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Abstract
Even though antimicrobial-resistant bacteria have begun to be detected in wildlife, 
raising important issues related to their transmission and persistence of clinically im-
portant pathogens in the environment, little is known about the role of these bacteria 
on wildlife health, especially on endangered species. The Brazilian merganser (Mergus 
octosetaceus) is one of the most threatened waterfowl in the world, classified as 
Critically Endangered by the International Union for Conservation of Nature. In 2019, 
a fatal case of sepsis was diagnosed in an 8-day-old Brazilian merganser inhabiting a 
zoological park. At necropsy, major gross lesions were pulmonary and hepatic conges-
tion. Using microbiologic and genomic methods, we identified a multidrug-resistant 
(MDR) extended-spectrum β-lactamase (ESBL) CTX-M-8-producing Escherichia coli 
(designed as PMPU strain) belonging to the international clone ST58, in coelomic cav-
ity, oesophagus, lungs, small intestine and cloaca samples. PMPU strain harboured a 
broad resistome against antibiotics (cephalosporins, tetracyclines, aminoglycosides, 
sulphonamides, trimethoprim and quinolones), domestic/hospital disinfectants and 
heavy metals (arsenic, mercury, lead, copper and silver). Additionally, the virulence 
of E. coli PMPU strain was confirmed using a wax moth (Galleria mellonella) infection 
model, and it was supported by the presence of virulence genes encoding toxins, 
adherence factors, invasins and iron acquisition systems. Broad resistome and viru-
lome of PMPU contributed to therapeutic failure and death of the animal. In brief, we 
report for the first time a fatal colibacillosis by MDR ESBL-producing E. coli in criti-
cally endangered Brazilian merganser, highlighting that besides colonization, critical 
priority pathogens are threatening wildlife. E. coli ST58 clone has been previously 
reported in humans, food-producing animals, wildlife and environment, supporting 
broad adaptation and persistence at human–animal–environment interface.
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1  | INTRODUC TION

Antimicrobial resistance (AMR) is one of the major Global Health 
challenges of the 21st century, and annually kills thousands of people 
in the world (Cassini et al., 2019; Hernando-Amado, Coque, Baquero, 
& Martínez, 2019). One Health and Global Health approaches are 
necessaries to combat the emergence, evolution and spread of AMR 
(Hernando-Amado et al., 2019). In this regard, wildlife has been sug-
gested as reservoirs, disseminators or bio-indicators of AMR in the 
environment (Borges et al., 2017; Dolejska & Literak, 2019; Sacristán 
et al., 2020); however, threatened wildlife species are being colo-
nized by antibiotic-resistant bacteria, but there are critical data gaps 
and research needs to understand the role and the real impact of 
AMR on wildlife (Fuentes-Castillo et al., 2020; Larsson et al., 2018; 
Ramey & Ahlstrom, 2020).

The Brazilian merganser (Mergus octosetaceus Vieillot, 1817) 
is one of the most threatened avian species in the Americas and 
one of the most threatened waterfowl in the world, classified as 
Critically Endangered by the International Union for Conservation 
of Nature (BirdLife International, 2019; Lamas & Lins, 2009). It is 
estimated that its population does not exceed 250 mature individ-
uals in nature but, thanks to conservation breeding programs, it has 
been possible to successfully reproduce the species ex-situ (BirdLife 
International, 2019).

In this study, using microbiological and whole genome sequenc-
ing tools, we investigated a fatal sepsis caused by an antibiotic-resis-
tant bacterium in a critically endangered Brazilian merganser. In this 
regard, the resistome (antibiotics, heavy metals, and disinfectants), 
virulome and epidemiological characteristics of the pathogen were 
analysed.

