7 B). In contrast, EGF receptors were expressed in a 
membranous pattern by most basal and spinous keratinocytes 
in psoriatic skin pre- and post-PUVA treatment (Fig. 7, C 
and D). Lesional psoriatic skin also typically expresses high 
levels of immunoreactive TGF-o~ and IL-6, two cytokines that 
can serve as keratinocyte mitogens. However, little reduction 
in expression of these proteins was seen in lesional psoriatic 
epidermis after PUVA treatment (Table 2). 

Antiproliferative Effects of PUVA on Cultured Human Lym- 
phocytes and Keratinocytes. As PUVA therapy produced pro- 

Figure 5. PUVA therapy reduces expression of the Ki67 proliferating 
cell nuclear antigen in lesional psoriatic skin. Pretreatment lesional skin 
(.4) is contrasted with posttreatment skin from a resolved lesional area 
(B). Note the appearance of numerous cycling keratinocytes in basal and 
suprabasal psoriatic epidermis before treatment and the restoration of cy- 
cling keratinocytes largely to the basal layer after PUVA treatment, x 200. 
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Figure 6. Quantitative analysis of Ki67 nuclear staining in psoriatic 
lesional skin before and after PUVA treatment, Lines connect measure- 
ments made in individual patients in pre- vs. posttreatment lesional skin 
for all patients responding to therapy. The measurement of Ki67 in unin- 
volved skin from six patients is also shown. Each measurement is the number 
of Ki67 + keratinocyte nuclei in 600 #m of epidermis (a linear measure- 
ment made across the width of the spinous epidermal layer). 
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Figure 7. Effects of PUVA therapy on expression of 
IGF-1 and EGF receptors by keratinocytes in lesional psori- 
atic epidermis. Skin tissue before therapy (.4 and C) and 
after treatment (/3 and D) was reacted with anti-IGF-1 
receptor (.,t and B) or anti-EGF receptor (C and /9) 
mAbs. IGF-1 receptors are expressed at the cell surface 
by basal and numerous suprabasal keratinocytes in psori- 
atic epidermis, whereas only basal keratinocytes express 
these receptors at the cell surface after PUVA treatment. 
In contrast, numerous basal and suprabasal keratinocytes 
express EGF receptors at the cell surface before and after 
PUVA-treatment. x400. 

found effects on both epidermal keratinocytes and T-lympho- 
cytes in psoriatic tissue, we compared the ability of PUVA 
to suppress growth of these cell types in vitro. As shown 
in Fig. 8, A and B, a 15-min incubation of cultured cells 
with 8-MOP concentrations between 1 and 50 ng/ml fol- 
lowed by exposure to 2 J / cm 2 of UVA light (from which 
UVB had been removed by a band-pass filter), produced a 
dose-dependent reduction in proliferation of both cell types. 
Maximal growth inhibition was achieved at 24 h after treat- 
ment with 10 ng/ml 8-MOP in these cell types, with a similar 
dose-response to varying psoralen concentrations. For our 
patient study, the bath solution contained 500 ng/ml of 
8-MOP and UVA doses of 5-15 J/cm 2 were typical. In an- 
other study (44) which used a slightly lower 8-MOP con- 
centration (400 ng/ml), typical 8-MOP levels in the epidermis 
ranged between 25 and 66 ng/g of tissue after bath applica- 
tion. It can thus be seen that proliferating epidermal ker- 
atinocytes and T-lymphocytes are strongly inhibited by 
psoralen and light concentrations that are easily achieved in 
vivo in human epidermis. Accordingly, it seems likely that 
both cell types would be direct targets of PUVA therapy in 
psoriatic skin. Our measurements indicate somewhat greater 
sensitivity of mitogen activated human lymphocytes to the 
effects of 8-MOP and UVA light than a previous study (45) 
in which complete inhibition of [3H]thymidine in lympho- 
cytes was produced by 100 ng/ml of psoralen followed by 
treatment with 3 J/cm 2 UVA. 

