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Abstract: The 8-oxoguanine DNA glycosylase (OGG1) enzyme is a key DNA glycosylase mediating
the excision of 7,8-dihydro-8-oxoguanine (8-oxoG) from DNA molecule to the start base excision
repair pathway. The OGG1 glycosylase function depletion has been seen to obstruct pathological
conditions such as inflammation, A3 T-cell lymphoblastic acute leukemia growth, and neurodegener-
ative diseases, thus warranting OGG1 as an attractive anti-cancer enzyme. Herein, we employed
several drug libraries intending to screen non-toxic inhibitory molecules against the active pocket
of the enzyme that achieved stable binding mode in dynamics. Two anti-cancer compounds ([O-
]C1=C(CC2=CC=CC=C2)SC(=[N+]1CC(=O)NC3=NC=C(CC4=CC=CC=C4)S3)S and CCCN(CCC)[S]-
(=O)(=O)C1=CC=C(C=C1)C(=O)NNC2=NC3=CC=C(Br)C=C3C(=N2)C4=CC=CC=C4) from Sell-
eckchem.com were identified to occupy the active pocket of OGG1 and bind with greater affin-
ity than Control TH5487. The binding affinity of Top-1 is −11.6 kcal/mol while that of Top-2 is
−10.7 kcal/mol in contrast to TH5487 Control (−9 kcal/mol). During molecular dynamic simu-
lations versus time, the said compounds are tightly held by the enzyme with no minor structural
deviations reported except flexible loops in particular those present at the N and C-terminal. Both
the compounds produced extensive hydrophobic interactions with the enzyme along with stable
hydrogen bonding. The docking and molecular dynamics simulations predictions were further
validated by molecular mechanics with generalized Born and surface area solvation (MM/GBSA)
and Poisson Boltzmann surface area (MM/PBSA), and WaterSwap binding energies that validated
strong binding of the compounds to the enzyme. The MM/GBSA binding free energy for Top-1
complex is −28.10 kcal/mol, Top-2 complex is −50.14 kcal/mol) and Control is −46.91 kcal/mol
while MM/PBSA value for Top-1, Top-2 and Control is −23.38 kcal/mol, −35.29 kcal/mol and
−38.20 kcal/mol, respectively. Computational pharmacokinetics support good druglike candidacy of
the compounds with acceptable profile of pharmacokinetics and very little toxicity. All these findings
support the notion that the compounds can be used in experiments to test their anti-cancer activities.

Keywords: base excision repair; binding free energies; glycosylase inhibitor; MD simulations; molec-
ular docking; TH5487

1. Introduction

Reactive oxygen species (ROS) are the product of exogenous and endogenous sources,
the latter ROS are generated as a by-product of oxygen metabolism in the endoplasmic
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reticulum, mitochondria, and peroxisomes [1]. It has been well established that many
pathological diseases such as aging, cardiovascular diseases, cancer, neurodegenerative
diseases, inflammatory diseases, and ischemia-reperfusion injury result in loss of balanced
redox homeostasis [2,3]. ROS in appropriate concentrations function in immune responses
and signaling pathways; however, when ROS concentration reaches a higher level, they
overwhelm the antioxidant potential of the cells, which in turn results in oxidative stress
leading to oxidative damage to the DNA, protein, and lipids [3,4].

Under low redox conditions, guanine is sensitive to oxidation, transforming it to
7,8-dihydro-8-oxoguanine (8-oxoG) thus causing a genetic mutation [5]. In such a situation,
8-oxoguanine DNA glycosylase (OGG1) enzyme performed excision of 8-oxoG and along
with PARP1 initiated base excision repair (BER) pathway, which has been involved in
repairing the majority of DNA lesions [6]. Previous data revealed that availability of four
approved PARP inhibitors to treat homologous recombination defective cancers [7]. These
inhibitors interfere with alternative end-joining pathways [8] and replication forks [9].
The OGG1 enzyme of the BER pathway is less explored as an anti-cancer target. Recent
studies indicated that inhibiting OGG1 by a potent small molecule, TH5487, SU0268 (https:
//www.medchemexpress.com/su0268.html (accessed on 8 December 2021)) and O8 (https:
//www.tocris.com/products/o8-ogg1-inhibitor_6236 (accessed on 8 December 2021)),
effectively targets OGG1 enzyme and thus can serve beneficial approach for targeting
oxidative DNA repair and alleviating cancer pathologies [10,11].