2  | MATERIAL S AND METHODS

2.1 | Brazilian merganser

As part of the Brazilian merganser Conservation Program, the Itatiba 
Zoological Park (Sao Paulo state, Brazil) carries out a successful 
breeding project. In October 2019, an 8-day-old Brazilian mergan-
ser hatched in the breeding program became ill presenting respira-
tory symptoms (dyspnoea, prostration, hyporexia and weight loss). 
The duck received prophylactic fluoroquinolone (i.e. Enrofloxacin, 
15 mg/kg, IM, q. 12 hr), with unsuccessful results. The animal died 
presenting incoordination and opisthotonos, <24 hr after the first 
clinical signs.

2.2 | Necropsy and sampling

Full necropsy examination was carried out at the Laboratory of 
Wildlife Comparative Pathology, Department of Pathology, School 
of Veterinary Medicine and Animal Science of the University of São 
Paulo, Brazil, according to Matushima. Representative samples of 

major organs/tissues, including oesophagus, proventriculus, small 
and large intestines, pancreas, spleen, liver, lungs, trachea, heart, 
aorta and kidney, were collected and fixed in 10% neutral buffered 
formalin. Central nervous system was not sampled to preserve the 
cranium for museum collection. Tissue samples were processed rou-
tinely and embedded in paraffin wax. Sections (5 μm) were stained 
with haematoxylin and eosin. Additionally, selected samples from 
coelomic cavity, oral cavity, oesophagus, lungs, small intestine and 
cloaca were aseptically sampled using sterilized swabs and depos-
ited in Amies transport medium with charcoal for posterior micro-
biological analysis.

2.3 | Isolation, bacterial identification and 
antimicrobial susceptibility testing

Cloacal, coelomic and oral cavity and tissue swab samples were 
streaked onto blood and MacConkey agar plates and incubated 
overnight at 35 ± 2°C. Bacterial isolates were identified by the 
MALDI-TOF MS system (Bruker Daltonik), and clonal relation-
ships among Escherichia coli isolates were determined by entero-
bacterial repetitive intergenic consensus (ERIC)-PCR (Da Silveira 
et al., 2002).

Antimicrobial susceptibility testing was performed by the 
disc diffusion method using human and veterinary antimicrobials 
(CLSI, 2018, 2020), including amoxicillin/clavulanate, ceftriaxone, 
cefotaxime, ceftiofur, ceftazidime, cefepime, cefoxitin, aztreonam, 
imipenem, meropenem, ertapenem, nalidixic acid, enrofloxacin, gen-
tamicin, amikacin, trimethoprim-sulfamethoxazole and tetracycline. 
E. coli ATCC 25922 was used as control strain. Extended-spectrum 
β-lactamase (ESBL) production was screened by the double-disc 
synergy test (DDST; Jarlier, Nicolas, Fournier, & Philippon, 1988).

2.4 | Whole genome sequence (WGS) analysis

For selected ESBL-producing E. coli strain, genomic DNA was 
extracted using a PureLinkTM Quick Gel Extraction Kit (Life 
Technologies), and a genomic paired-end library (75 × 2 bp) was pre-
pared using a Nextera XT DNA Library Preparation Kit (Illumina Inc.) 
according to the manufacturer's instructions. The whole genome 
was sequenced on the NextSeq platform (Illumina). De novo genome 
assembly and contig annotation was carried out using CLC Genomics 
Workbench 12.0.3. Multilocus sequence type (MLST), plasmid repli-
cons, resistome and serotype were identified using MLST v2.0 (Larsen 
et al., 2012), PlasmidFinder v2.1 (Carattoli et al., 2014), ResFinder 
v3.2 (Zankari et al., 2012) and SerotypeFinder v2.0 (Jenkins, 2015) 
tools, respectively, from Center for Genomic Epidemiology (http://
www.genom icepi demio logy.org/). Clinically, important virulence 
factors were detected and compared by ABRicate v0.9.8 (https://
github.com/tseem ann/abricate) using data from the Escherichia coli 
Virulence Factors (https://github.com/phac-nml/ecoli_vf) and the 
Virulence Factor Database (VFDB; http://www.mgc.ac.cn/VFs/). 