Relapse of Psoriasis after Bath PUVA Therapy. Fig. 9 illus- 
trates the rate at which psoriatic plaques return to baseline 
intensity of thickness, scaling, and erythema (and also cover 
a significant percentage of the pretreatment body surface area). 
For most patients treated with bath PUVA, treated psoriasis 
lesions generally remain flat and clear for weeks to months 
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Figure 8. Antiproliferative effects of PUVA on human keratinocytes 
and lymphocytes in culture. (.4) The response of keratinocytes to varying 
concentrations of 8-MOP and irradiation with 2 J/cm 2 of UVA was as- 
sessed by [3H]thymidine incorporation (I-q) or by direct cell counting (11). 
(B) A parallel experiment using mitogen-activated human lymphocytes. 
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following discontinuation of therapy, with usual recurrence 
as small papules that enlarge gradually over weeks or months 
to become clinically significant large plaques of psoriasis. 4 
mo after discontinuation of therapy, about half of the treated 
patients were free from clinically significant psoriasis and some 
patients had resolution lasting for a year or more (Fig. 9). 
In sharp contrast, when cydosporine was discontinued after 
attaining clinical clearing to the same extent as bath PUVA 
treatment, most patients had return of active, large plaques 
of psoriasis (at sites of prior disease) within 2 to 3 wk (Fig. 
9). In many of these patients, psoriasis has returned fully to 
its baseline extent by 4 wk after discontinuation from cy- 
closporine. For patients whose psoriasis was treated to clin- 
ical clearing with the Goeckerman protocol (UVB and tar), 
we observed a relapse rate between that seen with cyclospo- 
rine and bath PUVA (Fig. 9). The ability of cyclosporine vs. 
bath PUVA treatment to produce significantly different ther- 
apeutic outcomes may be strongly based in the ability of each 
of these therapies to variably suppress cellular activation in 
psoriatic lesions and is discussed more fully below. 

D i s c u s s i o n  

In this study we found that 8 of 10 psoriatic patients treated 
with topical PUVA, administered as a diluted bathwater so- 
lution, responded with virtual clearing of their psoriasis. Al- 
though we used a lower psoralen concentration than a prior 
study (0.5 vs. 3.7 mg/liter), our clinical response rate was 
similar to both that study (24) and to the general population 
of patients treated with PUVA via systemic dosing (46-48). 

0.8- 

O 

0.6- 

0.4- 

0 

0.2 
e~ 

[] 

0 w I I I 

0 5 10 15 20 
months post treatment 

Figure 9. Recurrence of psoriasis after PUVA treatment in compar- 
ison with other therapies. Psoriasis was cleared in patients with compa- 
rable disease activity by cyclosporine treatment for at least 8 wk (O), 
by treatment with bath PUVA (lq), or by an inpatient Goeckerman 
treatment with UVB light and topical tar treatment (I). All patients 
began follow-up with visually resolved psoriatic lesions. For each treat- 
ment, the time interval to relapse of clinically significant psoriatic plaques 
is shown. Cyclosporine provides a very transient benefit upon discon- 
tinuation, whereas weeks-to-months of clear skin is produced by bath 
PUVA treatment. 
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However, the major purpose of this investigation was to sys- 
tematically study the response of activated epidermal and im- 
munological cells to PUVA in a large group of patients. 

