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Electrical signals between connected neural nuclei are difficult to model because of the complexity and high number of paths within
the brain. Simple parametric models are therefore often used. A multiscale version of the autoregressive with exogenous input (MS-
ARX) model has recently been developed which allows selection of the optimal amount of filtering and decimation depending on
the signal-to-noise ratio and degree of predictability. In this paper, we apply the MS-ARX model to cortical electroencephalograms
and subthalamic local field potentials simultaneously recorded from anesthetized rodent brains. We demonstrate that the MS-
ARX model produces better predictions than traditional ARX modeling. We also adapt the MS-ARX results to show differences
in internuclei predictability between normal rats and rats with 6OHDA-induced parkinsonism, indicating that this method may
have broad applicability to other neuroelectrophysiological studies.

1. Introduction

VARIOUS types of methods have been used to assess the
degree of similarity or shared information between two sig-
nals. The methods used depend on the type of the presump-
tive system which processes the one “input” signal into the
other “output” signal. Two basic classifications of systems are
whether they are memoryless or not, and whether they are
linear or not.

Common linear memoryless methods include the cross-
correlation in the time domain or coherence in the frequency
domain. Common linear models with memory include au-
toregressive models with exogenous input (ARX), autore-
gressive moving average (ARMA), Box-Jenkins, Output-
Error, and linear state-space models.

Higher-order nonlinear methods with memory are also
sometimes used, such as polyspectral models, nonlinear ARX
models, neural networks, Hammerstein-Wiener models, and
Volterra models, but these are more difficult to train.

Other statistical evaluations of the similarity focus on
the transfer of information between two signals, rather than

explicit modeling and prediction. Examples of these anal-
yses include Granger causality analysis, time-delay mutual
information, and transfer entropy. The information theoretic
analyses can measure nonlinear as well as linear effects.

Complex systems such as the brain are difficult to analyze
because of the huge number of individual neuronal/synaptic
paths between nuclei, the nonlinear nature of neuronal con-
nections, and the operation at multiple time scales.

One approach is to use simple low-order linear models to
approximate the transfer function relationship, such as au-
toregressive with exogenous (ARX) models. The advantage of
using linear ARX models is that there is no need to estimate
nonlinearity parameters, and less training data is required.
However, the performance of such models depends crucially
on the model order, scale, and prefiltering. To mitigate this
dependency, a multiscale version of the autoregressive with
exogenous input (MS-ARX) model has recently been devel-
oped by Nounou and colleagues [1]. The MS-ARX model
allows automatic selection of the optimal scale for the ARX
prediction.
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In this paper, we adapt and apply the MS-ARX model
to evaluate the degree of information transfer between cor-
tical electroencephalogram (EEG) and subthalamic nucleus
(STN) local field potential (LFP) signals. In a rat model of
Parkinson’s disease, the multiscale ARX approach showed
significant differences in connectivity compared to normal.

2. Methods

2.1. Autoregressive System Identification. The ARX model is a
common method to represent output signals from an un-
known system by using a linear combination of past output
signal values and past input values. We will be following the
notation of Nounou and colleagues in our model descrip-
tion. The equation for the ARX model is

y(k + 1) =
p∑

i=0

αi y(k − i) +
q∑

m=0

βmu(k −m), (1)

where y is the output, u is the input, αi and βm are the
estimated system coefficients, and p and q are the maximum
orders of the autoregressive and input filters, respectively.
Equation (1) may be written in matrix form as

Y = Xθ, (2)

where

Y =

⎡
⎢⎢⎢⎢⎣

y(n)
y(n− 1)
y(n− 2)

...

⎤
⎥⎥⎥⎥⎦

, θ =
[
α1 · · ·αp β1 · · ·βq

]T
,

X =

⎡
⎢⎢⎢⎢⎣

y(n−1) · · · y
(
n−p) u(n−1) · · · u

(
n−q)

y(n−2) · · · y(n−p−1
)
u(n−2) · · ·u(n−q−1

)

y(n−3) · · · y(n−p−2
)
u(n−3) · · ·u(n−q−2

)

...
...

...
...

⎤
⎥⎥⎥⎥⎦
.

(3)

The weight parameters αi and βm may be solved using least
squares:

θLS =
(
XTX

)−1
XTY. (4)

The maximum filter lengths p and q may be estimated by
minimizing some criterion such as the Akaike information
criterion (AIC):

AIC = r − 2 ln(L), (5)

where r is the number of model parameters, and L is the
likelihood function quantifying the model goodness of fit.