In the current study, considering the high potential of OGG1 as a druggable enzyme
prompts us to devise a computational study to perform structure-based virtual screening
of different natural and synthetic drug libraries with the ultimate aim to identify potent
OGG1 inhibitors. OGG1 is a druggable enzyme as it can be targeted by drugs that can
modulate its function. Computational tools in modern drug discovery play a major role
in the development of therapeutically important drugs [12,13]. The in silico tools aid in
the rational design of safe and new drugs and limit the use of animal models [14,15]. The
study objectives include filtering several drug libraries including anti-cancer compounds
(Selleckchem anti-cancer compound library I and II), plus libraries of natural compounds
including medicinal plant database (MDP3) [16], Asinex targeted oncology database,
and comprehensive marine natural products database (CMNPD), first on toxicity where
toxic molecules were discarded. Toxic compounds offer failure at several stages of the
drug discovery process and waste the invested costs, time, and human efforts [17–19].
Secondly, molecular docking was applied to virtual screen the mentioned non-toxic drug
molecules against the OGG1 active pocket [20,21]. Further, the shortlisted best inhibitors
were complexed with the enzyme and tested in dynamics conditions to evaluate binding
conformation and binding interactions stability as a function of time. Extensive, all-atoms
molecular dynamics simulation studies were performed for selected complexes [22,23]
and intermolecular interactions energies were estimated by molecular mechanics with
generalized Born and surface area solvation (MM/GBSA) and Poisson-Boltzmann surface
area (MM/GBSA) methods [24,25], which were cross-validated by a further improved
WaterSwap free energy method [26,27]. Overall, the study identified two novel drug
molecules with good binding potential against OGG1 and therefore needs to be subjected
to experimental studies.

2. Results

To evaluate the binding affinity of the filtered libraries’ compounds for the OGG1
enzyme, structure-based virtual screening was conducted. The active site information was
retrieved from crystal structure of the enzyme reported with TH5487 inhibitor [10]. Per-
forming virtual screening of the libraries containing approximately 46,283 molecules took
about 1 month. The compound binding potential to the enzyme was measured first in terms
of the GOLD fitness score that takes into account chemical forces build as a result docked
conformation between the compound and the enzyme. A high GOLD fitness score deter-
mines better binding affinity of the compounds and vice versa. Top-ranked 10 molecules
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were redocked to the enzyme three times and each time the scoring function was changed
to ASP (the Astex Statistical Potential), CHEMPLP, and ChemScore. Details about these
scoring functions can be found on the GOLD docking software official page (https://www.
ch.cam.ac.uk/computing/software/gold-suite(assessed on 8 December 2021). Top-10
docked inhibitors at the active pocket of the receptor enzyme predicted by GOLD docking
software are shown in Figure S1. It can be easily observed that these virtually screened com-
pounds are docked well inside at the active pocket of the enzyme. In parallel, Top-10 com-
pounds binding energy was determined using AutoDock Vina to strengthen our docking
predictions. Two compounds ([O-]C1=C(CC2=CC=CC=C2)SC(=[N+]1CC(=O)NC3=NC=C-
(CC4=CC=CC=C4)S3)S and CCCN(CCC)[S](=O)(=O)C1=CC=C(C=C1)C(=O)NNC2=NC3-
=CC=C(Br)C=C3C(=N2)C4=CC=CC=C4) were selected as the best inhibitors of the enzyme
compared to the Control TH5487, SU0268, and O8. The GOLD fitness scores of Top-
1 and Top-2 are 79 and 76, respectively, while their AutoDock Vina binding energy is
−11.6 kcal/mol and −10.7 kcal/mol, respectively. In case of negative Controls, the bind-
ing affinity of TH2840 or TH5411 was −8.61 kcal/mol and −8.01 kcal/mol, respectively.
The different docking scores of the Control and compounds are tabulated in Table 1.

Table 1. Virtually screened compounds and their docking scores.

Compound GOLD Score
Autodock Vina

Binding Free
Energy (kcal/mol)

ASP CHEMPLP Chem Score
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is −9.0 kcal/mol. Both hydrogen bonding and van der Waals interactions are reported

https://www.ch.cam.ac.uk/computing/software/gold-suite(assessed
https://www.ch.cam.ac.uk/computing/software/gold-suite(assessed


Int. J. Environ. Res. Public Health 2021, 18, 13290 4 of 17

at the active pocket by the Control. Cys243, Val259, and Hie260 are hydrogen bonding
residues with distance lengths of 4.02 Å, 3.8 Å, and 4.54 Å, respectively. While Gly32,
Gln33, Lys239, Val257, Asp309, Hie263, and Gly32 formed van der Waals interactions with
the compound. Besides these, Phe134, Leu246, Pro256, Phe306, and Leu310 were noticed
in different alkyl interactions. Interestingly, the docked site of the compounds and the
Control remain the same and interact with an almost similar set of active pocket residues.
The binding mode of Control and its interactions with the active site residues are shown in
Figure 1A.
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docking conformation and interactions are provided. (A) 3D conformation of Control (shown in cyan
stick), (B) Top-1 (shown in yellow stick), and (C) Top-2 (shown in green stick) at the active pocket
of OGG1 enzyme (shown in secondary structure ribbon), and 2D presentation of enzyme residues
interaction with the compounds.

