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Abstract

RNA synthesis by the genotype 1b hepatitis C virus (HCV) polymerase (NS5B) transiently expressed in Human embryonic
kidney 293T cells or liver hepatocytes was found to robustly stimulate RIG-I-dependent luciferase production from the
interferon b promoter in the absence of exogenously provided ligand. This cell-based assay, henceforth named the 5BR
assay, could be used to examine HCV polymerase activity in the absence of other HCV proteins. Mutations that decreased de
novo initiated RNA synthesis in biochemical assays decreased activation of RIG-I signaling. In addition, NS5B that lacks the C-
terminal transmembrane helix but remains competent for RNA synthesis could activate RIG-I signaling. The addition of
cyclosporine A to the cells reduced luciferase levels without affecting agonist-induced RIG-I signaling. Furthermore, non-
nucleoside inhibitor benzothiadiazines (BTDs) that bind within the template channel of the 1b NS5B were found to inhibit
the readout from the 5BR assay. Mutation M414T in NS5B that rendered the HCV replicon resistant to BTD was also resistant
to BTDs in the 5BR assay. Co-expression of the HCV NS5A protein along with NS5B and RIG-I was found to inhibit the
readout from the 5BR assay. The inhibition by NS5A was decreased with the removal of the transmembrane helix in NS5B.
Lastly, NS5B from all six major HCV genotypes showed robust activation of RIG-I in the 5BR assay. In summary, the 5BR assay
could be used to validate inhibitors of the HCV polymerase as well as to elucidate requirements for HCV-dependent RNA
synthesis.
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Introduction

Hepatitis C virus (HCV) infects approximately 175 million

people worldwide. Approximately 50% percent of the HCV-

infected individuals will develop hepatocellular carcinoma or liver

cirrhosis after chronic infection [1]. Current treatment for HCV

uses pegylated interferon and ribavirin, but efficacy is limited and

tolerance of the treatment is a major concern, in part due to

genetic predisposition [2,3,4].

HCV is a single-stranded RNA virus that belongs to the

Flaviviridae family. The HCV genomic RNA is 9.6 kb in length and

encodes a polypeptide, which is processed by cellular and virally-

encoded proteases to generate ten structural and nonstructural

proteins. The nonstructural protein 5B (NS5B) is the RNA-

dependent RNA polymerase (RdRp), the catalytic subunit of the

replicase complex. Based on the paradigm established with HIV/

AIDS and herpesvirus, NS5B is an important target for antiviral

therapy.

Several classes of NS5B inhibitors have been identified [5].

Chemically diverse non-nucleoside inhibitors have been shown to

bind to one of five sites within NS5B to inhibit one or more steps

in RNA synthesis [6]. Nucleotides generated from nucleoside

analogs can lead to premature termination and/or errors in the

viral RNA. Although several inhibitors of HCV NS5B have

progressed into clinical trials, severe side effects have resulted in

the discontinuation of most drug candidates [7,8,9]. There is a

significant need to develop better drugs specific for the HCV

polymerase, especially for use in combination with other therapies.

Innate immune responses provide the first line of defense

against invading pathogen. Multiple, at least partially overlapping,

pathways are used to detect viral infection [10]. Double-stranded

RNAs and uncapped RNAs generated by viral polymerases are

detected as pathogen-associated molecular patterns that are

recognized by innate immunity receptors [10,11]. Toll-like

receptor 3 (TLR3) and Retinoic acid-inducible gene I (RIG-I)

play important roles in detecting HCV RNAs. A spontaneous

mutation in the RIG-I gene (T55I) resulted in increased HCV

RNA replication in hepatocytes [12]. TLR3 is not expressed in

immortalized human hepatocytes, but is expressed in primary cells

from human livers and can lead to decreased HCV replication

[13]. The relevance of both signaling pathways in HCV infection

is further underscored by the fact that the HCV-encoded protease

NS3-4A will cleave TRIF and IPS-1 (variously called IPS-1,

MAVS, VISA and Cardif) adaptors for TLR3 and RIG-I,

respectively, to short circuit the signaling response [14,15,

16,17,18,19].

