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A B S T R A C T   

Background/Aims: Non-inferiority trials investigate whether a novel intervention, which typically has other 
benefits (i.e., cheaper or safer), has similar clinical effectiveness to currently available treatments. In situations 
where interim evidence in a non-inferiority trial suggests that the novel treatment is truly inferior, ethical 
concerns with continuing randomisation to the “inferior” intervention are raised. Thus, if interim data indicate 
that concluding non-inferiority at the end of the trial is unlikely, stopping for futility should be considered. To 
date, limited examples are available to guide the development of stopping rules for non-inferiority trials. 
Methods: We used a Bayesian predictive power approach to develop a stopping rule for futility for a trial col
lecting binary outcomes. We evaluated the frequentist operating characteristics of the stopping rule to ensure 
control of the Type I and Type II error. Our case study is the Intranasal Ketamine for Procedural Sedation trial 
(INK trial), a non-inferiority trial designed to assess the sedative properties of ketamine administered using two 
alternative routes. 
Results: We considered implementing our stopping rule after the INK trial enrols 140 patients out of 560. The trial 
would be stopped if 12 more patients experience a failure on the novel treatment compared to standard care. This 
trial has a type I error rate of 2.2% and a power of 80%. 
Conclusions: Stopping for futility in non-inferiority trials reduces exposure to ineffective treatments and preserves 
resources for alternative research questions. Futility stopping rules based on Bayesian predictive power are easy 
to implement and align with trial aims. 
Trial registration: ClinicalTrials.gov NCT02828566 July 11, 2016.   

1. Introduction 

Non-inferiority trials are an increasingly important, but often chal
lenging, paradigm in which novel treatments are compared to active 
controls [1,2]. The active controls are typically the standard of care and 

the novel treatment is expected to maintain the same level of effec
tiveness but is preferred for other reasons, such as safety or ease of 
administration. For example, intravenous (IV) ketamine is used to sedate 
children with extremity fractures while they undergo a fracture reduc
tion [3–5]. However, IV insertion is painful and - in young children - 
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must be performed by skilled personnel [6]. To combat this, ketamine 
could be administered intranasally (IN), which would be preferable for 
patients [7]. Thus, the Intranasal Ketamine for Procedural Sedation 
(INK) trial was designed to assess whether IN ketamine is non-inferior to 
IV ketamine. 

Ethically, it is important to monitor trials to ensure that patients are 
not exposed to unsafe treatments and unintended adverse events. 
Typically, this monitoring does not evaluate the primary efficacy 
outcome. However, interim analyses of efficacy have been highlighted 
as an important aspect of non-inferiority trials [8]: if, based on results at 
an interim analysis, it becomes unlikely to conclude non-inferiority, 
then trial participants are being needlessly exposed to a potentially 
less effective treatment. Despite this important ethical consideration, 
there are limited examples of stopping for futility in non-inferiority trials 
[8]. For example, a recent review highlighted that only 36% of 72 
non-inferiority trials in oncology considered a formal interim analysis, 
meaning that these trials may have failed to protect patients from 
inferior treatments [9]. 

Several methods have been proposed to stop trials for futility [10], 
particularly using the concepts of conditional and predictive power [11, 
12]. These methods stop a trial for futility if the probability of a statis
tically significant result from the completed trial is low at an interim 
analysis. Conditional power calculates the probability of a statistically 
significant result from the trial based on assumptions about the effect 
size and underlying event rate, usually based on the null and alternative 
hypotheses [11]. This approach has been criticised, as the chosen values 
for these quantities may not be appropriate in the face of the evidence. 
To address this concern, predictive power is the average conditional 
power over the current beliefs about the parameters of interest, usually 
determined using Bayesian methods [13]. 

These measures have been presented from a theoretical perspective 
[10–16] but have only been implemented in a small number of trials, e. 
g. Refs. [17–20], especially for non-inferiority trials [21]. In this paper, 
we develop a stopping rule for futility based on predictive power using 
the INK trial. We adjust the trial sample size to maintain power whilst 
also considering stopping for futility [22]. To encourage the develop
ment of stopping rules for futility in non-inferiority trials, we provide 
code to develop stopping rules, written in the R language for statistical 
computing [23]. We also provide a web application to implement this 
code without using R directly. 

2. Methods 

Spiegelhalter and others define predictive power as the chance of 
having a positive result from a trial, based on the currently available data 
[12]. Thus, predictive power can be calculated once we define a positive 
trial result and a method to analyse the currently available data that 
considers uncertainties in our knowledge about the effect size and un
derlying event rate in the population, known as the parameters of in
terest for our study. 