Top-1 interactions at the docked active cavity are dominated by van der Waals. These
interactions are formed along the length of the compound where the central oxygen and
nitrogen atoms are engaged by hydrogen bonding in particular with Lys239 (distance
length is 2.3 Å). The end benzene on one side produced interactions of van der Waals and
pi-anion while the on the other side make pi-alkyl and van der Waals. The central sulfur
atoms of the compounds interact with Cys243, and Phe134 through sulfur bonding. From
all around, the compound is strongly held at the active pocket and favors interactions with



Int. J. Environ. Res. Public Health 2021, 18, 13290 5 of 17

majority of the active pocket residues (Figure 1B). A rich cluster of chemical interactions is
also noticed between Top-2 compound and the receptor enzyme (Figure 1C).

2.1. Molecular Dynamics Simulations

Molecular dynamic simulation studies determine the dynamic behavior of atoms
or macromolecules in a specific time and special environment. Both selected complexes
(GOLD docked pose) and Control were performed to validate structural stability of the
enzyme in the presence of compounds. This was also essential to look for stable binding
of the compounds at the docked site throughout the length of simulation time, which is
key for altering the biological function of the enzyme and to get desired results [22]. The
simulation trajectories were evaluated through several statistical parameters (Figure 2).
First, root mean square deviation (RMSD) [28,29] was performed that examined all carbon
alpha deviation versus time scale considering the initial input intermolecular conformation
as reference (Figure 2A). Lower RMSD implies fewer deviations in the system, whereas
higher RMSD corresponds to more structural fluctuations. Larger biological systems
usually follow higher RMSD, but a constant trend indicates their stable nature.
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The Figure 2A shows that compounds are in good equilibration and the stability is
more strongly towards the end of simulation time. The Control was reported with an
excellent RMSD plot and is a demonstration of greater intermolecular strength. The mean
RMSD of Top-1, Top-2, and Control complexes is 1.68 Å, 2.04 Å, and 2.27 Å, respectively.
The Top-1 compound enzyme is seen as not stable until 52 ns, as it experienced deviations
touch 3.1 Å. Following this, the system remained in stable RMSD until the end of simulation
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time. Top-2 compound had a lower RMSD until 60 ns and then behaved inconsistently
with maximum RMSD of 3 Å, and after 140 ns the system became stable. These acceptable
RMSD variations upon snapshots visualization identified that compounds are trying to
stabilize their binding conformation at the active pocket by giving flexibility to some of
its chemical moieties, which forces the enzyme flexible loops to lose their original XYZ
coordinates [30,31]. To validate the stability of the systems, the simulation was run in
duplicate with a different initial velocity. A very similar trend was noticed except for few
up and down trends (Figure S2). To infer time dependent enzyme residue fluctuations in
the presence of inhibitors, root mean square fluctuation (RMSF) was calculated (Figure 2B).
The mean RMSF of the systems is as Top-1 complex (1.16 Å), Top-2 complex (1.15 Å),
and Control (0.99 Å). These RMSF values agree on high stable nature of the complexes,
in particular the Control. Higher RMSF values were recorded for the N-terminal and
C-terminal residues covering large loops; they are more flexible than the rest of the enzyme
regions. The active pocket residue remained highly stable in the presence of the compounds.
The radius of gyration (Rg) [32] was also taken into consideration as given in Figure 2C.
Rg is a statistical value describing the strength of atoms packing in a protein. The lower
value and the decline in the Rg value for all complexes is suggestive of stabilization
and compactness aided by the binding of ligands to the target protein. The mean Rg of
systems is ~20 Å and follows the same trend as noticed in RMSD. Beta factor (B-factor)
analysis [33] was done to investigate thermal stability of the enzyme residues (Figure 2D).
This analysis replicates the RMSF findings and confirmed the C and N-terminal have more
flexibility than the rest of the enzyme structure. To validate the binding site stability of
the compounds, a superimposition of last frame of molecular dynamics simulation over
docked enzyme-compound structure was performed as can be seen in Figures S3 and S4.
In both cases, it was noticed that the compounds occupied the binding pocket until the end
of simulation time and remained in contact with the enzyme active site residues.

