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Abstract. To investigate the molecular mechanism of aging, 
the combination of module analysis and DNA methylation 
data was used to detect dynamically controlled modules for 
aging. Multiple differential expression networks (DENs) were 
constructed based on the microarray profiles across different 
aging groups (<70  years, 70‑80  years, and >80  years). 
Next, a module‑based approach was utilized to extract the 
common candidate modules across all age groups. We used 
Module Connectivity Dynamic Score (MCDS) to quantify 
the connectivity change of the common modules among the 
different age groups. Functional analyses were implemented 
for the genes in the common modules to further identify the 
significant biological processes. A total of two DENs were 
constructed. Overall 657 informative genes were screened 
out. When false discovery rate (FDR) was set as 0.05, we 
found that 148 modules were significant. Only 1 significant 
2‑differential modules (DMs) (module 493) with dynamic 
changes was discovered. Significantly, the genes in the 
module 493 participated in 7 significant pathways, including 
pentose phosphate pathway, carbon metabolism, and citrate 
cycle (TCA cycle). In conclusion, pathway functions [pentose 
phosphate pathway, carbon metabolism, citrate cycle (TCA 
cycle), chromosomal instability, ateroid biosynthesis, PPAR 
signaling pathway, and immune response] may serve as 
potential therapeutic targets in aging.

Introduction

Aging is a natural as well as undeniable developmental process 
in human life, and ῾biological age᾿ is usually affected by many 
factors including environment, heredity, lifestyle, as well as any 
kind of disease (1). Developing reliable age‑related measures 
is the main goal of gerontology (2). Biomarkers related to 

biological age have been identified in the research to detect 
the age of a person, and these signatures are significant for 
geriatric evaluation, which might be in favor of the adaptation 
of habits to assist healthy aging (3,4). Many aging biomarkers 
have been investigated, for example, telomere length, and 
mitochondrial DNA (5,6). Nevertheless, all of these signatures 
have a relatively low precision (7).

Methylated DNA is biologically and chemically more 
stable in relevance to mRNA. DNA methylation (DNAm) has 
been demonstrated to be an especially promising signature of 
aging (8‑10). Bekaert et al (11) have predicted the person's age 
based on four age‑associated DNAm biomarkers. Previous 
studies have demonstrated that the age‑related epigenetic drift 
may be closely related to disease progression (12) and human 
evolution (13). Therefore, it is of great interest and importance 
to uncover the specific dynamics of DNAm landscape in aging.

As known, complicated diseases are believed to be 
induced by the perturbations of biological networks, other 
than single genes. Nevertheless, in a previous research, only 
two conditions were considered (that is to say, there is only 
one biological network)  (14). Therefore, simultaneously 
measuring network dynamics in the progression of a disease 
is very important to understand the molecular mechanisms 
underlying the given disease. Of note, with the develop-
ment of high throughput techniques, a great deal of protein 
interactions are collected, however, a number of interactions 
are yet not measured (15). This problem might be solved, to 
some extent, by utilizing modules or sub‑networks within the 
complicated network (16). Hence, it is crucially important to 
detect significant modules in order to better understand the 
biological events related to aging.

In the present study, with the goal of detecting dynami-
cally controlled modules related to aging, inference of multiple 
differential modules (iMDM) was utilized to analyze the DNA 
methylation data of aging at three age groups, in order to obtain 
the connectivity alterations of modules in the aging process. 
By utilizing iMDM to multiple sub‑networks, candidate meth-
ylated genes were detected. We believe that our results can 
provide foundation for experimental verification in a future 
study, and expound the molecular mechanisms of aging.

Materials and methods

This module‑based approach takes as input methylation data 
collected from control and disease cases, and is implemented 
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based on the following steps: establishment of multiple differ-
ential expression networks (DENs) for each case; extraction of 
statistically significant multiple differential modules (DMs) in 
multiple DENs; quantification of the connectivity changes of 
the common multiple DMs; pathway and GO analyses for the 
genes in the common modules.