We used signaling by the innate immune receptors RIG-I and

MDA5 to develop cell-based assays for RNA synthesis by the 1 b

and 2a HCV NS5B proteins in HEK 293T cells and in Huh7 cells.

RNA synthesis by NS5B was found to induce RIG-I to activate
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luciferase reporters driven by the interferon b (IFN-b) promoter.

Reporter production induced by RIG-I in this assay, to be named

the 5BR assay, requires catalytically competent NS5B and is

affected by NS5B association with cellular membranes. Further-

more, non-nucleoside inhibitor (NNI) from the benzothiadiazine

(BTD) class of inhibitors that have previously been shown to

inhibit NS5B [20], can abolish activity in the 5BR assay. The assay

also reported on an interaction between the HCV NS5A protein

and NS5B activity in a reaction that was helped by the C-terminal

membrane-spanning helix of NS5B.

Materials and Methods

Constructs for expression in mammalian cells
The cDNA of RIG-I (pUNO-hRIG)) and MDA5 (pUNO-

hMDA5) were from Invivogen (San Diego, CA). cDNAs to 1 b

NS5B (Con1), 1a NS5B (H77) and 2a NS5B (JFH1) were amplified

with specific primers and the Pfu polymerase. The cDNA was then

cloned into the pUNO vector. cDNAs for NS5Bs from 3a (S52), 4a

(ED43), 5a (SA13) and 6a (6a33) were synthesized by Biobasics

Inc. (Markham Canada). An AgeI restriction site was added the 59

terminal sequence of the cDNA while the codons for six histidine,

a termination codon and a NheI restriction site were added to 39 of

the cDNA. The cDNA was subcloned into pUNO vector. Mutants

were generated by site directed mutagenesis using the Quick-

change mutagenesis kit (Agilent Technologies, Santa Clara, CA).

All constructs were confirmed to have the correct sequence by

DNA sequencing using the BigDyeH Terminator v3.1 Cycle

Sequencing Kit (Applied Biosystems, Carlsbad CA, USA). Huh7

cells were as described in Chinnaswamy et al. [21] and it was

originally obtained from C.M. Rice [22]. The HEK 293T cells

were from the ATCC and was cultured as described in Ranjith-

Kumar et al. [23].

Cell-based reporter assays
The RIG-I reporter assay was performed as per Ranjith-Kumar

et al. [23,24]. Plasmids expressing NS5B were co-transfected along

with plasmids to express RIG-I or MDA5, as well as two

luciferases: the firefly luciferase driven from an interferon-b
promoter and a Renilla luciferase driven from a thymidine kinase

(TK) promoter. For Huh7 cells the Renilla luciferase used a CMV

promoter. Inhibitors were added 4 h after plasmid transfection.

Where an exogenous RIG-I agonist was used, 3PdsR24 (a ds RNA

of 24 base pairs with 59 triphosphate) was transfected into cells at a

50 nM 24 h after the introduction of the plasmids. TLR3 assays

were performed as previously described [25] with ISRE-Luc as the

reporter plasmid. TLR3 expressing cells were induced with

poly(I:C) at 1 mg/ml.

In vitro RdRp assay
The HCV RdRp assay was performed as per Ranjith-Kumar

et al. [26]. A standard assay consisted of 1 pmole of RNA template

and 0.04 mM of recombinant HCV polymerase in a 20 mL

reaction. The final buffer contained 20 mM sodium glutamate

(pH 8.2), 20 mM NaCl, 4 mM MgCl2, 12.5 mM dithiothreitol,

0.5% (v/v) Triton X-100, 200 mM GTP, and 100 mM each of

ATP and UTP, and 250 nM a-[P32]-CTP (Amersham, Inc.). The

reactions were incubated at 25o C for 60 min and stopped by

phenol/chloroform extraction followed by ethanol precipitation in

the presence of 5 mg of glycogen and 0.5 M ammonium acetate.

The products were separated by electrophoresis on denaturing

(7.5 M urea) polyacrylamide gels. The gels were wrapped in

plastic, and radiolabel was quantified using a PhosphorImager

(Molecular Dynamics).