Firstly, we define a positive trial result as a setting where the null 
hypothesis is rejected following the completion of the trial [13]. This 
implies that the trial would stop at the interim analysis point only when 
there is little chance of concluding non-inferiority following the 
completion of the trial. Secondly, to capture uncertainty in our knowl
edge about the parameters, we use Bayesian methods to analyse the data 
collected up to the interim analysis. These methods combine the interim 
data with a prior distribution that represents the beliefs of the researcher 
(s), from either expert opinion or previous studies, before undertaking 
the trial. By combining the prior distribution and the data, the predictive 
power takes into account all the available information about the pa
rameters and formally accounts for our uncertainty when assessing 
whether the trial should be stopped [12]. 

2.1. A rejection region for binary outcomes 

A successful trial result is defined as rejecting the null hypothesis 
following the completion of the trial. For a non-inferiority trial with 
binary outcomes, as in our example, the null hypothesis is 

H0 : pC � pN > η  

where pN and pC are the probabilities of a favorable outcome for the 
novel treatment and the active control respectively and η is the non- 
inferiority margin. For the INK trial, pN is the probability of experi
encing adequate sedation for the duration of a fracture reduction using 
IN ketamine, pC is the probability of experiencing adequate sedation for 
the duration of a fracture reduction using IV ketamine. The non- 
inferiority margin, η, was defined as 0.17 and was based on a survey 
we undertook of over 200 physicians. Note that this non-inferiority 
margin allows for a substantial drop in effectiveness. This is specific to 
the INK trial as IV ketamine can still be used when IN administration 
fails and therefore, patient care is minimally affected by this change in 
effectiveness. 

To compute the probability of rejecting the null hypothesis, we must 
determine the “rejection region” of the hypothesis test, i.e. enumerate all 
the test statistics that would lead us to conclude non-inferiority at the 
end of trial. To compare two binary outcomes, we would compute the 
following statistic at the end of the trial: 

T ¼
NC

N
�

NN

N  

where NN and NC are the number of patients who experience a “success” 
for the novel treatment and the active control respectively. The de
nominator N is the number of patients enrolled for each arm of the trial, 
which is assumed equal across the two arms, but this can be relaxed. 
Thus, the statistic T is the difference in the proportion of patients who 
have a successful outcome in the trial. 

Based on the statistic T and a given trial sample size 2N, we can 
determine the exact rejection region for the test of non-inferiority [24]. 
Initially, we calculate the probability of observing each possible value of 
NC and NN at the boundary of the null hypothesis using a binomial 
distribution. The probability of success for these binomial distributions 
are set by fixing a value of pC and then fixing pN ¼ pC � η. For example, 
in the INK trial, we used the estimate of pC ¼ 0:97, obtained from the 
literature [25]. 

Once we have specified every possible value for T and the associated 
probability of observing T under the null, we can determine the rejection 
region of the test. Specifically, we would reject the null hypothesis if T is 
less than a threshold value t*. This is because the difference in pro
portions should be equal to or larger than the non-inferiority margin 
under the null. In practice, we determine the value of t* by ordering the 
values of T, smallest to largest, and computing t* as the largest value of T 
such that the probability of remaining below t* is below α, the level of 
significance. As T can only take a finite number of values, it is not 
possible to fix the size at α and therefore we chose t* as large as possible 
while the size of the test remains below α. As T and the associated 
probabilities are dependent on the trial sample size 2N, the value of t* 

will change for each sample size. 

2.2. Bayesian analysis at interim 

To undertake a Bayesian analysis at the interim analysis, we must 
specify our prior beliefs about pC and pN. For computational simplicity, 
we recommend choosing priors from the beta family of distributions as 
this is the conjugate distribution for the binomial trial outcomes [26]. It 
has also been suggested that stopping rules for futility should be 
developed based on “optimistic” prior distributions [27]. This is because 
there are limited data available at the interim analysis and, thus, the 
prior could have a substantial impact on the results at this interim stage. 
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A prior that strongly assumes that the novel treatment is non-inferior to 
the active control ensures that the trial would only stop if the results 
based on the data collected before the interim analysis overwhelmingly 
support a conclusion of inferiority for the novel treatment. 