Microarray data. The microarray data of E‑GEOD‑64490 on 
aging were downloaded from the EMBL‑EBI database 
(https://www.ebi.ac.uk/arrayexpress/experiments/E‑GEOD‑ 
64490/), relying on the A‑GEOD‑13534 ‑ Illumina Human‑ 
Methylation450 BeadChip (HumanMethylation450_150174
82_v.1.1). In this study, gene microarray data of 48 samples 
were included. In the DNAm age, there were 14 samples with 
age <70 years, 29 samples of 70‑80 years of age, and 5 samples 
of >80  years of age. After the probes were retrieved, we 
mapped the probes to the human gene symbols, and finally 
obtained 20,417 genes.

Protein‑protein interaction network  (PPIN) downloaded 
from STRING database. The human background PPIN 
covering 787,896 interactions and 16,730 genes was retrieved 
from STRING database (http://string-db.org/), and then only 
the common part of the microarray data and genes in the 
background PPIN were taken to construct the informative 
PPIN. Finally, 698,580 interactions were obtained.

Construction of DENs. For each age group, DEN was esta
blished based on the differential expression in the aging 
conditions. Firstly, on the basis of the absolute value of the 
Pearson's correlation coefficient  (PCC) of any two genes, 
significant edges were selected to establish a binary co‑expres-
sion network. Herein, we only selected the edges having PCC 
higher than the predefined value of 0.8 in order to construct the 
binary co‑expression network. Secondly, we utilized one‑side 
t‑test to calculate the gene expressions in each age group. 
Using the P‑value of differential gene expression in each age 
condition, we assigned the weight value to the interaction of 
the binary co‑expression network. In view of multiple DENs, 
the same nodes were included but there were different edges; 
this was determined as Hk = (V, Ek) (1≤k≤M), where V is the 
node set of the co-expression network, Ek is represented by a 
3-dimensional matrix A = (aijk)n x n x M, where aijk stands for 
the weight on the edge e(i,j), in network Hk, and M denotes the 
number of DEN.

Identifying candidate modules across multiple DENs. The 
unique and common modules across multiple DENs (that is to 
say, multiple candidate modules) were identified. Module algo-
rithm (17) was developed to select gene modules with the same 
gene content, but different connectivity among multiple interac-
tion networks. This module algorithm was applied to extract the 
candidate modules. The specific steps are described below.

Prioritization of informative genes. In order to obtain the 
informative genes, the genes in the multiple DENs were ranked 
using degree characteristics. Then, we obtained the sort order 
for each gene among all DENs based on the mean value of 
z‑scores across all DENs. We selected and determined the top 
10% genes as informative genes.

Module identification. Starting with each informative gene, 
module identification iteratively included genes whose addition 
led to the maximum reduction in the graph entropy‑based func-
tion until no reduction was found.

Refining candidate modules. We removed the multiple candi-
date modules having node sizes <5. Jaccard index was used 
to merge the overlapping multiple candidate modules. In the 
present analysis, we set the threshold of the Jaccard index ≥0.5.

Statistical significance for multiple candidate modules. After 
obtaining the candidate modules, we implemented statistical 
significance for multiple candidate modules according to the 
null score distribution of candidate modules produced based 
on randomized networks. After that, Benjamini‑Hochberg was 
utilized to adjust the P‑values for multiple testing relying on 
false discovery rate (FDR) (18). FDR<0.05 was selected to be 
the significance threshold.

Connectivity dynamics of common multiple DMs and MCDS 
were used to further quantify the connectivity change of 
component modules. Analogously, we calculated the statis-
tical significance of Module Connectivity Dynamic Score 
(MCDS) for a DM as that for multiple DMs. Concretely, 
we firstly computed the null distribution for MCDS scores 
according to the random multiple DMs. Then, we calculated 
the P‑value for an MCDS on the basis of the null distribu-
tion. Benjamini‑Hochberg was then used for correction. 
The DMs with greater connectivity were identified based on 
FDR<0.05.