http://www.genomicepidemiology.org/
http://www.genomicepidemiology.org/
https://github.com/tseemann/abricate
https://github.com/tseemann/abricate
https://github.com/phac-nml/ecoli_vf
http://www.mgc.ac.cn/VFs/
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Heavy metal (HM) and biocides genes were detected using the 
BacMet2 experimentally confirmed database (http://bacmet.biome 
dicine.gu.se). For whole genome of selected ESBL-producing E. coli 
identified in this study, a minimum spanning tree was constructed 
in Enterobase using the MSTree V2 algorithm and the wgMLST 
scheme (https://enter obase.warwi ck.ac.uk/speci es/index /ecoli). 
This scheme consists of 25,002 pan-genome genes present in E. coli 
genomes, which represented most of the diversity in Enterobase 
at the time (March 2020; https://bitbu cket.org/enter obase /enter 
obase -web/wiki/Esche richi a%20Sta tistics). All images were gener-
ated with iTOL v.5.5 (https://itol.embl.de).

2.5 | In vivo virulence assays in the greater wax 
moth (Galleria mellonella) infection model

In vivo virulence behaviour of ESBL-producing E. coli was evaluated 
using the G. mellonella infection model (Tsai, Loh, & Proft, 2016). 
The non-virulent E. coli ATCC 25922 and the hypervirulent men-
ingitis/sepsis-associated K1 E. coli strain (MNEC RS218; Achtman 
et al., 1983; Santos, Zidko, Pignatari, & Silva, 2013) were used as 
non-virulent and hypervirulent controls. In brief, G. mellonella lar-
vae, of nearly 250 to 350 mg, were inoculated with 105 CFU of each 
strain. Survival of two G. mellonella groups (each group composed by 
20 larvae) inoculated with each strain were evaluated for 96 hr. Data 
were analysed by the log rank test, with p < .05 indicating statistical 
significance (Prism GraphPad Software).

3  | RESULTS AND DISCUSSION

3.1 | Pathological findings

The main gross finding was dark reddish coloration in the lungs, 
draining a marked amount of serosanguineous fluid. Microscopically, 
haemodynamic disturbances were observed in the lungs, highlight-
ing a marked congestion of blood vessels and alveolar capillaries, and 
mild acute alveolar haemorrhage (Figure 1a). In liver, moderate con-
gestion in zone I and II was detected (Figure 1b). Finally, in kidney, 
corticomedullar congestion was also observed. Histopathological 
alterations were not perceived in the remaining organs/tissues 
analysed.

3.2 | Bacterial isolation, identification and 
antimicrobial resistance profile

Escherichia coli was isolated from coelomic cavity, oesophagus, lungs, 
small intestine and cloaca. Clonal relatedness analysis (ERIC-PCR) 
and antimicrobial resistance profile confirmed a systemic infec-
tion by an identical E. coli clone, compatible with avian colibacillosis 
(Díaz-Sánchez et al., 2013; Kabir, 2010; Maciel et al., 2017; Sarowska 
et al., 2019). All E. coli strains were ESBL producers and displayed 
a resistant profile to human and veterinary broad-spectrum ceph-
alosporins, tetracyclines, aminoglycosides, sulphonamides, tri-
methoprim and quinolones, remaining susceptible to carbapenems, 
cephamycin and monobactams. An E. coli strain isolated from the 
lung tissue was randomly selected to WGS analysis and designed as 
PMPU strain.