2.2. Hydrogen Bonds Analysis

In drug designing against any particular biological macromolecule, hydrogen bonding
plays a significant role in three ways [34]. First, it stabilizes the binding of a compound to
the binding receptor partner. Second, it aids in chemical recognition of the compounds,
and third, it determines compound binding affinity, which is key to success in drug de-
velopment. Throughout the the simulation, the number of hydrogen bonds formed by
both compounds as well Control is presented in Figure 3. As can be seen, the compounds
and Control are strongly engaged by at least one hydrogen bond in each frame of simula-
tion trajectories. This signifies the high intermolecular affinity of the docked compounds
and OGG1 enzyme. These hydrogen bondings were seen between highly electronegative
atoms of the compounds/Control and close distance active site residues presented in
RDF analysis.
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2.3. Radial Distribution Function-g(r)

Determining interatomic interaction density during simulation time is important in
several ways for stable interactions of the compounds with the enzyme [35]. It helps in
highlighting constant interactions vital for holding compounds at the enzyme docked
site and shedding light on the distance at which maximum interactions density is pro-
duced [36]. Before running g(r) analysis, an in-house Perl written script was used in visual
molecular dynamics (VMD) [37], which was run on all simulation trajectories loaded on
systems prmtop. The close distance hydrogen bonds and van der Waals bonds between the
compounds and the OGG1 enzyme were filtered and subjected Assisted Model Building
with Energy Refinement (AMBER) CPPTRAJ to generate g(r) plots. Only interactions that
are important in ligand binding to the enzyme active pocket and regularly seen during
simulation frames were selected for RDF analysis. For Control, residues like Ser31, Phe134,
Ser137, Lys239, Cys243, Met247, Val250, Asp258, Val257, and Hie260 were seen in regular
contacts with the Control O2, and H7 atoms throughout simulation time. At different time
points, the g(r) plots describing the mentioned residues interactions with the Control atoms
are presented in Figure 4A. The maximum g(r) reported for Ser137 oxygen atom to Control
H7 and Hie260 and Control O2 atom towards the end of simulation. This means that at the
end of simulation time, these two interactions are key stable binding of the Control and
play a critical contribution in the initial times. For Top-1, Ser31, Gly32, Lys239, and Met261
are vital in interactions with the compound’s highly electronegative atoms in particular
oxygen and nitrogen (Figure 4B). The Ser31, Gly32, and Lys239 interaction density with
Top-1 atoms were reported maximum at distance ~4 Å. In case of Top-2, enzyme active
pocket residues like Ser137, Asp258, Lys239, His260, Asn140, and Ile142 are among the
notable residues engaging the compound (Figure 4C). Ser137, Asn140, Asp258, and Hie260
were found to have highest interatomic interaction density distribution at ~1.8–1.9 Å.
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2.4. MM/GBSA and MM/PBSA Binding Free Energies

Next, binding free energies of the complexes were estimated using two popular ap-
proaches: MM/GBSA and MM/PBSA. Both approaches are now routinely applied in
many drug designing works to decipher compounds real binding potential. The advantage
of these end point techniques is their low computational power need and their poten-
tial to generate reproducible results comparable to experimental findings [38,39]. In the
MM/GBSA method, the total binding energy of the complexes is the same as Top-1 com-
plex (−28.10 kcal/mol), Top-2 complex (−50.14 kcal/mol) and Control (−46.91 kcal/mol).
The MM/GBSA has ranked compound 2 as the most effective binder of OGG1 enzyme,
followed by Control and Top-1. For all three complexes, van der Waals energy was seen
dominant while electrostatic energy favors the binding. As a result of significant contri-
bution from both van der Waals and electrostatic energy, the net gas phase of the systems
is quite promising and denotes the systems overall equilibrium nature. On the other
hand, net solvation energy is non-favorable mainly due to polar solvation energy. The
non-polar energy seems to contribute to systems stability. In MM/PBSA, the Control
complex is a bit more stable than compound 2 and compound 1. Similarly, MM/GBSA,
MM/PBSA also interpreted the domination of van der Waals and electrostatic energies
while highly non-favorable contributions were derived from polar solvation energy. The
total MM/PBSA energy of Top-1, Top-2 and Control is −23.38 kcal/mol, −35.29 kcal/mol
and −38.20 kcal/mol, respectively. The different binding free energies of the complexes
are tabulated in Table 2. The entropy energy for systems is Control (10 kcal/mol), Top-1
(11 kcal/mol) and Top-2 (8 kcal/mol). These findings complement the aforementioned
analysis well in demonstrating the good binding capacity of the compounds for the OGG1
enzyme, and are likely to compete with natural ligands to block the enzyme activity and
prevent cancers.
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Table 2. MM/GBSA and MM/PBSA binding free energy estimated from 500 frames of molecular dynamics simulation.
The net binding free energy value is decomposed further into respective electrostatic, van der Waals, polar, and non-polar
solvation energies.