Enrichment analysis for the genes in dynamic modules. 
To investigate the significant biological processes, DAVID 
was employed for pathway and GO annotation of genes 
in the dynamic modules. Expression Analysis Systematic 
Explorer (EASE) test was used to evaluate the significant path-
ways. Significant GO and pathway categories were determined 
according to FDR<0.05.

Results

Construction of multiple DENs. In addition to the age group 
<70  years, two conditions were also included, age group 
70‑80 years, and age group >80 years, multiple=2. Thus, a total 
of two DENs were constructed, and 2‑DMs were identified. 
Significant genes and biological processes were then extracted 
after the significance of DMs and MCDS was evaluated. 
These significant genes and biological processes across the 
two conditions might provide novel insights on the molecular 
mechanism of aging progression.

After we mapped the microarray data to the background 
PPIN, an informative PPIN was extracted, which included 
15,248 genes. To increase the network confidence, only inter-
actions with scores ≥0.8 of the informative PPIN were selected 
in order to build DENs. Finally, we constructed two DENs, 
and each of them covered 87,702 edges, as well as 6,576 nodes. 
The DEN compositions are shown in Fig. 1.

Identification of multiple candidate modules in two DENs 
and statistical significance of candidate modules. Using the 
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Figure 1. Compositions of DENs in comparison of the age groups (A) <70 years vs. 70‑80 years, and (B) <70 years vs. >80 years. Green nodes represent the 
informative genes. DEN, differential expression network.

Figure 2. One dynamics 2‑DMs identified in the age groups <70 years and 70‑80 years. Difference was calculated as ῾70‑80 years age group ‑ <70 years age 
group̓. Green nodes represent the informative genes.
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z‑score distribution of 6,576 nodes in the DENs, 657 infor-
mative genes were screened out. Afterwards, module search 
and refinement were conducted. Subsequently, a total of 
162 candidate modules in the DENs of two aging conditions 
were identified. When FDR was set as 0.05, we found that 
there were 148 significant modules.

Common 2‑DMs used to uncover dynamics during the devel‑
opment of aging. When FDR was set as 0.05, we found only 
module 493 observed in the DENs of aging group 70‑80 years, 
and aging group >80  years was dynamic. This dynamic 
DM 493 including 187 nodes and 4,006 interactions is shown 
in Figs. 2 and 3. Among these 187 nodes, only one informative 
gene SLC10A3 appeared in this network. In the aging devel-
opment, the connectivity of the interactions in this dynamic 
module was significantly changed, which further suggested 
that network rewired exerts key functions during the aging 
progression.

Because the weight of edges in the DENs is a measure-
ment of evaluating the differential expression between control 
and disease, the average edge weight acts as a way to assess 
the differential activity of the module. Figs. 4 and 5 show the 
weight distribution of the interactions in the dynamic 2‑DMs 
for the aging groups 70‑80 years and >80 years, respectively. 
As shown in Fig. 4, the majority of interactions in the network 
of the aging group 70‑80 years are distributed in the weight 
distribution of 0.3‑0.4, 0.4-0.5, and 0.5‑0.6. However, the 
majority of interactions in the network of the aging group 
>80 years are distributed in the weight distribution of 0‑0.1, 
and 0.1‑0.2, as shown in Fig. 5.

Enrichment analysis. To investigate the biological processes, 
we implemented GO and pathway enrichment analysis for the 
genes in the dynamic module 493. Based on FDR<0.05, no GO 
terms were identified. However, overall 7 significant pathway 
terms were enriched in this dynamic module, including 

Figure 3. One dynamics 2‑DMs identified in the age groups <70 years and >80 years. Difference was calculated as ῾>80 years group ‑ <70 years group̓. Green 
nodes represent the informative genes.
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pentose phosphate pathway, carbon metabolism, citrate cycle 
(TCA cycle), chromosomal instability, ateroid biosynthesis, 
PPAR signaling pathway, and immune response.

