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Historically, the body-wide cellular network of 
peripheral mononuclear phagocytes (MPs) has 
been subdivided into macrophages (MΦs) and 
DCs, which were discovered toward the end 
of the 19th century and in the 1970s, respec-
tively (1, 2). Both MΦs and DCs consist of 
multiple subpopulations largely defi ned by dis-
tinct anatomic location and phenotypes. MΦs 
include representatives in the serosa, lamina 
propria (lp), lung, brain (microglia), bone 
(osteoclasts), and liver (Kupff er cells; reference 3). 
DCs, on the other hand, have been divided 
into epidermal Langerhans cells, plasmacytoid 
DCs, and conventional CD11chigh DCs, which 
in mice are themselves composed of three sub-
sets (CD4+ CD8−, CD4− CD8−, and CD4− 
CD8+; reference 4). MPs are involved in tissue 
remodeling and homeostasis, as well as regula-
tory and stimulatory aspects of innate and adap-
tive immunity.

MPs arise from mesoderm-derived hema-
topoietic precursor cells, which in mammals 
are generated in two independent temporally 
and spatially separated waves (5). “Defi nitive” 

intra-embryonic hematopoiesis results in the 
generation of multipotent hematopoietic stem 
cells that eventually seed the BM. Certain MP 
populations, such as the brain microglia and 
epidermal Langerhans cells, are capable of self-
renewal or are derived from tissue-resident 
precursors (6, 7). However, most other periph-
eral MP subsets of the adult, particularly the 
short-lived CD11chigh DC (8), are believed to 
rely on continuous replenishment from the 
BM-resident hematopoietic stem cells. The 
hematopoietic stem cell diff erentiation path-
way into MPs includes several BM intermedi-
ates, such as the common myeloid precursors 
(9), granulocyte/MΦ precursors (9), and MΦ/
DC precursors (MDPs; reference 10), charac-
terized by their progressive loss of ability to 
give rise to other hematopoietic cell types.

Systemic dissemination into the peripheral 
MP pool is thought to be ensured by circulat-
ing blood monocytes (11). Human monocytes 
are long known to consist of discrete subpopu-
lations (12), and, more recently, monocyte 
heterogeneity has also been established in the 
mouse (13–16) and rat (17). Circulating murine 
monocytes comprise two main subsets: Gr1high 
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CX3CR1int CD62L+ CCR2+ and Gr1low CX3CR1high CCR2−. 
Gr1high “infl ammatory” monocytes were shown to home 
preferentially to sites of infl ammation, whereas Gr1low mono-
cytes are believed to seed resting tissues in the steady state 
(15). However, the origin and biology of this intriguing 
short-lived leukocyte, which cannot be generated in vitro, 
remain poorly understood.

Here, we report the use of adoptive precursor transfer 
experiments in WT and MP-depleted recipient mice to 
study the origin, interrelation, and diff erentiation potential 
of murine BM and blood monocytes. Using intra bone cav-
ity (IBC) transfer we establish the in vivo diff erentiation 
 sequence from the recently reported MDP (10) to BM and 
blood monocytes and terminally diff erentiated peripheral 
MPs. Interestingly, monocytes appear to be dedicated to DC 
replenishment of nonlymphoid organs, such as the intestinal 
lp and the lung, whereas splenic DCs seem to arise from local 
precursors without a monocytic intermediate. Furthermore, 
we show that in the absence of infl ammation, the Gr1high 
blood monocyte subset effi  ciently shuttles back to the BM, 
converts into Gr1low monocytes, and thus contributes further 
to MP generation.

RESULTS

MDPs give rise to BM and blood monocytes

Taking advantage of a mouse strain that carries a replacement 
of the CX3CR1 chemokine receptor gene by a GFP reporter 
(CX3CR1gfp mice; reference 18), we recently reported the 
isolation of a novel proliferating clonogenic precursor (termed 
MDP) from murine BM that gives rise exclusively to MΦs 
and DCs. When injected into the blood stream of recipient 
mice, MDPs expand and diff erentiate into splenic MΦs and 
DCs (10). In this study, we sought to study the potential of 
MDPs to diff erentiate within their native BM microenviron-
ment and give rise to BM and blood monocytes. We there-
fore revised our original adoptive MDP transfer approach by 
injecting the MDPs into the BM, i.e., the femoral bone cav-
ity, of the recipient mice.

The BM of CX3CR1gfp donor mice contains three main 
distinct CD115+ CX3CR1/GFP+ populations: CD117+ 
CD11b− Gr1− cells (Fig. 1 A), which represent dedicated 
MDPs (GFPlow; reference 10), and two discrete Gr1(Ly6C/G)high 
and Gr1(Ly6C/G)low subsets of CD11b+ BM monocytes 
(19) that in CX3CR1gfp mice appear as GFPint and GFPhigh, 
respectively (Fig. 1 A). To study the interrelation of these 
populations, we isolated BM from heterozygote mutant 
 CX3CR1gfp donor mice (CD45.1) and sorted MDPs to purity 
according to surface CD117 (cKit) and GFP expression, as 
well as the absence of CD11b and Gr1 markers (Fig. 1 B). 
MDPs were then injected into the right femoral bone cavity 
of unmanipulated WT mice (CD45.2). The recipient mice 
were killed at various time points after adoptive transfer and 
subjected to fl ow cytometry analysis of blood and BM. The 
diff erential allotypic CD45 marker of host and graft, in addi-
tion to the GFP label of the CX3CR1gfp cells, allowed detec-
tion of the graft. Analysis of the recipient BM at days 3 and 6 

