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trand transfer inhibitors are potent molecules targeting HIV-1 integration, a critical

step involved in retroviral replication. To date, three inhibitors, raltegravir, elvite-
gravir, and dolutegravir (DTG), are available to treat infected patients. Unfortunately,
many resistance pathways have been described for raltegravir and elvitegravir, and all
mutations leading to strand transfer resistance have been located in the integrase
gene. In the case of dolutegravir, the last integrase inhibitor, only a few mutations
described from patients or from in vitro selection are reported to confer resistance
(1-3).

Following the publication of the article describing a virus having selected mutations
outside the integrase gene and conferring resistance to HIV-1 integrase inhibitors (4),
Das and Berkhout propose a model for the replication of this 3’-polypurine-tract
(3'-PPT)-mutated virus (18). Integration of the viral DNA would be possible due to the
modification of the 5’ long terminal repeat (LTR) end which makes the virus insensitive
to dolutegravir action, allowing it to integrate into the host genome. This hypothesis is
plausible since an optimal binding of dolutegravir on the integrase/DNA complex is
required for inhibition of the compound and the binding requires the canonical LTR
end (5). Since integration is a concerted mechanism occurring in the intasome com-
posed of integrase and both LTR ends, the deficient binding of dolutegravir on the 5’
LTR could allow the unmodified 3’ LTR end to become insensitive to dolutegravir.
Indeed, as reported in the literature, mutations at one end could have consequences for
the other end (6). Consequently, integration of both 5’ LTR and 3’ LTR could occur
despite lower efficiency, explaining the resistance of the 3’-PPT mutant to dolutegravir.

Since 2-LTR circles are formed by ligation of the two LTR ends by the nonhomolo-
gous end joining (NHEJ) pathway, the LTR-LTR junction should reflect the integrity of
the LTR ends (7). To test this hypothesis, sequencing of the U3-U5 junction of 2-LTR
circles was carried out from MT-4 cells infected with the wild-type (WT) and 3'-PPT-
mutated viruses with or without DTG (without DTG at day 6 for WT and day 8 for
mutated virus and with DTG at day 15 for 3'-PPT-mutated virus). Briefly, after extraction
of DNA, a fragment of 307 nucleotides encompassing more than 100 nucleotides from
either side of the junction was amplified using primers specific for U3 and U5 se-
quences, and pyrosequencing on a GS Junior sequencer (Roche 454 Life Sciences) was
performed. A total of 1,675 and 1,280 reads per nucleotide position was amplified for
WT and mutant viruses, respectively. Interestingly, we found that the LTR-LTR junction
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FIG 1 Comparison between the classical HIV-1 replication cycle and the proposed alternative replication cycle of the 3’-PPT mutant. (Left) The classical HIV-1
replication cycle leading to the integration of viral DNA at the level of genomic DNA. (Right) The proposed alternative replication cycle leading mainly to the
formation of 1-LTR circles during the reverse transcription steps. The CAGT sequence inside the mutated 3" PPT, upstream of U3, could be an enhancer of
transcription initiation, allowing viral production from 1-LTR circles and explaining the resistance to DTG.

was identical to the palindromic sequence found by the predicted ligation of the two
unprocessed DNA ends with a total similitude between the two analyzed viruses.
Sequence analysis, as described in the literature (17), showed that around 50% (53.7%
for WT and 50% for the mutant) of circle junctions were similar to the expected
sequence and that the remaining 50% of sequences had multiple deletions ranging
from 1 to several tens of nucleotides, located on either side of the junction (U5 or U3)
or extending over the U5-U3 junction. These data show that no additional bases were
detected in the 3’ PPT compared to the WT virus, highlighting the classical DNA ends
of the 2-LTR WT virus. These data sustain the idea that the reverse transcription step
does not lead to a modification of LTR ends during the replication of the 3'-PPT-

mutated virus (Fig. 1).