Subcellular fractionation. The differential fractionation

protocol of Ramsby et al. [27] was used to determine the

approximate location(s) of the NS5B, and the C-terminally

truncated 1bD21 version of NS5B. HEK 293T cells were

transfected for 24 h to express the desired proteins. The cells

were then harvested, washed with 1X PBS and permeabilized with

PBS containing 0.019% digitonin, 250 mM sucrose and a protease

inhibitor mix (P8340, Sigma Aldrich, St. Louis, MO). After a

15 min incubation on ice, the solution was centrifuged at

13,0006g for 15 min at 4uC. The resulting supernatant that

contains cytoplasmic proteins was carefully collected and stored on

ice until use. The pellet was washed with PBS, resuspended in PBS

containing 0.5% Triton X-100 and protease inhibitors and stored

on ice for 30 min to solubilize membrane-bound proteins. The

sample was then centrifuged at 13,0006g for 15 min at 4uC to

separate the membrane-associated materials and the unsolubilized

materials from the cytoskeleton and nucleus. The latter was

washed once with PBS and suspended in 1X Laemmli sample

buffer [28]. All samples were subjected the SDS-PAGE with

reducing agent. The gels used for Western blots were probed with

monoclonal antibody specific to NS5B (Enzo Life Sciences;

Switzerland) and NS5A (Santa Cruz Biotechnology; Santa Cruz,

CA). Co-immunoprecipitation experiments to determine NS5A-

5B interaction were performed according to the protocol in Qi

et al. [29].

Results

Cells expressing HCV NS5B can induce RIG-I signaling
We seek to use innate immune signaling to develop a cell-based

assay to analyze RNA synthesis by the HCV polymerase. A typical

assay used HEK 293T cells transfected with four plasmids to

express RIG-I, NS5B, and two luciferases that report from the

IFN-b promoter and a thymidine kinase promoter (Fig. 1A). The

latter serves to control for transfection efficiency and cellular

toxicity. The typical assay yielded a ca. four- to nine-fold increase

in the IFN-b luciferase signal when the cells were transfected with

1b5B (NS5B of genotype 1b) and a six- to twelve-fold increase was

observed with the 1bD21, which lacks the C-terminal transmem-

brane helix of 21 residues (1bD21) (Fig. 1B). When cells expressing

RIG-I and 1b5B were further transfected with the RIG-I agonist

3PdsR24, an additional increase in luciferase activity was observed

(Fig. 1B), indicating that the activity induced by NS5B had not

reached saturation under these conditions.

Catalytically defective mutants of 1b5B and 1bD21, where the

divalent metal binding motifs of GDD was mutated to GAA, did

not show RIG-I activation (Fig. 1B), demonstrating that RNA

synthesis by NS5B was required for RIG-I activation. Further-

more, cells expressing 1b5B but not RIG-I had reporter

production at background levels (Fig. 1B). Taken together, these

results suggest that the RNA synthesized by NS5B was recognized

by RIG-I to induce interferon-activated genes in HEK 293T cells.

Several RIG-I mutants were tested to examine whether

signaling was through RIG-I. Mutant K270A, with a substitution

at the ATP binding domain [30], and K861E and K888E, both in

the C-terminal regulatory domain (CTD) and defective for binding

RNA agonists [31], failed to be activated by 1b5B or 1bD21,

demonstrating that signaling-competent RIG-I is required

(Fig. 1C). Cells that expressed TLR3 did not alter the reporter

levels, perhaps due to the RNAs generated by NS5B being

inaccessible to the endosomal TLR3 (Fig. 1D). MDA5, a member

of the RIG-I-like receptor family that responds to longer dsRNAs

than RIG-I, was activated in the presence of 1b5B (Fig. 1E)

[24,32]. Signaling through MDA5 was less robust than that

An Assay for the HCV Polymerase
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through RIG-I, but GAA mutants of 1b5B or 1bD21 prevented

signaling. The fact that both RIG-I and MDA5 were activated

suggests that at least some RNAs generated by the recombinant

1b5B fulfill the molecular patterns required for recognition by

these receptors, including the lengths of the RNAs [24,32].