after transfer revealed the presence of GFP+ CD45.1+ cells 
expressing the surface marker CD11b (Fig. 1 C). As in the 
donor mice, CD11b+ GFP+ cells could be further subdivided 
according to Gr1 and CX3CR1/GFP expression (Fig. 1 C). 
Interestingly, Gr1high cells, and to a lesser extent Gr1low graft-
derived cells, were detected also in the noninjected (left) 
 recipient femur (Fig. 1 D). Analysis of the blood revealed the 
presence of GFP+ graft-derived monocytes that were largely 
Gr1low (day 6; Fig. 1 E). These fi ndings show that upon IBC 
transfer, MDPs are able to diff erentiate into both Gr1high and 
Gr1low BM monocytes. Given the small number of trans-
ferred MDPs (2.5 × 104 cells), this sequence likely involved 
proliferative expansion of the graft. To investigate the inter-
relation between the two BM monocyte subsets, we next 
isolated CD11b+ Gr1high GFPint BM monocytes from the 
BM of CX3CR1gfp mice (CD45.1; Fig. 2 A) and performed 
an IBC transfer. Analysis of recipient mice days 1 and 3 after 
transfer revealed the presence of graft-derived Gr1low GFPhigh 
BM monocytes (Fig. 2 B). These fi ndings suggest that Gr1high 
BM monocytes can serve as in vivo precursors of Gr1low BM 
monocytes, as has been reported for Gr1high blood monocytes 
(16, 20). It bears mention that at both time points, graft-
 derived monocytes were again detected in the noninjected 

Figure 1. Characterization of CX3CR1gfp BM and IBC transfer 

of MDPs. (A) Flow cytometry analysis of CX3CR1gfp/+ BM. The cells in 

the dot plots to the right are gated according to CD115 and GFP 

 expression. Note the presence of three main CD115+ GFP+ populations: 

CD11b− CD117+ MDP, CD11b+ Gr1high, and CD11b+ Gr1low BM mono-

cytes. (B) Flow cytometry analysis of an MDP graft isolated by high 

speed sorting according to CD117 and GFP expression. (C) Analysis 

of WT recipient BM (right, injected femur) at the indicated time points 

after IBC transfer of 2.5 × 104 MDPs (purity: 85%, devoid of Gr1high 

CD11b+ cells). Note the distinct GFP intensity pattern of differentiated 

graft-derived (CD45.1+) CD11b+ Gr1high and Gr1low BM monocytes and 

the decrease in the Gr1high/Gr1low ratio with time: 14 (day 3) to 2.7 (day 6). 

(D) Analysis of WT recipient BM (left, noninjected femur) at the indi-

cated time points after IBC transfer. Gating as in C. (E) Analysis of recipi-

ent blood (day 6). The cells were gated according to CD115 surface marker 

expression. The data are representative of at least two independent 

 experiments per time point. 
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femura of the recipient mice (Fig. 2 C). Recipient mice also 
exhibited a prominent population of Gr1low blood mono-
cytes, supporting the notion that the grafted Gr1high cells had 
diff erentiated (Fig. 2 D). Collectively, IBC transfer of MDP 
and BM monocytes recapitulated the sequential in vivo dif-
ferentiation of MDPs, Gr1high BM monocytes, Gr1low BM 
monocytes, and Gr1low blood monocytes.

Gr1high infl ammatory monocytes shuttle between 

the blood and BM

The detection of graft-derived BM monocytes in the nonin-
jected femur after the IBC transfer of MDPs and BM mono-
cytes (Figs. 1 D and 2 C) suggested that grafted cells or their 
descendants had entered the circulation and shuttled between 
bone cavities. Furthermore, the rare graft-derived cells in the 
noninjected femura were mainly of the Gr1high phenotype. 
We previously reported that homing of the Gr1high CD62L+ 
CCR2+ monocyte subset was restricted to sites of infl amma-
tion. In the absence of the latter, adoptively transferred Gr1high 
blood monocytes, but not Gr1low blood monocytes, rapidly 
disappeared from the circulation of recipient mice (15). Our 
present results raised the possibility that this observation 
might have been due to the immediate and quantitative re-
cruitment of the Gr1high blood monocytes to the recipient 
BM. To investigate this issue, we adoptively transferred 
Gr1high blood monocytes isolated by MACS from Rag−/− 
CX3CR1gfp mice (Fig. 3 A) to the circulation of WT recipients. 