3.3 | E. coli PMPU strain carried a wide resistome to 
antibiotics, heavy metals, and disinfectants

PMPU strain belonged to sequence type ST58 and serotype 
O102:H30. This strain harboured a resistome against antibiotics, 
heavy metals and disinfectants. WGS analysis identified the pres-
ence of genes encoding resistance to cephalosporins (blaCTX-M-8 
and blaTEM-1B), tetracyclines [tet(A)], aminoglycosides [aph(3″)Ib and 
aph(6)-Id], sulphonamides (sul2) and trimethoprim (dfrA8). In addi-
tion, the PMPU strain displayed mutations in gyrA (Ser-83-Leu and 
Asp-87-Asn) and parC (Ser-80-Iso) genes, which confer resistance 
to fluoroquinolones, causing therapeutic failure when enrofloxacin 
was used as prophylactic treatment in the animal. Moreover, genes 
conferring resistance to heavy metals (i.e. lead, arsenic, copper, sil-
ver, antimony, zinc, tellurium, tungsten, magnesium, cobalt, nickel, 
manganese, cadmium, mercury, iron, molybdenum, chromium, se-
lenium and vanadium) and biocides commonly used as disinfect-
ants in domiciliary and hospital settings (i.e. quaternary ammonium 
compounds [QACs], acridines, chlorhexidine, sodium dodecyl sul-
phate, ethidium bromide, hydrochloric acid, hydrogen peroxide and 
sodium hydroxide) were found (Figure 2). Regarding to plasmidome 
in PMPU strain, IncI1 and IncQ1 plasmid replicons were detected.

Escherichia coli ST58 is a globally disseminated clone previ-
ously reported in humans, food-production animals, wildlife and 
the environment, supporting a broad adaptation, persistence 

F I G U R E  1   Microscopic findings 
in an 8-day-old Brazilian merganser 
(Mergus octosetaceus) with colibacillosis. 
In (a) Lungs, note congestion of alveolar 
capillaries and perivascular oedema (black 
arrow). In (b) Liver, note hepatocellular 
swelling and intracytoplasmic vacuolation 
(black arrow). Haematoxylin and eosin 
staining

http://bacmet.biomedicine.gu.se
http://bacmet.biomedicine.gu.se
https://enterobase.warwick.ac.uk/species/index/ecoli
https://bitbucket.org/enterobase/enterobase-web/wiki/Escherichia Statistics
https://bitbucket.org/enterobase/enterobase-web/wiki/Escherichia Statistics
https://itol.embl.de


     |  261FUENTES-CASTILLO ET AL.

F I G U R E  2   Resistome of multidrug-resistant CTX-M-8-producing Escherichia coli PMPU strain. Infographic shows the names of 
detected genes in E. coli PMPU whole genome (rows), which encode resistance to antibiotics, disinfectants, heavy metals, and acid or 
basic environment (columns). aMutations in quinolone resistance-determining region (QRDR). EthBR, ethidium bromide; H2O2, hydrogen 
peroxide; HCl, hydrochloric acid; NaOH, sodium hydroxide; QACs, quaternary ammonium compounds; SDS, sodium dodecyl sulfate
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and a worldwide dissemination of this clone (Borges, Tarlton, & 
Riley, 2019; De Carvalho et al., 2020; EnteroBase, 2020; McKinnon, 
Roy Chowdhury, & Djordjevic, 2018; Zurfluh et al., 2019). In Brazil, 

E. coli ST58 has been isolated from humans, poultry, peri-urban wild 
animals and polluted mangrove ecosystem (Borges et al., 2019; De 
Carvalho et al., 2020; Sacramento et al., 2018). On the other hand, 

F I G U R E  3   Phylogeny of CTX-M-8-producing Escherichia coli isolate from a Brazilian merganser (Mergus octosetaceus), in relation to an 
international E. coli collection. The image shows a minimum spanning tree based on wgMLST of 123 worldwide distributed E. coli strains 
belonging to ST58, constructed by the MSTree V2 tool from EnteroBase. The figure was generated with iTOL v.5.5 (https://itol.embl.de). 
Interactive versions of the tree can be found at https://itol.embl.de/tree/20014 46314 42945 01588 789515. Coloured circles represent 
sources of origin. Each isolate is indicated by the country of origin

Tree scale: 100
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MDR or ESBL-producing E. coli serotype O102:H30 has been re-
currently identified in hospitalized human patients, mainly with uri-
nary tract infection (Cergole-Novella, Guth, Castanheira, Carmo, & 
Pignatari, 2010; Cergole-Novella, Pignatari, & Guth, 2015; Gonçalves 
et al., 2009).