Henceforth the assay where reporter activity was induced by RIG-

I will be referred to as the 5BR assay. We have performed parallel

assays with MDA5 for almost all of the conditions examined and

found consistent results with those from the 5BR assay. For clarity,

most of these results will not be shown except where we are trying

to establish precedent.

RNA synthesis by NS5B in vitro and results from the 5BR
assay

A feature of RNA synthesis by the 1b HCV polymerase is that

Mn2+ can potently enhance de novo initiation [33]. To examine

whether Mn2+ will affect the 5BR assay, we supplemented the

medium with up to 200 mM MnCl2 (Fig. 2A, top graph). Higher

Mn2+ concentrations decreased the Renilla luciferase levels even in

the absence of NS5B expression, suggesting that there is toxicity.

From 10 to 200 mM of Mn2+, however, we observed an up to a

four-fold increase in the 5BR assay output in the presence of 1b5B.

In vitro, the recombinant 1bD21 was stimulated by Mn2+ in the

low millimolar range [33]. However, in the 5BR assay, the signal

from 1bD21 did not increase until the Mn2+ concentration was in

excess of 200 mM (Fig. 2A and data not shown). MgCl2 added to

the medium did not result in an increase over the same

concentrations (Fig. 2A, bottom graph). Finally, neither Mg2+

nor Mn2+ affected RIG-I signaling in the presence of exogenously

provided 3PdsR24, suggesting that the observed increase in 1b5B

activity in the presence of Mn2+ was due to increased polymerase

activity (data not shown).

Figure 1. A cell-based assay for the HCV 1b polymerase. A) Schematic for the 5BR assay. The third step in the protocol, identified in
parenthesis, is designed to confirm that a treatment acted through the HCV polymerase rather than the RIG-I signaling pathway. It was left out in
some assays. B) Results for the 5BR assay demonstrating that expression of the 1b HCV polymerase can induce RIG-I-dependent luciferase production
in HEK 293T cells. Ratio in the vertical axis denotes the units of firefly luciferase driven from the interferon b promoter relative to the Renilla luciferase
driven from the TK promoter. The cells were transfected to express the NS5B construct denoted below the horizontal axis along with either an empty
pUNO vector (Vec. only) or pUNO-RIG-I (RIG-I). The white bars show the ratios of the two luciferases in the absence of exogenously provided ligands.
The grey bars show the results from cells transfected with 3PdsR24, an agonist of RIG-I. The numbers above the bars show the mean of at least three
independent trials and error bars show standard deviation. The RIG-I ligand, 3PdsR24, was transfected into cells at 50 nM final concentration and
serves as a check for whether RIG-I is responsive to an agonist. C) Mutations in the RIG-I protein will abolish the output in the 5BR assay. The ratios of
the firefly and Renilla luciferases with standard deviations in parentheses are shown. D) TLR3 co-expressed in HEK 293T cells did not respond to RNA
synthesis by NS5B. Effects of 1b5B on RIG-I and TLR3 signaling in the presence and absence of agonists are shown in the graph. Where used, poly(I:C)
(labeled as pIC in the graph) was added to the medium of cells to a final concentration of 1 mg/ml, and the RIG-I agonist 3PdsR24 was transfected at
50 nM. E) NS5B can also induce MDA5 to activate luciferase reporter production. pUNO-MDA5 was co-transfected into the HEK 293T cells along with
the plasmids expressing the RNA synthesis competent or incompetent NS5Bs. Poly(I:C) was transfected into the cells to serve as an exogenously-
provided agonist to MDA5.
doi:10.1371/journal.pone.0022575.g001
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Residues in the recombinant 1bD21 protein have been shown

to affect RNA synthesis in vitro, including the ability to initiate de

novo or extend from a primer [26,33,34]. The 5BR assay offers

an opportunity to compare the effects of these and other

mutations in an intracellular environment. The mutants tested

include those that affected NTP binding and catalysis (GAA,

R158A, R386A, T390A, R394A), the low-affinity GTP binding

site (P495A), the D1 loop that extends from the fingers to the

thumb subdomain which regulates de novo initiation (m26–30) or

the thumb subdomain that interacts with the D1 loop (W397A).