Analysis of the recipient mice on day 4 revealed the abundant 
presence of grafted GFP+ cells in the recipient BM (Fig. 3 B), 
which were Gr1high and Gr1low (not depicted). In contrast and 
as previously reported (15), we failed to detect Gr1high mono-
cytes in the recipient blood, although it contained a sizeable 
population of Gr1low monocytes (Fig. 3 B). This indicates that 
in the absence of infl ammation, Gr1high blood monocytes ef-
fi ciently shuttle from the blood to the BM. These data also 
directly support the notion that Gr1high blood monocytes are 
in vivo precursors of Gr1low monocytes (16, 20). To further 
substantiate this point, we i.v. transferred Gr1high BM mono-
cytes into recipient mice. Like the Gr1high blood monocytes, 
these cells rapidly homed to the recipient BM. Day 1 after 
transfer, graft-derived monocytes were mainly Gr1high in both 
the BM and blood compartments, whereas at day 3, the 
grafted cells had almost quantitatively converted into Gr1low 
monocytes (Fig. 3 C and Table I). To confi rm the BM hom-
ing of the i.v. injected Gr1high BM monocytes, we performed 
whole body optical imaging using the near-infrared lipophilic 
carbocyanine tracer DiR (21). Although most transferred 
DiR-labeled monocytes accumulated in the lung, liver, and 
spleen, grafted cells were also readily detectable in the BM 
(femora and cranium) of the recipient mice (Fig. 4, A–C). 
Independent intravital experiments with CFSE-labeled grafts 
suggested that Gr1high monocytes had indeed extravasated 
and entered the cranial BM parenchyma (Fig. 4 D). These 
results show that Gr1high monocytes effi  ciently home to the 
BM. However, unlike  senescent neutrophils that return to 
the BM to die (22), Gr1high monocytes recycle, diff erentiate 
into Gr1low monocytes, and can return to the blood to further 
contribute to the peripheral MP pool.

Figure 2. IBC transfer of BM monocytes. (A) Flow cytometry analysis 

of Gr1high BM monocyte graft. (B) Analysis of WT recipient BM (right, 

 injected femur) at the indicated time points after IBC transfer of 5 × 105 

Gr1high BM monocytes (purity: 90%). Note the distinct GFP intensity pat-

tern of differentiated graft-derived (CD45.1+) CD11b+ Gr1high and Gr1low 

cells and the decrease in the Gr1high/Gr1low ratio with time: 5 (day 1) to 

1.8 (day 3). (C) Analysis of WT recipient BM (left, noninjected femur) at the 

indicated time points after IBC transfer. Gating as in C. The data are rep-

resentative of at least two independent experiments per time point. 

(D) Analysis of recipient blood (day 3). Note the sizeable presence of 

graft-derived (CD45.1+) CD11b+ Gr1low monocytes. 

Table I. Distribution of adoptively transferred Gr1high 

BM monocyte grafts in the BM and blood compartment 

of recipient mice

Total no. CD115+ 

cells

% graft-derived 

CD115+ cells

No. graft-derived 

CD115+ cells

Day 1

 Blood 1.6 × 105a 1.6 (± 0.15) 2.6 × 103

 BM 5 × 107b 0.17 (± 0.01) 8.5 × 104

Day 3

 Blood 0.6 (± 0.13) 103

 BM 0.05 (± 0.01) 2.3 × 104

Day 6

 Blood 0.15 (± 0.03) 240

 BM 0.033 (± 0.005) 1.6 × 104

WT recipients of Gr1high BM monocytes (5 × 105 cells; purity: 96%) were analyzed 

by fl ow cytometry on days 1, 3, and 6 after i.v. transfer. Data correlate to Fig. 3 C. 

Note that according to our calculation day 1 after transfer, a total of 17% of the 

grafted monocytes can be found in the recipient BM, whereas 0.52% of the cells are 

circulating in the recipient blood.
aBased on mouse phenome database (http://phenome.jax.org/pub-cgi/phenome/

mpdcgi?rtn=docs/home).
bBased on reference 55. The percentage of CD115+ cells of nucleated BM cells was 

determined to be 12% by fl ow cytometric analysis (not depicted).
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Collectively, our results suggest that Gr1high BM and 
blood monocyte populations are linked. To investigate a po-
tential functional overlap between these two populations, we 
tested Gr1high BM monocytes for a hallmark of their blood 

counterpart, e.g., the recruitment to sites of infl ammation 
(13, 15, 23). Highlighting the dual homing potential of 
i.v. injected Gr1high BM monocytes, thioglycollate-induced 
 infl ammation caused the grafted cells to deviate from their 

Figure 3. Gr1high blood and BM monocytes shuttle between blood 

and BM. (A) Flow cytometry analysis of a blood monocyte graft isolated 

from Rag−/− CX3CR1gfp mice. The GFP− cells are Ly6G+ CX3CR1− granu-

locytes (reference 18). (B) Analysis of recipient BM and blood 4 d after 

adoptive cell transfer of Gr1high blood monocytes (105 cells). Note the 

presence of graft-derived (GFP+) Gr1low monocytes in the blood. Fractions 

of graft-derived GFP+ cells of total CD115+ cells in recipient BM (0.12%) 

and in recipient blood (0.76%). (C) Analysis of BM and blood of WT re-

cipients of Gr1high BM monocytes (5 × 105 cells; purity: 96%) days 1 and 3 

after i.v. transfer. Note the loss of Ly6C/G expression on grafted Gr1high 

BM monocytes. Bar diagrams summarize data obtained from three mice 

per time point. Note the difference of GFP intensity of BM and blood 

monocytes on day 1 (mean fl uorescence intensity: 274.75 ± 13.9 vs. 