2.1.1. Wavelet Decomposition. Signals may be decomposed
into a multiscale time-frequency representation by project-
ing the signal onto an orthonormal set of basic functions.
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Figure 1: Block diagram of MS-ARX system-identification config-
uration. In general, the system (dotted box) is unknown and so
the true output y(k) and measurement noise n(k) are unknown
and only yn(k) is measurable. The multirate equivalence theorem
stated by Nounou et al. allows precomputation of the scaled wavelet
ARX prediction blocks (dashed boxes), reducing computational
complexity.

These functions correspond to a particular scale and trans-
lation of a prototype scaling function φjk(t) and wavelet
function ψjk(t), given by

φjk(t) =
√

2− jφ
(

2− j t − k
)

,

ψjk(t) =
√

2− jψ
(

2− j t − k
)
.

(6)

For the Haar wavelet used in this paper,

φ(t) =
⎧
⎨
⎩

1, 0 ≤ t ≤ 1,

0, |t| > 1,

ψ(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, 0 ≤ t < 0.5,

−1, 0.5 ≤ t ≤ 1

0, |t| > 1.

(7)

2.1.2. Multiscale ARX Modeling. We applied the multiscale
ARX approach presented by Nounou and colleagues. Briefly,
the input (EEG) and output (LFP) data were first split in
half into a training and a validation set. Second, both sets
were decomposed using Haar wavelets into multiple scaled
approximations in addition to the original undecimated
scale. Third, at each scale an ARX model was trained
using the model structure selected by an AIC minimization.
Fourth, the computed ARX model from each scale was con-
verted to the original sampling rate using the following the-
orem proved by Nounou et al.: an ARX transfer function
Yj(z)/Uj(z) = G(z) at scale j is equivalent to the transfer
function Y0(z)/U0(z) = G(z2 j) at scale 0, the original
undecimated scale. Fifth, the optimal scale ARX model was
selected as the one which provided the smallest mean-square
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error (MSE) on the validation set (Figure 1). The MSE is
defined as

MSE = 1
n

n∑

k

[
ŷ(k)− yn(k)

]2
. (8)

2.1.3. Neural Data Collection. The motor cortex has been
shown to project into the subthalamic nucleus (STN), thus
implying a system of unknown electrical parameters with the
EEG as the input and the STN local field potential (LFP) as
the output [2]. Furthermore, studies in preclinical models of
Parkinson’s disease have shown increased correlation be-
tween neighboring neurons [3] and increased coherence in
the 15–30 Hz band between basal ganglia nuclei [4, 5].

To examine the connection strength between these dis-
parate brain areas using MS-ARX, we simultaneously record-
ed voltage data from the motor cortex EEG and STN LFP of
anesthetized normal rats and hemiparkinsonian (HP) rats.
Parkinsonism was induced by the vendor (Charles River) by
6-hydroxydopamine injection (12 μg in 4 μL, injected into
coordinates AP −1.5 mm, ML +1.8, DV −7.5 from dura at
0.67 μL/minute, cf. [6, 7]) and was verified by apomorphine-
induced rotation testing and histological verification as
detailed elsewhere [7, 8]. Briefly, rats were injected with
apomorphine HCl (0.2 mg/kg, subcutaneously) at 3 and 5
weeks after 6-OHDA exposure and the number of contralat-
eral turns over 35 minutes were counted with an automated
rotameter. Rats averaging more than 7 turns per minute were
included in the HP group. After recording and euthanasia,
the brain was frozen, sectioned coronally, stained for tyrosine
hydroxylase to confirm 95% unilateral lesioning of the sub-
stantia nigra pars compacta, and stained with cresyl violet to
confirm electrode localization. All procedures were approved
by the Pennsylvania State University Institutional Animal
Care and Use Committee.

For EEG recording, animals were deeply anesthetized
with urethane, with nominal initial dose 1.3 g/kg (i.p.) and
additional doses given as needed to maintain surgical anes-
thesia. Stainless steel screws were implanted above bregma
and above motor cortex (AP +3.7 ± 1.0 mm, ML +2.5), and
the EEG signal recorded as the potential difference between
these screws was subsequently amplified and filtered between
0.1 Hz and 500 Hz (3500, A-M Systems) and digitized at an
initial rate of 1000 samples per second. An occipital screw
was used as the reference electrode. The LFP signal was taken
from the tip of the tungsten microelectrode (1-2 MΩ, FHC
Inc), filtered between 5 Hz–500 Hz, amplified, and digitized.
Offline, both signals were filtered between 0.1 Hz and 100 Hz
and downsampled to 200 samples per second.

Recordings were taken from 9 normal rats (37 distinct
STN sites) and 8 HP rats (26 distinct STN sites). Electrode
tracts were histologically confirmed.