MM/GBSA

Compound ∆G Binding
(kcal/mol)

∆G
Electrostatic
(kcal/mol)

∆G Bind van
der Waals
(kcal/mol)

∆G Gas Phase
(kcal/mol)

∆G Polar
Solvation
(kcal/mol)

∆G Non-Polar
Solvation
(kcal/mol)

∆G Solvation
(kcal/mol)

Top-1 −28.10 −25.26 −41.42 −66.69 44.40 −5.80 38.59
Top-2 −50.14 −17.00 −60.47 −77.47 34.54 −7.21 27.32

Control −46.91 −23.10 −56.70 −79.81 38.54 −5.64 32.90

MM/PBSA

Top-1 −23.38 −25.26 −41.42 −66.69 47.85 −4.54 43.30
Top-2 −35.29 −17.00 −60.47 −77.47 47.50 −5.32 42.17

Control −38.20 −23.10 −56.70 −79.81 45.55 −3.94 41.60

2.5. Decomposition of MM/GBSA Binding Energy

The net MM/GBSA binding free energy was decomposed into the enzyme residues
to shed light on the hotspot residue contributing majorly to binding with the compounds
during simulation time [26,40]. The different residues that are involved in regular binding
with the compounds and highly stable in complex formation are tabulated in Table 3.
In both complex, the binding energy of ligand molecules is much lower than predicted
by the AutoDock Vina and are therefore achieving greater stability when binding to the
receptor enzyme. Majority of the hotspot residues in both complexes are part of the OGG1
enzyme active pocket. The residues interact hydrophobically and hydrophilically with
the compounds.

Table 3. Net binding energy value of compounds and their interacting residues that are highly stable in complex formation
in simulation time. The energy values are given in kcal/mol. Moreover, alanine scanning results when key compounds
interacting residues are mutated to alanine. NA (not applicable).

Ligand/Residue Top-1 Alanine Scanning Results Top-2 Alanine Scanning Results

Ligand −15.06 NA −24.28 NA
Ile142 −3.209 −2.14 −4.38 −2.80

Phe134 −1.90 −1.20 −2.74 −1.11
Phe306 −1.77 −0.98 −2.84 −1.44
Ala143 −1.19 −1.0 −1.75 −1.12
Cys243 −0.97 NA −1.55 NA
Gln33 −0.82 NA −1.50 NA
Ile145 −0.80 NA −1.35 NA

Met247 −0.71 NA −1.28 NA
His260 −0.47 1.0 −1.10 −1.00
Leu122 −0.45 NA −0.87 NA
Ala303 −0.41 NA −0.80 NA
Leu246 −0.39 NA −0.73 NA
Gly32 −0.35 −1.04 −0.70 −1.10
Pro256 −0.33 −1.0 −0.61 −1.01
Leu310 −0.25 NA −0.55 NA
Phe35 −0.22 0.12 −0.54 −0.41
Val240 −0.21 NA −0.50 NA
Ser31 −0.21 0.11 −0.48 1.18

2.6. WaterSwap Binding Energies

Though there are several advantages of using MM-GBSA and MM-PBSA binding
energy methods in drug designing process, yet they suffer from a few limitations that are
critical to be considered. Among the most important is skipping the role of water molecules
present in the enzyme active pocket especially in cases when the water molecules bridge



Int. J. Environ. Res. Public Health 2021, 18, 13290 10 of 17

the interactions between receptor and ligand [26]. To overcome this, we employed another
popular binding free energy method in the work to get more confidence in our results.
WaterSwap allows swapping of a ligand with an equal volume of water and thus is more
sophisticated in terms of considering water molecules contribution in ligand binding.
WaterSwap uses three algorithms namely, thermodynamics integration (TI), free energy
perturbation (FEP), and BENNETTS to calculate binding free energy of a given complex.
As can be noticed in Figure 5 the total binding energy value by each WaterSwap method
is very converged with respect to each other and the values are quite low demonstrating
highly stable binding of the compounds to the enzyme.
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2.7. In Silico Site Directed Mutagenesis