376.6 ± 20.5; P = 0.003). (D) Flow cytometry analysis of BM and 

peritoneal cavity (PC) lavage of WT recipients of MACS-purifi ed CD115+ 

BM monocytes (106 cells; purity: 88%) that were left untreated or 

had been inoculated with thioglycollate. Note the recruitment of 

grafted Gr1high BM monocytes to the infl amed peritoneal cavity. The 

data are representative of at least two independent experiments per 

time point.
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steady-state route (BM) to the peritoneal cavity (Fig. 3 D). 
This indicates further that Gr1high BM and blood monocyte 
subsets have functional similarities.

MDPs, but not monocytes, can replenish splenic DCs

Upon i.v. transfer into irradiated and young nonirradiated 
recipient mice, MDPs give rise to splenic DCs (10), which 
are characterized by a frequent steady-state turnover (8). 
However, MDP diff erentiation into long-lived MPs, partic-
ularly of peripheral tissues, could have been hampered by the 
limited precursor input in the time window analyzed (10). 
We therefore sought to improve the engraftment of the MP 
compartments by depleting DCs and MΦs from the recipi-
ents before MDP transfer. To this end, we took advantage of 
CD11c–diphtheria toxin (DTx) receptor (DTR) transgenic 
mice, which harbor CD11c-expressing MPs, including MΦs 
and DCs that are sensitive to DTx and are hence depleted 
upon DTx treatment (24–27). In this conditional cell ablation 
system, targeted cells die by apoptosis and are removed with-
out causing major infl ammation (28). Their replenishment 
might therefore mimic steady-state conditions. BM chimeras 

generated by reconstitution of lethally irradiated WT mice 
with CD11c-DTR transgenic BM allow for extended MP 
depletion (29, 30). MDPs were isolated from CX3CR1gfp 
donor mice (CD45.1) and injected into DTx-treated BM 
chimeras. Analysis of the recipient 7 d after i.v. MDP trans-
fer revealed the presence of graft-derived Gr1high and Gr1low 
monocytes in the BM and blood (not depicted). At the same 
time, the spleen of the MDP recipient mouse was effi  ciently 
seeded by DTx-resistant CD11chigh DCs, including CD11b+ 
and CD11b− cells (Fig. 5 A). As in CX3CR1gfp donor mice 
(10, 18), CD11c+ CD11b− (CD8α+) DCs could be subdi-
vided into CX3CR1/GFP+ and CX3CR1/GFP− subsets. In 
addition, recipient spleens contained an appreciable popu-
lation of CD11b+ CD11cint cells of unknown identity that 
were also identifi ed in donor spleens. Because MDPs are in 
vivo precursors of Gr1high BM monocytes (Fig. 1 C), we next 
investigated the potential of the monocytes to give rise to 

Figure 4. Whole body imaging of Gr1high BM monocyte recipients. 

(A) Color-coded near-infrared fl uorescent image overlaid on a photo-

graphic image of a CD1 nude mouse 16 h after tail vein injection of 

DiR-labeled BM monocytes (3 × 106 cells; purity: 94%; right). Control 

(acquired on IVIS 100) is shown on the left. Note the presence of label 

in femura. (B) Color-coded near-infrared fl uorescent image overlaid 

on a photographic image of isolated lung, spleen, and femura of CD1 

nude recipients of DiR-labeled BM monocytes (right) and noninjected 

control (left; 3 × 106 cells; purity: 94%). (C) Monochrome fl uorescent 

microscopy image of a cranium of a CD1 nude mouse that received 

DiR-labeled BM monocytes (3 × 106 cells; purity: 94%). Note the presence 

of labeled cells in bone cavities. (D) Dual-channel fl uorescent microscopic 

image of a cranium of a C57BL/6 WT recipient mouse that had received 

an i.v. injection of CFSE-labeled BM monocytes (3 × 106 cells; purity: 

96%). Arrows indicate two graft-derived cells that extravasated into the 

BM parenchyma. Bar, 100 μm. The data are representative of two inde-

pendent experiments.

Figure 5. MDPs, but not monocytes, act as precursors of splenic 

DCs. (A) Flow cytometry analysis of CX3CR1gfp donor spleen and spleens 

of DTx-treated, MP-depleted mice with and without engraftment of 

 CX3CR1gfp MDP (8 × 104 cKit+ CD115+ Gr1− CD11b− cells; purity: 80%) and 

Gr1high BM monocytes (8 × 105 CD115+ Gr1+ CD11b+ cells; purity: 88%). 

Note the presence of graft-derived (CD45.1+) DCs (CD11chigh) in MDP 

recipients that, as in donor mice CD11b− DCs, are split into CX3CR1/GFP+ 

and CX3CR1/GFP− cells. CD11chigh/CD11cint ratios in an MDP recipient: 2.7 

in Gr1high monocyte recipient 0.05 (as determined by the indicated gates). 