Epidermal changes in psoriatic skin are critical to the al- 
tered appearance of the skin and to its pathological basis. The 
thickened psoriatic epidermis is caused in large part by hyper- 
proliferative keratinocytes that transit from the basal epidermal 
layer to the stratum corneum in reduced time compared to 
normal skin (17). The differentiation sequence of psoriatic 
keratinocytes is along the alternate or regenerative pathway 
and is thus highly related, if not identical, to epidermal changes 
occurring in repair of acute wounds (2). Several cytokine 
pathways that control keratinocyte proliferation in vitro, e.g., 
those related to IGF-1, EGF, and IL-6, show increased ex- 
pression in psoriatic epidermis (10, 16) and may thus control 
keratinocyte proliferation in activated epidermis. In partic- 
ular, there appears to be a close spatial relationship between 
increased IGF-1 receptors in suprabasal spinous keratinocytes 
and increased proliferation of keratinocytes in these cells in 
psoriatic epidermis (cf. Figs. 5 A and 7 A). PUVA treatment 
dramatically reduces the number of cycling keratinocytes in 
psoriatic epidermis, and restores keratinocyte proliferation to 
the basal epidermal layer, changes which parallel reduced IGF-1 
receptor expression by suprabasal keratinocytes. These ob- 
servations suggest that the IGF-1 receptor may be particu- 
larly important to controlling keratinocyte proliferation in 
psoriasis, since comparatively few changes were seen in EGF 
receptor expression or IL-6 in PUVA-treated skin. 

It is also noteworthy that molecular and cellular markers 
of regenerative epidermal differentiation in psoriasis were 
reversed by PUVA treatment. Thus the altered expression of 
filaggrin, involucrin, and K16, as well as the relative absence 
of a granular epidermal layer and the presence of parakera- 
tosis (keratinocyte maturation with retained nuclei), features 
that largely define the histopathological psoriatic phenotype, 
must all be considered as conditional and reversible. As PUVA 
treatment strongly suppresses keratinocyte proliferation in cul- 
ture (Fig. 8), an important effect of PUVA on psoriatic ker- 
atinocytes might be to diminish proliferation and, thereby, 
allow for slower and more orderly epidermal differentiation. 
PUVA treatment may also directly modulate keratinocyte 
differentiation in psoriatic epidermis, since it induces syn- 
thesis of a number of spinous layer differentiation proteins 
in cultured keratinocytes (49). The thicker stratum corneum 
in PUVA-treated skin presumably reflects conversion of large 
numbers of regenerating keratinocytes into a slower and more 
ordered differentiation pathway. The net effect of PUVA on 
keratinocyte proliferation and differentiation in psoriatic 
epidermis may then be to convert a relatively large pool of 
rapidly cycling, largely undifferentiated keratinocytes (3, 50) 
into a smaller pool of slower cycling cells with appropriate 
differentiation, a conversion that would be most important 
in cycling suprabasal keratinocytes in order to restore cell 
proliferation to the basal epidermal layer. 

The role of activated T-lymphocytes must also be consid- 
ered in the pathogenesis of psoriasis and in the effects of therapy 
upon this disease. It is likely that T-lymphocyte-derived 
cytokines, particularly IFN-'y, induce expression of HLA- 



DR, IP-10, and ICAM-1 in psoriatic keratinocytes (10, 16). 
Activated lymphocytes, monocytes, and dendritic cells pro- 
duce a number of other cytokines such as IL-1, IL-6, and 
GM-CSF which are mitogens for epidermal keratinocytes 
under some circumstances (10, 16, 17, 51). It should also be 
noted that psoriasis is often associated with expression of cer- 
tain HLA class I alleles, an association that implies a role for 
CD8 + lymphocytes in its pathogenesis (17). As noted in 
Table 1, 8 of 10 psoriatics displayed a predominance of 
CD8 § lymphocytes in the epidermis, whereas CD4 + lym- 
phocytes predominated in the dermis. The ability of intra- 
epidermal CD8 § lymphocytes to contribute injury-producing 
cytokines or to directly injure epidermal keratinocytes might 
link their presence in the epidermis with epidermal activa- 
tion that is appropriate to an injury-response (wound healing) 
program. Our in vitro studies establish that PUVA treat- 
ment strongly suppresses the proliferation of activated lym- 
phocytes (Fig. 8), a response that might account for elimina- 
tion of lymphocytes from psoriatic epidermis and dermis 
by PUVA treatment. It is likely that the diminished production 
of HLA-DR by PUVA-treated psoriatic keratinocytes reflects 
diminished production of IFN-3' from lymphocytes infiltrating 
psoriatic tissue. Potentially more important, however, is the 
possibility that removal of intraepidermal CD8 + lympho- 
cytes by PUVA treatment leads to removal of an activating 
stimulus for epidermal keratinocytes, an effect that might 
indirectly convert regenerative epidermal growth to normal 
growth. 