In order to access the impact of mutations on the active pocket to bind compounds, site
directed mutagenesis analysis was performed. It has been revealed that several residues are
affecting stable binding conformation of the compounds upon mutation. The binding free
energy of residues which is decreased after mutation is presented in Table 3. It is also noted
that the binding proximity and conformation of the compounds remain the same; however,
the binding strength is reduced due to absent of active residues chemical moieties which
were present in the unmutated enzyme. These results supported the fact that enlisted
residues are vital in compound binding, interactions, and overall conformation stability at
the enzyme active pocket.

2.8. Computational Pharmacokinetics Studies

Computational predictions of the inhibitors’ pharmacokinetics were carried out to
guide structural optimization of the compounds to avoid their failure in clinical stud-
ies [41–43]. The results of this analysis are given in Table 4. Both compounds are moder-
ately soluble thus have good chances to be easily administered orally. The physicochemical
properties of the compounds are favorable and thus can be good drug candidates. The
topological polar surface area (TPSA) [44] of the compounds is within acceptable range,
which can be improved further, in particular Top-1, to enhance their cell permeability po-
tential and reach the target site for performing desired biological mechanisms. Fortunately,
both compounds are much less toxic as per predictions, which makes them suitable against



Int. J. Environ. Res. Public Health 2021, 18, 13290 11 of 17

the targeted OGG1 enzyme. The compounds are predicted to show no hepatotoxicity, no
Ames toxicity, and no skin sensitization, all in favor of the compounds to be utilized in
further experimental testing against OGG1. Additionally, due to the simple structure of
the compounds, they can be easily synthesized in bulk quantities and have no Pan-assay
interference compounds (PAINS) alerts [45]. Because of good pharmacokinetic profiles
of the compounds, they might serve as attractive drug molecules for blocking cancer cell
proliferation. The compounds are also predicted to be non-toxic.

Table 4. Computational pharmacokinetics along with several pharmaceutically important parameters of the compounds.

Property Compounds

Physicochemical Properties Top-1 Top-2 Control

Formula C22H19N3O2S3 C27H28BrN5O3S C19H19BrIN4O2
Molecular weight 453.60 g/mol 582.51 g/mol 542.19 g/mol

Num. heavy atoms 30 37 27
Num. arom. heavy atoms 22 22 11

Fraction Csp3 0.14 0.22 0.32
Num. rotatable bonds 8 11 4

Num. H-bond acceptors 3 6 2
Num. H-bond donors 1 2 2

Molar Refractivity 123.71 149.71 118.21
TPSA 164.21 Å2 112.67 Å2 70.77 Å2

Lipophilicity

Consensus Log Po/w 4.22 5.00 2.38
Water Solubility Moderately soluble Moderately soluble Moderately soluble

Pharmacokinetics

GI absorption High High High
BBB permeant No No Yes
P-gp substrate No No Yes

CYP1A2 inhibitor No No No
CYP2C19 inhibitor Yes Yes No
CYP2C9 inhibitor Yes Yes No
CYP2D6 inhibitor No No No
CYP3A4 inhibitor No No No

Log Kp (skin permeation) −4.93 cm/s −4.80 cm/s −7.34 cm/s

Druglikensess

Lipinski Yes; 0 violation Yes; 1 violation: MW > 500 Yes; 1 violation: MW > 500

Medicinal Chemistry

PAINS 0 alert 0 alert 1 alert acyl_het_A
Synthetic accessibility 3.86 3.72 4.76

Toxicity

Hepatotoxicity No Yes Yes
Skin sensitisation No No No

T. pyriformis toxicity 0.292 log ug/L 0.285 log ug/L 0.315 log ug/L
Ames toxicity No No No

Minnow toxicity 0.69 log mM −1.164 log mM −1.14 log mM
Carcino mouse No No No

Excretion

Total clearance 0.763 log mL/min/kg 0.026 log mL/min/kg 0.031 log mL/min/kg
Renal OCT2 substrate No No No
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3. Materials and Methods
3.1. OGG1 Structure Retrieval and Preparation for Virtual Screening