(B) Flow cytometry analysis of the spleen of an MP-depleted mouse with 

and without intra-splenic injection of CX3CR1gfp BM MDPs (2.5 × 104 

cells; purity: 96%). Note the presence of graft-derived (CD45.1+) DCs 

(CD11chigh) in MDP recipients. The data are representative of two indepen-

dent experiments. 
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splenic DCs in the MP-depleted recipients. Interestingly, 
grafted Gr1high BM monocytes failed to give rise to CD11chigh 

splenic DCs but diff erentiated almost exclusively into the 
CD11b+ CD11cint population we had previously observed 
with the MDP graft (Fig. 5 A). Because MDPs are monocyte 
precursors but the latter do not generate splenic CD11chigh 
DCs, we next examined whether MDPs could give rise to 
splenic DCs without prior diff erentiation into monocytes, 
i.e., when placed directly in the spleen. As seen in Fig. 5 B, 
intra-splenic injection of BM MDPs into MP-depleted mice 

yielded CD11b+ and CD11b− CD11chigh DCs. This suggests 
that local spleen-resident precursors, such as MDPs, might 
replenish the CD11chigh DC population without a mono-
cytic intermediate.

Monocytes replenish intestinal lp and lung DCs

Because monocytes are established DC precursors (3), we de-
cided to investigate whether the grafted Gr1high BM mono-
cytes can give rise to DCs in other nonlymphoid tissues. We 
fi rst chose to study the seeding of the intestinal lp, which, 
as we recently reported, contains two discrete populations 
of CX3CR1+ lpDCs and CX3CR1− lpMΦs (27, 31). Both 
of these cell types are CD11c+ and hence DTx sensitive in 
CD11c-DTR transgenic mice and [DTR®WT] mixed BM 
chimeras (27, 29). When transferred into untreated WT 
mice, Gr1high BM monocytes essentially failed to give rise to 
lpMP, as indicated by the absence of CD11c+ CD45.1+ cells 
(Fig. 6 A). DTx-induced lpMP depletion in the [DTR®WT] 
recipients, however, promoted the effi  cient seeding of this 
peripheral tissue with graft-derived (CD45.1+) CX3CR1/
GFP+ lpDCs and CX3CR1/GFP− lpMΦs (Fig. 6 A). lpMPs 
were also observed after the adoptive transfer of MDPs (Fig. 
6 A). To address the potential role of infl ammatory signals 
associated with our conditional ablation strategy in graft 
recruitment and diff erentiation, we repeated the experi-
ment using a novel strain of mice that constitutively lacks 
CD11c+ lpMPs and was recently developed in our laboratory 
(to be described elsewhere). Flow cytometry and histologi-
cal analysis of these recipient mice showed effi  cient engraft-
ment of their lp with CD45.1+ CX3CR1/GFP+ lpDCs and 
CX3CR1/GFP− lpMΦs (Fig. 6, A and B), arguing in favor 
of the homeostatic nature of this MP diff erentiation route. 
However, further experimentation will be needed to assess 
the contribution of the MΦ/DC depletion to the process. 
Notably, recruitment could also be mediated by constitu-
tively expressed infl ammatory signals present at the mucosal 
tissues. Further clarifi cation of this issue will require the defi -
nition of the molecular parameters that guide the transferred 
cells to the lp. To extend our analysis to another nonlymphoid 
organ, we studied the lung parenchyma of CD11c-DTR 
transgenic recipient mice that were depleted of lung DCs 
by intra-tracheal DTx instillation (26). Grafted Gr1high BM 
monocytes gave effi  cient rise to lung DCs, which can be 
 defi ned by coexpression of the CD11c and CD11b integrins, 
as well as of CX3CR1 (32, 33, 56; Fig. 6 C).

Collectively, adoptively transferred monocytes fail to give 
rise to CD11chigh DCs in the spleen but effi  ciently do so in 
the intestinal lp and lung. These results suggest a diff erential 
contribution of monocytes and MDPs to the lymphoid and 
nonlymphoid DC compartment.

DISCUSSION

Here, we report three novel fi ndings on the origin, interrela-
tion, and fate of murine MPs. First, we establish that a re-
cently reported MDP (10) diff erentiates in vivo into BM and 
blood monocytes. Second, we show that in the absence of 

Figure 6. Monocytes are precursors of MPs in the intestine 

and lung. (A) Flow cytometry analysis of small intestinal lp cells isolated 

from a CX3CR1gfp donor mouse, as well as of WT, MP-depleted, and 

MP-defi cient recipients of CX3CR1gfp Gr1high BM monocytes and MDPs (7 d after 

i.v. transfer of 8 × 105 CD115+ CD11b+ Gr1+ monocytes [purity: 88%] or 

8 × 104 CD117+ Gr1− CD11b− MDPs [purity: 80%]). Note the presence of 

graft-derived (CD45.1+) CD11c+ CX3CR1/GFP+ lpDCs and CD11c+ CX3CR1/

GFP− lpMΦs in donors and MP-depleted and MP-defi cient recipients of 

precursor grafts. The data are representative of three independent 

 experiments. (B) Fluorescence microscopy analysis of small intestinal villi 

of mice constitutively lacking lpDCs and lpMΦs with or without adoptive 

transfer of CX3CR1gfp BM monocytes (106 CD115+ Gr1high CD11b+ cells; 