We agree with Das and Berkhout in suggesting that the mutation in the 3’ PPT leads
to a modification of the reverse transcription, but instead of modifying LTR ends, we
predict for ourselves that the presence of the mutation, disrupting the 3" PPT, would
lead to a total degradation of the RNA by the RNase H activity and an impairment of
the synthesis of the U3-R-U5-PBS (primer binding site) +DNA from the 3’ PPT (Fig. 2).
The initiation of the +DNA could be then started from sequences located upstream of
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FIG 2 Schematic representation of the reverse transcription process of the 3’-PPT mutant leading to the 1-LTR circle formation.
The first reverse transcription steps of the 3'-PPT mutant (steps 1 to 3) are similar to the WT. In step 4, we hypothesize that the
entire RNA sequence, including the mutated PPT, is degraded by RNase H and that the initiation of the +DNA synthesis (step 5)
occurs from sequences located upstream of the 3’ PPT. Once the partial +DNA is synthesized and the RNase H has cleaved the
tRNALs (step 6), the partially double-stranded DNA can be circularized by pairing the PBS sequences located on both sides of the
DNA, which leads to the formation of 1-LTR circles.

the 3’ PPT as reported in the literature (8). We can speculate, in this case, that synthesis
of alonger +DNA fragment could prevent the translocation of the DNA that would lead
to an intramolecular circularization of the viral genome using the complementary PBS
regions. After circularization, complementation of the DNA could occur and lead to the
circularized genome becoming a 1-LTR circle. It can be noted that Kantor and col-
leagues have previously shown that mutations in the 3’ PPT lead to an accumulation
of 1-LTR circles and a significant decrease of the linear viral DNA from reverse tran-
scription. This observation, made in the context of viral vector, reinforces our hypoth-
esis (9), an assumption that we can test by quantification of 1-LTR circles during
infection with the 3’ PPT mutant.

The role of unintegrated viral DNA in HIV-1 expression has always been a topic of
debate. First, it has been clearly described that unintegrated viral DNA could be
involved in expression of viral accessory proteins such as Nef (10). Second, even if
unintegrated viral DNA could hardly be at the origin of the production of infectious viral
particles, recent reports describe a role in HIV-1 replication under specific conditions
(11).

We hypothesize that, in the case of an HIV-1 genome exclusively present in
unintegrated forms, as suggested for the 3’-PPT mutant, the LTR-mediated transcrip-
tion of the unintegrated viral DNA of this virus should then be stronger than in the case
of the wild-type unintegrated viral DNA under DTG.

Interestingly, we can notice in the 3'-PPT mutant the presence of the CAGT pattern
just upstream of the 3’ LTR which has been described to be an initiator element for
transcription in some viruses, such as baculovirus (12). This sequence needs to be
studied for its ability to improve the transcription of the nonintegrated viral DNA of the
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3’-PPT mutant, which could then support the hypothesis that the 3'-PPT mutant virus
is able to replicate without going through the integration but at a lower level than the
wild-type virus.
It is well known that a significant proportion of patients failing on integrase
inhibitors and even more when failing on dolutegravir do not select any mutations in
the integrase gene (13-15). It is difficult to know precisely why these patients failed on
treatment, but depending on the context, it could be explained by the presence of
unknown integrase resistance mutations, problems of adherence, and so on. The
presence of selected mutations in the 3’ PPT could be also considered, as it has not
been explored yet in these patients. In addition, Wijting et al. recently reported (16) the
case of a patient who failed a monotherapy treatment with dolutegravir in the
DOMONO study without selecting a mutation in the integrase gene but who showed
mutations in the 3’ PPT similar to those reported by Malet and colleagues (4).

Taken together, these data could suggest a role of unintegrated viral DNA that

would allow a significant replication of the virus, in a way independent of integration.
To study this hypothesis, quantifications of integrated and nonintegrated viral DNA will
be performed from cells infected with the 3’-PPT virus, and also, the CAGT pattern will
be studied for its ability to increase viral transcription of the 3’-PPT mutant.
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