For the virtual screening, the complex OGG1-TH5487 was fetched from a protein
data bank [46] (PDB-ID: 6RLW) [10] in UCSF Chimera 1.15 [47] and processed to prepare
the OGG1 enzyme for virtual screening. The enzyme structure is determined by X-RAY
diffraction method with a resolution of 2 Å, R-value free of 0.274, and R-value work of 0.223.
All water molecules and co-crystallized TH5487 inhibitor were deleted from the structure
except those present at the active pocket. The co-crystalized TH5487 inhibitor interactions
with OGG1 enzyme are presented in Figure S5A. Subsequently, the structure was subjected
to Dock Prep module of UCSF Chimera to add missing hydrogen atoms, charges, and
complete missing side chains using Dunbrack 2010 rotamer library. The enzyme structure
was then energy minimized through the Minimize structure module of UCSF Chimera
where the steepest descent and conjugate gradient algorithms were run for 1000 cycles
each. During this minimization process, the step size was kept at default of 0.02 Å. All
standard residues of the enzyme were treated using an AMBER ff14SB force field [48] while
charge addition used the Gasteiger method. The post-OGG1 enzyme structure was then
loaded into PyRx 0.8 software [49] and converted into PDBQT (Protein Data Bank, Partial
Charge (Q), & Atom Type (T)).

3.2. Inhibitors Library Preparation

Different libraries of anti-cancer compounds (Selleckchem anti-cancer compound
library I (3547 compounds) and II (921 compounds)) plus libraries of natural compounds
including medicinal plant database (MDP3) (~5000 compounds) [50], Asinex targeted on-
cology database (4815 compounds), and comprehensive marine natural products database
(CMNPD) (~32,000 compounds) [51] were retrieved from their respective websites and
filtered for non-toxic compounds in Discovery Studio 3.5 toxicity prediction module [52].
This filtration was important as toxicity is one of the leading causes among others resulting
in failure of drugs during the development process [53]. The filtered molecules of each
library were then imported to PyRx 0.8 [49] one by one where they were energy-minimized
and converted to PDBQT.

3.3. Molecular Docking for Inhibition Studies

The docking process was done in Genetic Optimization for Ligand Docking (GOLD)
5.2 [54] and the same set of parameters were used in AutoDock Vina [55]. In GOLD,
different scoring functions like ASP, CHEMPLP, and CHEM SCORE were considered.
For comparative molecular docking, we utilized AutoDock Vina of PyRx 0.8 to carry out
binding studies of all shortlisted drugs against OGG1 enzyme. The grid was box of size
(15 × 15 × 15 along with the XYZ) was set around Gly32 oxygen atom to guide binding of
the libraries’ molecules. Each molecule was allowed to generate 20 conformations at the
defined OGG1 active pocket. The GOLD results were then sorted in ascending order and
the highest GOLD score conformation of the molecules was selected and complexed with
the enzyme. For validation, the co-crystalized TH5487 molecule, and two other Controls
like SU0268 and O8 were docked to the receptor enzyme using the same procedure and
the output conformation as compared to the original to get affirmation on the docking
procedure. The docked TH5487 chemical interactions with pre-energy minimized OGG1
enzyme are given in Figure S5B. For negative Control, TH2840 or TH5411 were used
[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645780/] (8 December 2021). The
top 10 solutions of GOLD were compared, and the best common binders were selected for
downward computational studies.

3.4. Molecular Dynamics Simulation Study

For the molecular dynamic simulations, we employed AMBER20 software pack-
age [56]. Force fields like ff14SB force field were applied to generate parameters of the
OGG1 whereas GAFF force field [57] and AM1-BCC atomic charges were run for ligands pa-

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645780/
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rameterization. The systems solvation was conducted in TIP3P water model of size 12.0 Å
and then NaCl mediated neutralization at the concentration of 0.10 M was performed. As
an example, the water box solvating Control complex is presented in Figure S6. Energy
of the systems was minimized through 1500 steps of steepest gradient and 1500 steps of
conjugate gradient methods. Each system was heated for a time scale of 50 ps keeping
the temperature constant (300 K). Equilibration of the systems was then achieved for
50 ps using periodic boundary conditions considering constant pressure and Langevin
thermostat [58]. Following systems equilibrium, NPT ensemble was used to conduct
molecular dynamic simulation for a time scale of 100 ns with a temperature of 310 K. To
constrain the bonds at their equilibrium lengths, we used the SHAKE algorithm [59]. To
define van der Waals interactions, a cut-off value of 10-Å cut-off was considered, and a
PME method [60] was employed for defining the electrostatic forces. Subsequently, for
understanding systems dynamics different AMBER modules were used including CPP-
TRAJ [61] and MMPBSA.py [62]. For frame visualization at different nanoseconds, UCSF
Chimera [47] and Discovery Studio v21.1.0.20298 [52] were utilized. Radial distribution
function (RDF) plots were generated for chemical interactions that play a significant role in
anchoring the compound at the docked site and increase intermolecular stability [35,63].