Discussion

Aging is a major risk factor for chronic, metabolic and neuro
degenerative disorders. Developing reliable age‑related modules 
and functional categories is the main goal of gerontology, helpful 
to understand the potential mechanisms and provide signatures 
for assisting healthy aging. In our study, in order to explore the 
molecular events indicative of aging, the available DNA meth-
ylation data and DEN were integrated to investigate the altered 
modules and biological functions related to aging. Significantly, 
1 dynamic dysregulated module (module 493) was extracted. 
GO enrichment results demonstrated that genes in module 493 
were not involved in any category. Significantly, overall 7 signif-
icant pathway terms were enriched in the dynamic dysregulated 
module, including pentose phosphate pathway, carbon metabo-
lism, citrate cycle (TCA cycle), chromosomal instability, ateroid 
biosynthesis, PPAR signaling pathway, and immune response.

Carbon metabolism that transforms carbon through 
pentose phosphate pathway, as well as TCA cycle to energy 
is essential for the physiology of brain, heart, liver, and 
kidneys (19). Significantly, mitochondria are responsible for 
ATP production, and progressive mitochondrial dysfunction, 
occurring with aging, leads to growing generation of 
reactive oxygen species (ROS), which in turn lead to further 
mitochondrial deterioration, as well as cellular damage (20). 
Furthermore, deletions and mutations of aged mitochondrial 
DNA have been reported to be related to aging (21). Of note, 
endurance training, as well as alternate‑day‑fasting has been 
suggested to enhance healthspan via avoiding mitochondrial 
degeneration (22). Thus, carbon metabolism, pentose phosphate 

pathway, and citrate cycle (TCA cycle) might exert significant 
functions in the progression of aging.

Chromosomal instability is one form of genomic insta-
bility, resulting from defects in chromosomal segregation, 
DNA damage, as well as telomere stability. Genetic evidence 
has demonstrated that the enhancement of the faithful chro-
mosomal segregation can extend longevity in mammals (23). 
Telomere shortening is found in normal aging in mice and 
human  (24). The premature aging of telomerase deficient 
mice can be reverted if telomerase is genetically reactivated 
in the aged mice (25). Accordingly, chromosomal instability is 
highly associated with aging progression.

Aging is implicated to be related to oxidative stress, which 
is regarded as the effector of the cascade of degenerative 
events (26). Oxidative stress is connected to the enhanced 
intracellular levels of ROS, and excessive production of 
ROS induces neuroinflammation, and neuronal death (27). 
Moderate increase of ROS has been demonstrated to serve as 
a molecular signal downstream effect which lure endogenous 
defense mechanisms, ending up with the increased stress resis-
tance, as well as extended life span (28). Significantly, specific 
targets for a balanced ROS regulation are PPARs (29). In our 
study, the genes in the dynamic module participated in PPAR 
signaling pathway. Accordingly, PPAR signaling pathway 
might be highly related to the aging progression.

Immune system is an important component of the inflam-
matory process and is the natural response to infection. The 
recognition and elimination of senescent and hyperploid cells 
is an important role of the immune system (30). Inflammation 
plays important roles in the progression of obesity and diabetes, 
which are correlated with human aging (31). Overexpression of 
NF‑κB pathway is observed in aging (32). Moreover, inhibiting 
NF‑κB signaling pathway prevents age‑related characteristics 
in mouse models of accelerated aging (33). Thus, we infer that 
aging might be modulated by NF‑κB‑driven inflammatory 
responses.

Taken together, this study has established interesting 
management options (dynamic DMs and the corresponding 
pathways) for the assessing the quality of life in the aging popu-
lation. However, this study had several limitations. The number 
of samples was small which might cause a high false‑positive 
rate of the findings. Moreover, no experimental confirmation 
was done in vivo or in vitro based on patient tissue or an animal 
model. Thus, suture studies with larger number of samples, 
using an animal model or patient tissues, are needed to confirm 
our preliminary findings obtained from bioinformatics analysis.
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