We further investigated the genomic relatedness among E. 
coli PMPU isolate identified in this study and 123 assembled 
genomes of E. coli belonging to ST58 from different sources of 
origin and countries, available in EnteroBase database (https://
enter obase.warwi ck.ac.uk/). In the minimum spanning tree of 
the whole genome analysis based on the wgMLST scheme from 
EnteroBase, E. coli PMPU isolate showed high genetic relatedness 
compared to livestock isolates from Japan (ESC_QA8442AA_AS 
and ESC_QA8026AA_AS) and Belgium (ESC_QA7365AA_AS), an 
animal companion isolate from Canada (dog; ESC_YA3357AA_
AS) and an environment isolate from Japan (ESC_HA7644AA_AS; 
Figure 3). These phylogenetically related isolates were collected 
between 2013 and 2018, supporting rapid adaptation and dis-
semination of this E. coli clone. The importation and spread of 
ESBL-producing Enterobacterales between geographically dis-
tant countries has been attributed to international travel peo-
ple (Arcilla et al., 2017; Armand-Lefèvre, Andremont, & Ruppé, 
2018; Frost, Van Boeckel, Pires, Craig, & Laxminarayan, 2019), 
international imports of live animals or raw meat (Mo et al., 2014; 
Nahar et al., 2018; Schaumburg et al., 2014) and migratory wild 
birds (Báez et al., 2015). This could explain the presence of phy-
logenetically related E. coli ST58 clones that circulate between 
countries on different continents.

3.4 | Virulome of ESBL-positive E. coli ST58 
colonizing Brazilian merganser is associated with a 
virulent behaviour

Virulome analysis of ESBL-producing E. coli PMPU strain high-
lighted virulence factors, including adherence factors (fim, eaeH, 
lpfAO113, csgBCDEFG), invasins (iss, ibeBC), cytolytic pore-form-
ing toxin (hlyE), iron acquisition systems (entBCEFS, fepABCD) and 
chemotaxis (cheABRMWYZ, motAB), among other virulence fac-
tors commonly found in commensal and pathogenic E. coli strains 
(Table 1). The virulent potential of PMPU strain was confirmed 
in the G. mellonella infection model, where strains inoculated at 
1 × 105 CFU killed 100% of wax moth larvae within 50h, showing 
a more virulent behaviour than E. coli ATCC 25922, but no more 
than hypervirulent meningitis-causing E. coli MNEC RS218 (Figure 
S1). G. mellonella has been successfully utilized as an in vivo model 
to assess the pathogenic potential of clinically important bacte-
rial pathogen. Therefore, responses to bacterial infections ob-
served in this model could closely mimics responses displayed by 
mammalian models (Jander, Rahme, & Ausubel, 2000; Kavanagh 
& Reeves, 2004; Lange et al., 2018). In this study, virulent per-
formance of E. coli PMPU strain was correlated with virulence 
factors commonly identified in pathogenic E. coli lineages from 

humans and poultry, highlighting adherence factors (fimBCEF-
GHI, eaeH, lpfAO113, csgBCDEFG; Dale & Woodford, 2015; Osek, 
Weiner, & Hartland, 2003; Sarowska et al., 2019; Torres, 2016), 
invasins (iss, ibeBC; Sarowska et al., 2019), toxin (hlyE; Wyborn 
et al., 2004), iron acquisition systems (entBCEFS, fepABCD; 
Robinson, Heffernan, & Henderson, 2018; Torres, 2016) and 
chemotaxis factors (cheABRMWYZ, motAB; Pettersen, Mosevoll, 
Lindemann, & Wiker, 2016). In this regard, adherence factors and 
invasins found in the E. coli PMPU strain may have contributed 
to the colonization in different tissues of the bird; the cytolytic 
pore-forming toxin hlyE could be related to haemodynamic dis-
turbances and tissue damage found in the histopathology (Lai 
et al., 2000; Lithgow, Haider, Roberts, & Green, 2007; Oscarsson 
et al., 1999). On the other hand, the immature immune system 
in an 8-day-old Brazilian merganser, the artificial incubation 