Mutations m26–30 and W397A changed the conformations of

the HCV polymerase and the ability to initiate by a de novo

mechanism [21,26,35]. All mutant proteins were expressed in

HEK 293T cells in the context of both full-length NS5B and the

C-terminally truncated polymerase (Fig. 2B). In the 5BR assay,

the effects of the mutations were highly similar with and without

the C-terminal transmembrane helix (Fig. 2C & D). All mutants

except P495A were significantly debilitated for the ability to

activate RIG-I. We consistently observed no negative effect on

reporter levels when P459A was tested in the D21 form, but

found that reporter levels were at half the level of wild type when

tested in the context of full-length NS5B (Fig. 2C & D). These

results suggest that the membrane interaction can influence the

effects of some mutations in NS5B. Additional examination of

1b5B interaction with the membrane will be presented later in

this work.

Our laboratory had previously tested a large number of

mutations in the context of recombinant 1bD21 protein

[21,26,34]. Results from these mutants were found to be in

excellent agreement with those from the 5BR assay (Fig. 2E).

Furthermore, mutations that allowed the recombinant proteins to

retain the ability to extend from a primed template but are

defective for de novo initiated RNA synthesis (e.g. W397A, m26-

30) were unable to increase luciferase production in the 5BR assay.

Figure 2. NS5B activity and the 5BR assay. A) Effects of Mn2+ (top panel) or Mg2+ (bottom panel) on the readout from the 5BR assay. The results
from cells expressing 1b5B, 1bD21, and the empty vector (Vec.) are plotted with the means and standard deviation of three assays. The results were
reproducible in six independent samples. B) Western blots showing steady state levels of the proteins from the HCV mutants. C and D) A comparison
of the firefly and Renilla luciferase ratios in HEK 293T cells transfected to express the NS5B construct indicated at the bottom of the bar graphs along
with RIG-I plasmid. The means and standard deviations from at least three independently tested samples are shown above the bars. E) Correlation of
RNA synthesis in vitro by recombinant 1bD21 protein and the results from the 5BR assay expressing 1bD21. Data for RNA synthesis in the biochemical
assays were taken from the results from Ranjith-Kumar et al. [26] and Chinnaswamy et al. [21] and normalized to that of the WT sample in the same
experiment. In vitro RNA synthesis results were from variants of recombinant 1bD21 analyzed in the presence of only Mg2+. The data from the 5BR
assay are derived from panel D above.
doi:10.1371/journal.pone.0022575.g002
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These results suggest that RNA production and/or activation of

RIG-I signaling require de novo initiation of RNA synthesis by

NS5B in cells.

Analysis with NS5B inhibitors
The 5BR assay offers an opportunity to test inhibitors of NS5B

in a cell-based assay [5]. Ribavirin, a purine analog, is an FDA

approved anti-HCV drug that can modulate the immune

response, inhibit host enzyme(s) and/or increase error rate of

NS5B when incorporated into nascent RNA during replication

[36,37,38]. In the 5BR assay, ribavirin up to 50 mM decreased the

readout from the 5BR assay in a concentration-dependent manner

(Fig. 3A). However, higher concentrations did not reduce the

activity further and actually had less of an effect, suggesting that

ribavirin solubility was decreased at higher concentrations. To

confirm that the effect of ribavirin is through NS5B, RIG-I

signaling with the ligand 3PdsR24 was analyzed. Ribavirin did not

exhibit inhibitory effect on RIG-I signaling at 50 mM suggesting

that Ribavirin inhibits NS5B activity and does not influence RIG-I

signaling (Figure S1A). At 200 mM or higher concentrations of

ribavirin, we observed a decrease in the Renilla luciferase values in

the cells, suggesting that ribavirin had toxicity. This effect was

observed in assays with both 1bD21 and 1b5B (Fig. 3A). None-

theless, these results suggest that ribavirin can affect HCV

polymerase activity.

Cyclosporine A and its derivatives have been proposed to inhibit

HCV replication by interfering with the interaction of cyclophilins

with NS5B, NS5A and/or NS3 [39,40,41]. The 5BR assay could

thus be useful in determining whether NS5B activity requires

cyclophilins in the absence of the other HCV proteins.