In the INK trial, we choose our optimistic priors based on the out
comes in a published trial. Specifically, the prior for pC was based on a 
published trial in which 34 successful sedations were seen in 35 par
ticipants [25]. To center the prior on the proportion of successful se
dations seen this trial, while inflating our uncertainty in the historical 
data [28], we set the prior for pC as a beta distribution with parameters 
17 ¼ 34

2 and 0:5 ¼ 1
2. For pN, we define the prior, using the same pro

cess, as a beta distribution with parameters 20.5 and 3, based on three 
previous studies where 41 patients out of 47 were successfully sedated 
[28–30]. In the absence of data, these optimistic priors give an expected 
success rate from the trial of 0.798 and a probability of 0.82 that the IN 
administration is non-inferior to IV. 

2.3. Probability of a successful trial 

At the interim analysis, the predictive power stopping rule is based 
on the probability that we reject the null hypothesis following the 
completed trial, using the prior information and the currently available 
data. To calculate this probability, we need to determine the predictive 
distribution of the possible datasets that would be collected if the study 
were completed. Based on this, we can determine the probability that 
these datasets lie within the rejection region on the hypothesis test. This 
requires us to compute the statistic T for each predicted study dataset 
and determine whether T is in the rejection region. The trial should then 
be stopped for futility if the probability of rejecting the null hypothesis 
at the end of the trial is less than a given threshold. In this example, we 
set this threshold at 20% as this is recommended to trade off the risk of i) 
not stopping the trial when there is evidence of inferiority and ii) 
keeping the increase in sample size, required to recover the power lost 
by implementing the stopping rule, manageable [31]. 

In practice, it is easiest to undertake this prior predictive analysis 
using simulation. This can be achieved by generating S simulations from 
the posterior distributions for pC and pN, available analytically as we 
used conjugate distributions. For each s ¼ 1;…; S, the data that would 
be collected in the remainder of the trial is simulated from two binomial 
distributions, 

Ys
C � Bin

�
N � n; ps

C

�
;

Ys
N � Bin

�
N � n; ps

N

�
;

where N is the proposed sample size of each arm in the completed trial, n 
is the sample size for each arm at the interim analysis and ps

C and ps
N are 

the s-th simulated values from the posterior distribution of pC and pN, 
respectively. These simulated data are then added to the data collected 
at the interim analysis and the statistic T is calculated to determine 
whether T is in the rejection region of the hypothesis test. The propor
tion of simulated values for T that are in the rejection region estimates 
the probability that the null hypothesis will be rejected upon completion 
of the trial. 

2.4. Frequentist operating characteristics 

Before implementing this stopping rule for futility, we must ensure 
that the type I and type II error rates of the trial are not compromised. To 
achieve this, we calculate the type I and type II error rates using simu
lation methods. Initially, we simulate the number of successes at the 
interim analysis for both treatments from 

YC � Binðn; pCÞ

YN � Binðn; pNÞ;

conditional on fixed values for pC and pN. Based on these values of YC 
and YN, we use the stopping rule outlined in the previous section to 
indicate whether the trial should stop for futility. If the simulated trial is 
stopped for futility, then it does not continue so the null hypothesis is not 
rejected and no further trial simulation is required. However, if this 
simulated trial does not stop for futility, then we continue by simulating 
the number of patients who are adequately sedated in the remainder of 
the trial from 

Yf
C � BinðN � n; pCÞ;

Yf
N � BinðN � n; pNÞ:

Based on the simulated results from the completed trial, we then 
evaluate whether the null hypothesis is rejected. By simulating M po
tential trials, we compute the proportion of simulations for which the 
null hypothesis is rejected and, thus, the frequentist operating 
characteristics. 

To determine the type I error, pC and pN should be fixed to values that 
are consistent with the null hypothesis, e.g. pC ¼ 0:97 and pN ¼ 0:97 �
0:17 ¼ 0:8 for the INK trial. To determine the type II error, pC and pN 
should be set to values that are consistent with the alternative hypoth
esis, e.g. pC ¼ 0:97 and pN ¼ 0:872 for the INK trial. 

Considering stopping for futility leads to a reduction in power. To 
counter this, we slightly increase of the trial sample size to ensure suf
ficient power for the trial. To determine the sample size that gives the 
correct power, we initially set the trial sample size using standard 
sample size calculations for a non-inferiority trial of two binary out
comes and calculate the power of a trial that considers stopping for fu
tility. We then repeatedly increased the trial sample size by 1 and 
computed the power of a trial that considers stopping for futility with 
this full sample size until the power of the proposed trial was equal to, or 
larger than, β. 