TA B L E  1   Virulome of MDR CTX-M-8-producing Escherichia coli 
PMPU strain isolated from haemorrhagic pulmonary tissue of an 
8-day-old Brazilian Merganser

Characteristics Virulence genes

Adherence

Fimbriae fimBCEFGHI, cfaABCD, 
lpfAO113, matF, stgBCD, 
ycbFRSTUV

Flagella flgABCDEFGHIJKLN, flhABCDE, 
fliADEFGHIJKLMNOPQRSTYZ, 
flk

Pilus hofCB

Adherence haemorrhagic coli 
pilus

ppdABCD, hofQ, ygdB, yggR, 
b2854, b2972

Adhesins eaeH, ecpRABCD, ehaABG

Curli fibres csgBCDEFG

Protectins and invasins

Colicin cib

Increased serum survival iss

Invasin ibeBC

Iron acquisition systems
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conditions (Ruiz-Castellano, Tomás, Ruiz-Rodríguez, Martín-
Gálvez, & Soler, 2016), as well as use of disinfectants, may con-
tributed to the selection of a virulent E. coli resistant to a wide 
range of antibiotics and disinfectants, establishing a dissemi-
nated infection with a fatal end. In order to avoid new infections 
due to E. coli widely resistant to antimicrobials and disinfectants, 
a cleaning of the environments was carried out using peracetic 
acid concentrated at 0.2%. After this occurrence, no new cases 
of fatal infection caused by this pathogen were registered in ani-
mals at this zoological park.

Virulent pathogens resistant to an increasing number of an-
timicrobials cause thousands of deaths in the human population 
each year (Cassini et al., 2019; Centers for Disease Control, 2019; 
Gu et al., 2018). In this concern, wildlife plays an important role in 
the epidemiology of antibiotic-resistant pathogens in the environ-
ment (Alcalá et al., 2016; Sevilla et al., 2020; Vittecoq et al., 2016). 
However, little is known about the impact of these MDR pathogens 
on wildlife, especially on threatened wildlife species (Gonçalves 
et al., 2012; Larsson et al., 2018; Ramey & Ahlstrom, 2020). In 
this study, we isolated a MDR ESBL-producing E. coli with viru-
lent behaviour, belonging to international clone ST58 and sero-
type O102:H30, causing fatal infection in a critically endangered 
Brazilian merganser. Of note, a MDR colistin-resistant E. coli ST58 
was recently isolated from a polluted mangrove ecosystem in Brazil 
(Sacramento et al., 2018); therefore, a similar biological threat may 
potentially be disseminated among humans and wildlife via envi-
ronmental pathways.

Although virulent characteristics of E. coli PMPU strain, and dis-
semination findings through different organs are compatible with a 
fatal avian colibacillosis, absence of investigations on non-bacterial 
pathogens were limitations for this study.

A better integration of environmental and wildlife issues is nec-
essary to a successful One Health approach for global AMR crisis 
(White & Hughes, 2019). In this context, to understand epidemio-
logically the evolution and adaptation of AMR, wildlife veterinarians 
must increasingly report the challenges that arise when treating an-
timicrobial-resistant pathogenic bacteria in wildlife species. Herein, 
we report a fatal colibacillosis by a MDR ESBL-producing E. coli in 
critically endangered Brazilian merganser, highlighting that besides 
colonization, antimicrobial-resistant pathogens are threatening wild-
life health.
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