Cyclosporine A showed a concentration-dependent inhibition of

1bD21 but surprisingly did not show any significant effect on 1b5B

(Fig. 3B & C). Furthermore, cyclosporine A (10 mM) did not have

affect 3PdsR24 dependent RIG-I signaling (Figure S1B). Taken

together with the effect of MnCl2, these results suggest that the

transmembrane domain of NS5B can influence both polymerase

activity and sensitivity to cyclosporine.

Next, we tested benzothiadiazine (BTD) derivatives, non-

nucleoside analogs that act at a cavity within the template channel

of NS5B. Compound 888 was shown to be a potent inhibitor of

HCV and its derivative, 330, had improved potency [20]. Both

showed a concentration-dependent inhibition of RIG-I activation

in the 5BR assay with 1bD21 with IC50s of ,1 mM (Fig. 4A). 1b5B

showed similar sensitivity to 330, but the IC50 for 888 was

,10 mM (Fig. 4B). The compounds did not affect RIG-I signaling

by the agonist 3PdsR24 even up to 50 mM, demonstrating that the

inhibitory effect of the BTDs was on NS5B and not on the RIG-I

signaling pathway (Fig. 4C).

Several mutations in NS5B rendered the 1b HCV replicons

resistant to BTD derivatives, including M414T, C451R, G558R

and H95R [42,43]. These mutations were introduced into

1bD21 and tested in the 5BR assay along with compounds 330

and 888 (Fig. 4D). While the wild-type 1bD21 was inhibited by

more than 70% by 10 mM of either 330 or 888, M414T was

resistant to these compounds at either 10 or 20 mM (Fig. 4D and

data not shown). Similar effect was observed with drug resistant

mutants in 1b5B (Fig. 4E). The location of M414 relative to the

active site is shown in Fig. 4F. Interestingly, C451R, G558R and

H95R were partially resistant to 330 when compared to the

wild-type 1bD21 and 1b5B, but were inhibited less well by 888.

Taken together, these data indicate that the 5BR assay could be

used to examine at least some HCV-specific inhibitors and

suggest that BTDs 888 and 330 have overlapping, but not

identical binding sites.

Benzothiadiazines do not inhibit 2a NS5B
Several of the HCV compounds are effective only to specific

HCV genotypes [44]. The 2a polymerase has a glutamine at

residue 414 instead of the methionine in 1b5B. If M414 is

important for BTD binding in the 1b HCV polymerase, then the

2a polymerase should be less sensitive to BTDs. We first compared

RNA synthesis in vitro by recombinant 2aD21 and 1bD21 in the

absence or presence of the inhibitors. The reactions used a 21-nt

RNA, LE21, as a template (Fig. 5A; [34]). The 2a polymerase is

more active for de novo initiation than the 1b polymerase,

consistent with previous results [43,45]. However, while nanomo-

lar concentrations of 888 or 330 significantly reduced RNA

synthesis by the 1bD21, RNA synthesis by the 2aD21 was

increased slightly in the presence of the BTD derivatives (Fig. 5A).

These results encouraged us to test the genotype specificity of the

BTDs in the 5BR assay. Constructs expressing 2a5B or 2aD21

activated luciferase production in the presence of either RIG-I or

MDA5 two- to three-fold when compared to its 1b counterpart

(Fig. 5B). Furthermore, like the 1b polymerases, signaling was

more robust with RIG-I than MDA5.

Next, we determined whether the BTDs affect 2aD21 in the

5BR assay (Fig. 5C). Compounds 330 and 888 at 10 mM both

caused a several-fold reduction of the readout from assays with

1bD21. In contrast, they increased the luciferase ratios slightly in

cells expressing 2aD21 (Fig. 5C), consistent with the effects on

RNA synthesis in vitro (Fig. 5A). These results demonstrate that

BTDs do not inhibit the polymerase of the 2a genotype of HCV.