We used a maximum of 260 taps in our AIC structure
selection step. This maximum was empirically selected based
on the observation that the peak frequencies in our data
were usually between 0.8–1.3 Hz or higher, thus allowing at
least one cycle period within the ARX filter length at scale
zero. The maximum wavelet decomposition level was 4. Only

Table 1: Mean MSE at different scales across all recordings. Num-
bers in parentheses are the percent of neuronal recordings which
selected that particular scale as optimum.

Scale
MSE (mean ± SEM)

Normal HP

j = 0 1.005± 0.015 (51%) 0.953± 0.015 (56%)

j = 1 1.008± 0.014 (11%) 0.958± 0.014 (24%)

j = 2 1.012± 0.014 (3%) 0.968± 0.014 (4%)

j = 3 1.013± 0.012 (8%) 0.973± 0.012 (8%)

j = 4 1.019± 0.010 (27%) 1.000± 0.010 (8%)

Average MSE at best scale

0.9

0.92

0.94

0.96

0.98

1

1.02

M
SE

Normal HP

∗

Figure 2: Mean MSE across all recordings at their optimal scale
(∗denotes P < 0.05 rank-sum test between Normal and HP groups).

recordings with robust slow-wave activity were included in
the analysis [9].

3. Results

Table 1 shows the MSEs at different scales. The undecimated
scale was the optimal scale for approximately half of the
recordings. The other recordings saw better ARX prediction
performance at higher wavelet scales (more heavily filtered
wavelet approximations).

The mean MSE at the optimum scale was significantly
lower in the HP group compared to the normal group
(Figure 2, P < 0.05, rank-sum test). Also, the ratio (com-
puted for each individual recording) of the mean of the
absolute value of the best-scale AR coefficients (αi) to the
mean of the absolute value of the best-scale exogenous input
coefficients (βm) was significantly lower in the HP group
(Table 2, P < 0.05, rank-sum test). Figures 3 and 4 show
samples of the wavelet decimation and MS-ARX predictions,
illustrating the differences between scales.

4. Discussion

The MS-ARX technique showed improved prediction accu-
racy compared to the traditional ARX approach (which
uses scale 0 only). This makes sense because the MS-ARX
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Table 2: Parameter summary for normal and hemiparkinsonian
recordings. Each row shows the mean (± SEM) absolute value of
the parameter at the optimum scale for each recording (∗denotes
P < 0.05 rank-sum test between Normal and HP groups).

Mean of parameter Normal HP

AR coeffs. 0.21± 0.024 0.19± 0.025

Exogenous input (X) coeffs. 0.083± 0.016 0.15± 0.033

Ratio of AR to X coeffs. 6.4± 0.87 4.9± 1.26∗

Number of nonzero AR coeffs. 157.3± 18.5 177.8± 19.3

Number of nonzero X coeffs. 156.3± 18.5 176.9± 19.3

Best scale 1.49± 0.29 1.00± 0.27
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Figure 3: Sample EEG and LFP waveforms showing the original
scale and three successive levels of scaled wavelet decimations.

approach uses cross-validation to automatically select the
best tradeoff between smoothing and preservation of signal
details.

The results seen of decreased MSE and increased pro-
portion of exogenous input weights also indicate that linear
prediction of the STN LFP based on the cortical EEG is
more accurate in the HP condition and is based more on
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Figure 4: (a) Overlaid sample EEG input, LFP output, and the MS-
ARX optimal scale prediction (scale 3). (b) Overlaid LFP output and
predictions from all scales.

cortical input. This indicates a greater amount of similarity
between the population-based cortical and STN electrical
activity in the HP case. Future studies should investigate
whether this increased predictability is correlated to parkin-
sonian pathophysiology or symptomatic severity. Brown and
colleagues have shown that there is increased coherence
between the cortical EEG and STN LFP in the 15–30 Hz
“beta” band in PD [4, 5, 10, 11], and also that STN LFP
beta activity is correlated to clinical symptoms [12–14],
suggesting that the linear predictability in those scales may
also be correlated to clinical symptoms. However, unlike
the coherence, the MS-ARX prediction measure we describe
can also measure nonperiodic content similarity between the
cortical EEG and STN LFP. Thus it may provide an additional
useful tool to investigate nonperiodic corticosubthalamic
interactions. The recent optogenetic study by Deisseroth and
colleagues showed that high-frequency stimulation of the
motor cortex achieved similar symptomatic amelioration
as STN stimulation, presumably affecting the STN through
the hyperdirect pathway [2, 15]. However, this effect was
only seen in high-frequency stimulation, suggesting that the
temporal scale of synchronization may be important. The
multiscale predictability analysis presented here can aid in
analyzing these scale-differential effects.

In conclusion, the MS-ARX method is well-adapted to
the high-level analysis of neural signals from different brain
nuclei at multiple scales.
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