purity: 85%). Note the presence of graft-derived CX3CR1/GFP+ lpDCs in 

the live tissue of a BM monocyte recipient. Bar, 100 μm. The data are 

representative of three independent experiments. (C) Flow cytometry 

analysis of parenchymal lung cells isolated from CX3CR1gfp donor mouse, 

an MP-depleted mouse, and MP-depleted recipients of CX3CR1gfp Gr1high 

BM monocytes (7 d after i.v. transfer of 7.5 × 105 CD115+ Gr1+ CD11b+ 

cells; purity: 85%). Note the presence of graft-derived (CD45.1+) CD11c+ 

CD11b+ CX3CR1/GFP+ lung DCs in the graft recipient. The data are repre-

sentative of two independent experiments. 
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infl ammation, the previously reported Gr1high infl ammatory 
monocyte subset (15) homes back to the BM, recycles, and 
takes further part in MP diff erentiation. Third, and most im-
portantly, our data together with other recent studies (10, 
34–36) establish that the spleen relies on a distinct nonmono-
cytic DC precursor input. In contrast, nonlymphoid tissues 
including the intestinal lp, lung, and epidermis—possibly 
most peripheral tissues—are seeded by monocytes for re-
newal of DCs. At least in some cases, however, the role of 
monocytes in reseeding tissue DCs is subordinate to local 
self-renewal (7).

Maintenance of most peripheral MPs is believed to re-
quire continuous replenishment from the BM. This includes 
the short-lived DC compartment (37), but also MΦs. How-
ever, the latter (38–40) and, more recently, splenic DCs (34, 
41) were also reported to be capable of limited self-renewal. 
The link between the BM and peripheral MΦs or DCs is 
thought to be provided by circulating blood monocytes 
(Fig. S1, available at http://www.jem.org/cgi/content/full/
jem.20061011/DC1). Despite this critical position in the MP 
diff erentiation pathway, the in vivo biology of this ephemeral 
MP intermediate (13, 15, 16, 35, 42, 43) remains poorly un-
derstood. Based on the expression of the chemokine recep-
tors CX3CR1 and CCR2, human and murine peripheral 
blood monocytes can be subdivided into two major popula-
tions (11). Furthermore, studies in the mouse suggested that 
these subsets are functionally distinguishable in that infl am-
matory CX3CR1low CCR2+ Gr1 (Ly6C/G)high monocytes 
are preferentially recruited to sites of tissue damage, whereas 
CX3CR1high Gr1(Ly6C/G)low cells extravasate spontaneously 
to resting tissues (15). Beyond this dichotomy, “monocytes” 
are likely to include additional minor subpopulations, as sug-
gested by the recent identifi cation of the Ly6Cmid CCR7+ 
CCR8+ subset (16, 20), as well as subsets with novel pro-
 angiogeneic activities (44, 45).

Monocytes are known to originate in the BM from a 
granulocyte-myeloid precursor (9). More recently, we identi-
fi ed a BM-resident clonotypic MP progenitor that, as op-
posed to a granulocyte-myeloid precursor, lost the potential 
to diff erentiate into granulocytes. Instead, when cultured un-
der the appropriate in vitro conditions or transferred into re-
cipient mice, the CX3CR1+ CD117+ lin− cells expanded 
and gave rise exclusively to MΦs and DCs. They were hence 
named MDPs for MΦ/DC precursors (10). We now investi-
gated the potential of MDPs to diff erentiate within their na-
tive BM microenvironment. Using IBC transfer, we showed 
that the CD11b− Gr1 (Ly6C/G)− MDPs diff erentiate into 
CD11b+ Gr1(Ly6C/G)high and CD11b+ Gr1(Ly6C/G)low 
BM monocytes, which have been previously reported and are 
potentially able to diff erentiate into MPs (46, 47). The IBC 
transfer also allowed the detection of graft-derived peripheral 
blood monocytes. These data, together with the results ob-
tained from subsequent IBC transfers of the Gr1high BM 
monocyte intermediate, document a sequence of myeloid 
diff erentiation from a BM-resident precursor via BM-resident 
intermediates to circulating blood monocytes (Fig. S1).