Given the potentially critical, but somewhat uncertain, rela- 
tionship between epidermal and immunological activation 
in psoriasis, it is important to compare the relative effects 
of cyclosporine and PUVA treatment on cellular activation 
and disease activity in this condition. In a prior study (27) 
we treated 10 recalcitrant psoriatics with oral cyclosporine 
and 8 of 10 displayed clinical clearing of their psoriasis com- 
parable to that seen with bath PUVA in this study. Regener- 
ative epidermal activation as assessed by K16 expression was 
incompletely suppressed in most cyclosporine-treated patients, 
whereas K16 expression was fully reversed in 8 of 10 PUVA- 
treated patients in this study. Bath PUVA treatment also de- 
creased total T-lymphocytes and T cell subsets (CD4 +, 
CD8 +, and CD25 +) in lesional skin to a greater extent than 
did cyclosporine (27). For example, in cyclosporine-treated 
psoriasis lesions which were biopsied at clinical resolution, 
an average of 42 CD3 + lymphocytes and 7 CD25 § lympho- 

cytes were counted in the region of the epidermal-dermal in- 
terface. In bath PUVA-treated psoriasis, an average of eight 
CD3 + lymphocytes and two CD25 + lymphocytes were seen 
in this region. The difference in residual T-cell infiltration 
of psoriatic tissue treated with these two modalities is highly 
significant (p = 0.00007). The ability of PUVA treatment 
to more completely suppress T-lymphocyte infiltration of 
psoriatic tissue compared with cyclosporine was also seen in 
a recent study using oral 5-MOP (28). In fact, these authors 
suggested that a predominant action of cyclosporine in psoriasis 
might be directly on the epidermis, since only small reduc- 
tions in tissue-infiltrating T-lymphocytes were produced by 
cyclosporine (28). However, no markers of epidermal activa- 
tion were studied (28), and based on results of the present 
study it can be ascertained that cyclosporine less completely 
suppresses epidermal activation than PUVA in psoriatic le- 
sions. Although cyclosporine does not decrease tissue-infil- 
trating T-lymphocytes to the same extent as PUVA, cyclospo- 
fine strongly suppresses production of IL-2 and other 
THl-type cytokines in psoriatic lesions (52), which is the 
probable basis of its immunomodulatory activity in this dis- 
ease. However, as numerous T-lymphocytes continue to be 
present in clinically suppressed psoriatic lesions during cy- 
closporine treatment, these cells could reactivate quickly upon 
discontinuation of cyclosporine. This is the probable basis 
for rapid return of psoriasis upon discontinuation of cyclospo- 
fine (Fig. 9), although epidermal activation above that seen 
in normal skin could also contribute to the rapid disease recur- 
rence. In contrast, PUVA treatment produced nearly com- 
plete ablation of tissue-infiltrating lymphocytes in psoriatic 
skin, a result that could reflect cytotoxic action of PUVA 
on activated lymphocytes. Thus, return of lymphocytes to 
PUVA-treated psoriatic lesions would require proliferation 
and/or increased trafficking from central compartments, in 
addition to local activation in skin. This process would be 
considerably more complex, and presumably slower, than reac- 
tivation of tissue-resident lymphocytes in cyclosporine-treated 
lesions. Thus the differential effects of PUVA vs. cyclospo- 
rine on T-lymphocytes and immunological activation may 
underlie the observed temporal differences in recurrence of 
psoriasis after discontinuation of each therapy (Fig. 9). The 
ability to correlate overall therapeutic benefit in psoriasis with 
suppression of specific cell types and related molecular pathways 
may provide a rational scientific means to elucidate its patho- 
genesis more precisely and to design targeted therapy. 
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