3. Results 

3.1. Initial sample size calculation 

The initial sample size calculation indicated that a sample size of 266 
per arm would be sufficient to ensure a one-sided type I error rate below 
2.5%, a power of 80% with pC ¼ 0:97, pN ¼ 0:872 and a non-inferiority 
margin of 0.17. In practice, even though binary outcomes are discrete, a 
sample size of 266 participants per arm gives a type I error rate of 2.5%. 

Based on this sample size, all possible values of T and their proba
bility under the null hypothesis are plotted in Fig. 1 with the rejection 
region highlighted in red. This indicates that the null hypothesis is 
rejected when the difference between the two proportions is sufficiently 
small to indicate that pN is non-inferior to pC. For a sample size of 266, 
the null hypothesis is rejected when T is less than t* ¼ 0:117. 

3.2. Stopping rule for futility 

For operational reasons determined by the Data Safety Monitoring 
Board (DSMB) schedule, the interim analysis to consider stopping for 
futility for the INK trial was proposed at 25% enrolment. We used M ¼
500;000 simulations to estimate the frequentist operating characteris
tics of the INK trial as this gives a higher than 95% chance that the type I 
error rate is estimated correctly to two significant figures. To ensure a 
power of 80% with pC ¼ 0:97 and pN ¼ 0:872, the sample size of the INK 
trial must increase to 280 per arm with t* ¼ 0:118. In this setting, the 
interim analysis should occur after 70 patients have been enrolled for 
each of the two treatment options, as 25% of 280 is 70. The type I error 
rate for this trial is 2.2%. 

Fig. 2 displays the complete analysis of stopping rules for the INK 
trial as a function of the number of participants who are inadequately 
sedated, i.e., the participants who fail for the given treatment, out of the 
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70 participants enrolled in each trial arm. These stopping rules are 
generated with S ¼ 5000 simulations. In the darker the color, the lower 
the probability that the null hypothesis is rejected at the end of the trial. 
When more patients are inadequately sedated using IV ketamine (Active 
Control treatment failure), more patients can fail using the novel IN 
ketamine before the trial stops for futility. In addition, and by design, we 
can always experience a greater failure rate using IN ketamine compared 
to IV ketamine. Finally, if more sedation failures occur using IV keta
mine then it is very likely that the null hypothesis will be rejected upon 
completion of the trial. 

Most of the scenarios displayed in Fig. 2 are very unlikely to occur. 
For example, Fig. 2 highlights that the INK trial would not be stopped for 
futility if all patients were inadequately sedated with the active control, 
IV ketamine. However, as IV ketamine is assumed 97% effective, it is 
highly unlikely that all participants will be inadequately sedated. In 
Table 1, we summarize the most likely scenarios under which the INK 
trial would be stopped for futility. Table 1 also highlights the probability 
that each of these scenarios occurs, conditional on our prior beliefs 
about pC and pN. These probabilities are calculated based on 5000 
simulations from the prior of pC and pN. These probabilities are low, 
highlighting that we have used optimistic prior distributions as current 
evidence indicates that the INK trial would not stop for futility. In total, 
the prior probability that the INK trial would stop for futility is 0.212. 
While this is relatively elevated, the chosen priors indicate an 18% 
chance that the Novel Treatment is non-inferior to the Active Control. 
So, crudely speaking, the majority of the time when the INK trial stops 
for futility, the Novel Treatment is truly inferior to the Active Control. 

3.3. Power analysis 

The power for the INK trial is highly dependant on the chosen values 
of pN. Therefore, Table 2 displays power of the INK trial for different 
assumptions about the underlying success rate for the Novel Treatment. 
Note that these is significant drop in power as the true probability of 
success approaches the non-inferiority margin. 

To facilitate the development of fuitility stopping rules, code in the 
statistical computing language R [23] is provided in the supplementary 
material to produce all the results in this manuscript. Additionally, a 
web application is available at http://annaheath.shinyapps.io/Stoppin 
gRulesFutilityEfficacy to reproduce these results without interfacing 
with R directly. 