In most current schemes of myeloid diff erentiation, the 
blood monocyte appears as a “one-way intermediate” from 
the BM to the periphery (11). A most intriguing fi nding of 
our studies is, however, that blood monocytes effi  ciently 
home back to the BM (Fig. S1). Thus, after IBC transfer of 
MDPs, we unexpectedly retrieved graft-derived cells from 
the noninjected contra-lateral bone. Using IBC and i.v. en-
graftment of Gr1high BM monocytes, we directly showed that 
this cell population is responsible for the inter-BM transloca-
tion. The i.v. transfer of blood monocytes further revealed 
that the BM homing potential is inherent to all Gr1high mono-
cytes. We previously reported that Gr1high blood monocytes 
are dedicated to migrate to sites of infl ammation but in the 
absence of the latter disappeared from the circulation of re-
cipient mice (15). Our present results strongly suggest that 
the grafted Gr1high infl ammatory monocytes in these studies 
had shuttled back to the BM. Furthermore, they might also 
provide an explanation for the reported loss of grafted mono-
cytes in other studies (16). Importantly, Gr1high BM and 
blood monocytes that returned to the BM converted into 
Gr1low monocytes and contributed further to MP generation 
(see below). Peripheral blood monocyte shuttling to the BM 
likely plays a role in antigen acquisition (43). Furthermore, it 
will have to be taken in consideration when interpreting the 
results of parabiosis experiments. Murine blood monocytes 
ingest Listeria monocytogenes upon in vivo challenge and criti-
cally contribute to dissemination of the bacteria to the brain 
(48). Moreover, circulating phagocytes have been implied in 
the systemic spreading of Salmonella typhimurium after oral 
challenge (49). Blood monocyte shuttling to the BM could 
be exploited by pathogens to reach this immuno-privileged 
compartment and establish persistent infection or latency.

Sunderkotter et al. (16) reported that Ly6Chigh blood 
monocytes diff erentiate into Ly6Clow monocytes. Together 
with the identifi cation of a Ly6Cmid CCR7+ CCR8+ mono-
cyte subset in the blood, this led to the suggestion that mono-
cyte conversion occurs within the circulation (16, 20). Our 
Gr1 (Ly6C/G)high BM and blood monocyte transfer studies 
provide further direct evidence that this monocyte subset acts 
as an effi  cient precursor pool of Gr1low BM and blood mono-
cytes. However, given the kinetics of the BM monocyte sub-
set appearance after IBC transfer and the effi  cient BM homing 
of the i.v injected Gr1high monocytes, our results suggest that 
the BM is a major site of monocyte conversion. This could 
also explain the reported transient loss of fl uorochrome-
 labeled Ly6Chigh blood monocytes and their reappearance as 
Ly6Clow cells (16).

We recently noted that adoptively transferred monocytes 
fail to diff erentiate into splenic DCs (10). We have now sub-
stantiated this observation by using the conditional depletion 
of splenic host DCs, thereby boosting replenishment of the 
DC compartment by grafted cells. Strikingly, adoptively 
transferred monocytes effi  ciently seeded the recipient spleen 
with CD11cint progenies but did not give rise to splenic CD-
11chigh DCs. In contrast, in the same MP-depleted mice, the 
grafted Gr1high monocytes effi  ciently reconstituted the small 
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intestinal lp with lpDCs and lpMΦs (27). Furthermore, 
grafted Gr1high monocytes also gave rise to DCs in another 
nonlymphoid tissue, the lung. Importantly, the conversion of 
Gr1high monocytes into Gr1low cells precludes drawing the 
conclusion that the Gr1high monocyte subset is the direct pre-
cursor of the intestinal and lung DCs in the present study. 
Notably, Yrlid et al. (17) recently reported that in the rat, the 
CCR2neg monocyte subset has the potential to diff erentiate 
into intestinal lymph DCs (17), and we observed the genera-
tion of lung DCs from adoptively transferred fractionated 
Gr1low blood monocytes (unpublished data).

Recent studies indicate that steady-state DC maintenance 
in lymphoid organs might be independent of monocyte in-
put, and that spleen DCs have the potential for self-renewal 
or rely on local precursors (34, 41). The i.v. and intra-splenic 
transfer of MDPs shows that BM MDPs can give rise to 
splenic CD11chigh DCs, including both CD11b+ and CD11b− 
cells. These fi ndings suggest that spleen-resident precursors 
might give rise to steady-state DCs in the spleen without a 
monocytic intermediate. Interestingly, such a cell with DC 
diff erentiation potential has recently been reported by Naik 
et al. (36), and it will be important to establish the link of 
these so-called “pre-cDCs” to the MDP.

The heterogeneity of the body-wide MΦ/DC network 
and the emerging diff erential in vivo functions of distinct 
MΦ/DC subsets (24, 50) suggest that manipulation of the MP 
system might be of therapeutic value. Rather than transferring 
terminally diff erentiated MPs, which cannot faithfully be gen-
erated in vitro and are unlikely to reach the desired physiolog-
ical microenvironment, MP system manipulation could rely 
on precursor diff erentiation in their physiological context. 
Such strategies will, however, require an in-depth under-
standing of the underlying MP diff erentiation pathways. In 
our study, we have established two sequences of in vivo MP 
diff erentiation using recipient mice in which we conditionally 
ablated defi ned MPs in lymphoid and nonlymphoid organs. 
We show that adoptively transferred MDPs (10) can reconsti-
tute DCs in the spleen and intestinal lp, whereas engraftment 
with monocytes allows effi  cient seeding of nonlymphoid tissues 
with MΦs and DCs. Importantly, grafted Gr1 (Ly6C/G)high 
monocytes effi  ciently home to the BM and enter physio-
logical diff erentiation pathways. Combined with the recent 
progress in our understanding of the molecular checkpoints of 
MP precursor diff erentiation (51–54), genetically modifi ed 
precursor grafts might allow the development of strategies for 
the manipulation of the peripheral MP pool.