3.5. Estimating MM/GBSA and MM/PBSA Binding Free Energies

To determine both total binding free energy and per-residue decomposition of selected
complexes MM/GBSA and MM/PBSA approaches were used [24]. This was accomplished
by running MMPBSA.py module of AMBER20 on all simulated trajectories of the systems.
For the protocol, 500 frames from each system trajectories were picked and processed
through the following equation,

∆G binding = ∆G enzyme-compound complex − [∆G enzyme + ∆G compound]

The entropy energy of each complex was determined using a bash script applied in a
previous study [64].

3.6. WaterSwap Binding Energy Predictions

The docked complexes were then subjected to WaterSwap based binding energy pre-
dictions [26,27]. WaterSwap from the Sire package was used to calculate binding free energy
for default 1000 iterations considering 25 million moves of Monte Carlo sampling across
different 16 λs at pressure 1 atm and temperature 198.15 K for each replica. The binding
free energy was investigated using three different algorithms: thermodynamic integration
(TI), free energy perturbation (FEP), and Bennett’s acceptance ratio (BAR). Deviation in the
net energy value of 1 kcal/mol indicates a good degree of systems convergence [65].

3.7. In Silico Site-directed Mutagenesis

Alanine scanning analysis was further performed for OGG1 enzyme residues that
are seen consistently important for interactions with the compounds [40]. Key residues of
OGG1 enzyme were manually mutated to Alanine and the binding energy of the enzyme-
compounds complexes was re-estimated using AMBER MM/GBSA method. The binding
energy difference between native and mutants are termed as ∆∆Gbind and calculated as:

∆∆Gbind = ∆G binding energy of native Type − ∆G binding energy of mutants

More stability of the mutants can be inferred by a lower ∆Gbind value and vice versa.

3.8. Predictions about Compounds Pharmacokinetics

In silico predictions about compounds, pharmacokinetics were done using online
SWISSADME [42] and pkCSM servers [41].
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4. Conclusions

Computer aided drug designing (CADD) techniques have been useful in discovery,
developing and analyzing biological active drugs [12]. Compared to experimental drug
designing, CADD significantly shortens the drug development time, reduces extra cost and
increases the chances of successful design of new drugs. In this study, different approaches
of CAAD are utilized to identify inhibitory molecules against the OGG1 enzyme, which
is a potential target for treating cancer. As a result of structure-based virtual screening of
both natural and synthetic compounds libraries against the enzyme, two drug molecules;
([O-]C1=C(CC2=CC=CC=C2)SC(=[N+]1CC(=O)NC3=NC=C(CC4=CC=CC=C4)S3)S and
CCCN(CCC)[S](=O)(=O)C1=CC=C(C=C1)C(=O)NNC2=NC3=CC=C(Br)C=C3C(=N2)C4=
CC=CC=C4) from Selleckchem library were identified as high affinity inhibitory molecules.
Both the molecules are showing stable interactions with the enzyme active pocket residues
and accomplished stable binding pose as the simulation time proceeds. The compounds
strong binding to the enzyme is supported by multiple hydrogen bonds that anchor the
compounds in the docked pocket. The enzyme-compounds complexes atomic level interac-
tions are dominated by both electrostatic and van der Waals energies and revealed good
systems equilibrium. Moreover, the compounds have an acceptable pharmacokinetics
profile thus making them good candidates to be considered in additional structural opti-
mization to get desired biological activity. The compounds are of different chemical nature
than those reported previously and have shown stronger binding and well fitting inside
the OGG1 pocket. Though these computational findings are promising, yet experimental
validation to uncover true biological potency of the compounds to block the function of
OGG1 enzyme still needed to be performed.

Supplementary Materials: Figure S1. Binding mode of top 10 hits at the active pocket of OGG1
enzyme predicted using GOLD. Figure S2. Duplicate RMSD of the systems with a different initial
velocity. Figure S3. Superimposition of last frame of molecular dynamics simulation over docked
enzyme-compound structure depicting stability of Top-1 binding. Figure S4. Superimposition of last
frame of molecular dynamics simulation over docked enzyme-compound structure depicting stability
of Top-2 binding. Figure S5. Co-crystalized TH5487 chemical interactions (A) and docked TH5487
chemical interactions. Figure S6. Submerged Control—OGG1 complex (surface blue magenta) in
TIP3P water box.
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