4. Discussion 

It is important to consider stopping for futility in non-inferiority 
trials when there is little chance of concluding non-inferiority at the 
end of the trial as this prevents patients from receiving a potentially 
inferior treatment [8]. This article describes a Bayesian predictive power 
stopping rule for a non-inferiority trial with a binary primary outcome, 
using the INK trial as a case study. In this case study, implementing a 
Bayesian predictive power stopping rule for futility increases the sample 
size from 266 to 280 per arm to maintain 80% power. The stopping rule 
is expressed graphically and in a table as a function of the number of 
treatment failures observed in each trial arm to facilitate the presenta
tion of results with key stakeholders, such as the Data Safety Monitoring 
Board (DSMB) and trial steering committee. We encourage the use of 

Fig. 1. The value of test statistic T plotted against the probability of observing 
T at the boundary of the null hypothesis. The bold dots (shown in red) represent 
values of T that are in the rejection region, i.e., the values of T that are less than 
t* ¼ 0:115. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 

Fig. 2. The probability of rejecting the null hypothesis upon completion of the 
INK trial for different combination of failures on the active control (x-axis) and 
novel treatment (y-axis) at the interim analysis of the INK trial, proposed after 
an enrollment of 70 participants in each trial arm. 

Table 1 
The stopping rule for the INK trial is based on the number of failed sedations 
observed for both the active control and the novel treatment at the interim 
analysis after 70 patients in each arm. Each row displays, conditional on the 
numbers of failed sedations for the active control (IV Ketamine), the minimum 
number of failures needed for novel treatment (IN ketamine) to stop the INK 
trial. The probability of stopping the trial is calculated as a sum, conditional on a 
fixed number of failures for the active control, across all possible number of 
failures for the novel treatment. The table displays the stopping rules that are 
relatively likely to occur at the interim analysis of the INK trial.  

Number of failures 
observed on Active 
Control (IV Ketamine) 

Minimum number of failures 
needed for Novel Treatment (IN 
Ketamine) to stop INK trial. 

Probability of that 
the given scenario 
occurs 

0 12 0.112 
1 13 0.045 
2 14 0.024 
3 15 0.013 
4 16 0.008 
5 18 0.004  
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stopping rules for futility in non-inferiority trials so resources, in terms 
of time and money, can be used for more promising research questions 
when there is little evidence that the trial could yield a change in clinical 
practice [32]. 

Previously, Bayesian predictive power methods have been compu
tationally intense to use, which has limited their applicability within 
clinical trials [16]. However, we used conjugate distributions for binary 
outcomes to reduce the computational burden so the frequentist and 
Bayesian properties of the trial can be easily determined. This ensures 
that the type I and type II error rates of the trial are maintained when we 
consider stopping for futility. The main limitation of using conjugate 
distributions is that it places some restriction on the distributional form 
of the prior distributions for pC and pN, e.g. the prior distributions are 
independent. However, as the beta family of distributions is flexible, this 
restriction to conjugate distributions puts limited restrictions on the 
analysis. Thus, the methods presented in this paper can be implemented 
easily and efficiently across a range of studies to design stopping rules 
for futility. 

Another limitation of this study is that the binomial distribution is a 
discrete distribution, which means that the trial cannot be run with the 
exact type I error rate of 2.5%. A discrete distribution, i.e. patients can 
either have a favorable or non-favorable outcome, means that there are a 
fixed number of potential values for T. Thus, the probability of observing 
T < t* is unlikely to be exactly equal to the proposed level of signifi
cance. For this study, we chose t* as large as possible whilst remaining 
below 2.5% which caused the type I error rate for the INK trial with a 
futility stopping rule to equal 2.2% rather than 2.5%. 

Going forward, the R functions and web application allow users to 
develop a stopping rule for their proposed trial by modifying the priors, 
the size and power of the underlying hypothesis test and the sample size 
at the interim analysis. Based on these user inputs, the provided code 
and interface will determine the sample size of the trial, calculate the 
stopping rules for futility and use simulation methods to compute the 
frequentist operating characteristics of the trial and the Bayesian prob
ability of stopping the trial for futility. They also produce the graphical 
and tabular summaries presented in this article so the stopping rules can 
be more easily digested and implemented by the trial’s DSMB and 
steering committee. 

Conditional power has been proposed as an alternative method to 
develop stopping rules for futility that may yield alternative results [11, 
12]. Thus, future work should focus on comparing the properties of the 
stopping rule based on predictive power, presented in this article, with a 
stopping rule based on conditional power. This would allow for the 
development of code and a web application to further facilitate the 
development of stopping rules for futility in non-inferiority trials. 

5. Conclusions 

This article has presented a worked example to support the devel
opment of stopping rules for futility in non-inferiority trials and pro
vided specialist, open-source software to support the design of new 
trials. Thus, Bayesian predictive power methods can now be used simply 
to create stopping rules for non-inferiority trials with binary outcomes. 
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