MATERIALS AND METHODS
Animals. This study involved the use of WT, heterozygote mutant 

CX3CR1+/gfp (18), and CD11c-DTR transgenic mice (B6.FVB-Tg [Itgax-

DTR/GFP] 57Lan/J; reference 24), all of which were backcrossed against a 

C57BL/6 background. All whole body imaging was performed on CD1 nude 

recipients. Recipient mice that constitutively lack CD11chigh MPs will be de-

scribed elsewhere. Mixed [DTR®WT] BM chimeras for conditional MP 

ablation were generated as reported previously (29). In brief, C57BL/6 WT 

mice were exposed to a single lethal dose of 950 rad total body irradiation, 

followed by i.v. transfer of 5 × 106 CD11c-DTR transgenic BM cells. The 

mice were allowed to rest for 8 wk before use. For systemic MP depletion, 

DTR transgenic BM chimeras were inoculated intraperitoneally every other 

day with DTx (D-2918; Sigma-Aldrich) at 8 ng/g body weight (29). For pul-

monary MP depletion, we intratracheally installed 100 ng DTx (26 and un-

published data). Peritoneal sterile infl ammation was induced by injection of 

thioglycollate (Diff co). All mice were maintained under specifi c pathogen-

free conditions and handled according to protocols approved by the Weizmann 

Institute Animal Care Committee as per international guidelines.

Isolation of MDP and BM monocyte precursor grafts. BM cells were 

harvested from the femora and tibiae of CX3CR1GFP/+ CD45.1 mice and 

enriched for mononuclear cells on a Ficoll density gradient. The cells were 

then immunostained with anti–CD117-PE, anti–CD11b-PECy7/PerCP, 

and anti–Gr1-APC fl uorochrome–conjugated antibodies. MDP cells were 

identifi ed as CX3CR1 (GFP), CD117 (cKit) positive cells negative for 

CD11b and Gr1 markers. These cells were purifi ed by high speed sorting 

using a FACS Aria (Becton Dickinson) and injected i.v. into congenic 

CD45.2 WT mice or DTx-treated mixed [DTR®WT] BM chimeras. 

Gr1high BM monocytes were isolated by high speed sorting of the 

Gr1highCD11b+CD115+ BM cell fraction. For IVIS and intravital micros-

copy experiments, the monocyte graft was isolated through MACS enrich-

ment using biotinylated anti-CD115 antibodies and streptavidin-coupled 

magnetic beads (Miltenyi Biotec).

Adoptive transfer procedure. If not indicated otherwise, 0.2 ml PBS 

containing the respective cell populations was injected into the tail vein. For 

spleen and IBC transfer, mice were anesthetized with a mixture containing 

15% xylazin (20 mg/ml; Vitamed) and 85% ketaset (100 mg/ml; Fort Dodge 

Animal Health). Cells were injected directly into the spleen (20 μl vol) or 

into the BM cavity (�5 μl vol) using a U-100 insulin syringe (with a 30-G 

needle; Becton Dickinson). For IBC transfer, the knee side of the femur was 

pierced in advance with a 27-G 1/2 needle.

Analysis of recipient mice and fl ow cytometry. lp cells were isolated as 

described previously (27). Fluorochrome-labeled monoclonal antibodies were 

purchased from BD Biosciences or eBioscience and used according to the 

manufacturer’s instructions. Cells were analyzed with a FACSCalibur cyto-

meter (Becton Dickinson) using CELLQuest software (Becton Dickinson).

Whole body and fl uorescent imaging. Isolated monocytes were labeled 

ex vivo with the near infrared lipophilic carbocyanine dye 1,1′-dioctadecyl-

3,3,3′,3′-tetramethylindotricarbocyanine iodide (DiR; Invitrogen) for 1 h 

(21). Labeled cells were injected i.v. into CD1 nude mice. DiR-labeled 

monocyte localization within the intact animal, as well as isolated within 

 organs, was assessed using the IVIS 100 Series Imaging System (Xenogen). The 

excitation (Ex) and emission (Em) fi lter sets were 710–760 and 810–760 nm, 

respectively. For intravital microscopy imaging, monocytes were labeled 

with the intracellular fl uorescent dye, CFSE (Invitrogen). Monocytes in the 

cranium were visualized using a Zoom Stereo Microscope SZX-RFL-2 

(Olympus) equipped with a fl uorescence illuminator and a CCD camera 

Pixelfl y QE (PCO). The Ex and Em fi lter for fl uorescence in the visual 

spectrum were: Ex 460–490/ Em 510–550 nm (green channel) and Ex 520–

550 nm/Em 580–630 nm (red channel). The Ex 710–750/Em 780–830 nm 

fi lter set was used for fl uorescence in the near-infrared spectrum. Images 

were acquired using camera-controlling software (Camware; PCO) with 

ImageJ 1.330 software.

Online supplemental material. Fig. S1 shows a scheme summarizing 

our current understanding of the origins and context-dependent fate of 

murine monocyte subsets. It is available at http://www.jem.org/cgi/content/

full/jem.20061011/DC1.
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