The NS5B C-terminal transmembrane helix and the 5BR
assay

While both the 1b and 2a HCV polymerases lacking the C-

terminal transmembrane helices (TMHs) retain the ability to

induce RIG-I signaling in HEK 293T cells, some differences in the

results (e.g. response to Mn2+, effects of P495A and cyclosporine A)

prompted us to examine whether the TMH will affect the outcome

of the 5BR assay. To confirm that the transmembrane helix can

affect NS5B localization, we performed a crude fractionation assay

where the cells expressing either 1bD21 or 1b NS5B were first

treated with digitonin to solubilize the plasma membrane to

release the cytoplasmic proteins. The pellet was further treated

with a buffer containing Triton X-100 to solubilize most of the

intracellular membranes leaving a pellet fraction that contains

insoluble materials. Each fraction was collected and subjected to

Western blot analysis to identify 1b5B or 1bD21 (Fig. 6A). 1bD21

was more abundant in the digitonin-solubilized materials than

1b5B, indicating that the two proteins can at least partially localize

to different subcellular locations.

To examine the effects of the TMH further, we compared the

effects of 1b5B and 1bD21 in 293T cells grown at 37uC and 39uC
(Fig. 6B). We have earlier observed that recombinant 1bD21

showed a temperature-dependent variation in activity [46].

Interestingly, in 5BR assay 1b5B showed a significant decrease

in activity at 39uC while 1bD21 did not (Fig. 6B). To analyze this

further, we tested BTD 330 and 888 on HEK 293T cells

expressing 1b5B or 1bD21 at 37uC and 39uC (Fig. 6C and 6D). At

37uC, both 1bD21 and 1b5B were inhibited by 10 mM of 330 and

888 by more than 70%. At 39uC, 1bD21 was inhibited by BTDs

while those with 1b5B not only were not inhibited, but resulted in

slightly increased luciferase levels (Fig. 6D). Similar results were

obtained when MDA5 was used instead of RIG-I in the assay (data

not shown). These results suggest that either the TMH or its effect

on polymerase membrane association by NS5B will influence its

activity.
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Interaction with other HCV nonstructural proteins
The 5BR assay should allow us to analyze the interaction between

NS5B and other HCV non-structural proteins. To explore this, we

first expressed 1b5B along with the NS3 protein from the 1b

genotype. The NS3 protein expressed was fused to residues 1 to 17 of

NS4A (1b3-4AP, Figure S2A). However, due to the well-character-

ized effect of the wild-type NS3-4A protein abolishing RIG-I

signaling by cleavage of adaptor IPS-1 [16], we also tested NS3-4A

with a mutation in the NS3 protease active site in construct S135A.

While NS3-4A inhibited RIG-I-dependent signaling, mutant S135A

had no effect on 3PdsR24-dependent RIG-I signaling. S135A also

had no effect on the 5BR assay expressing either 1b5B or 1bD21

(Figure S2A). Similar results were observed with NS3 fused to the

intact NS4A protein (1b3-4AFL) or intact protein with the S135A

substitution in the protease active site (Figure S2B). No significant

changes were observed in the 5BR assay at higher concentrations of

the S135A mutants (data not shown). Lastly, no obvious effects were

observed with a construct expressing NS4B in the 5BR assay format

(Figure S2C). These data suggest that HCV NS3, 4A and 4B do not

affect RNA synthesis by NS5B in the 5BR assay.

Interestingly, co-expression of NS5A (henceforth referred to as

1b5A) inhibited the output of the 5BR assay in a concentration-

dependent manner (Fig. 7A). When the RIG-I agonist 3PdsR24

was transfected into the cells, robust luciferase activity was

observed in cells expressing 1b5A, indicating that 1b5A inhibited

RNA synthesis by NS5B, not the RIG-I signaling (Fig. 7B). NS5A

also did not affect RIG-I signaling with heterogeneous poly(I:C)

and a 60-nt long triphosphorylated ssRNA, shR9 (data not shown).

The addition of 1b5A to biochemical RNA synthesis reactions

containing variants of NS5B was reported to stimulate RNA

synthesis at substoichiometric levels and to dramatically inhibit

RNA synthesis at higher levels [47,48]. Transfection of sub-

stoichiometric levels of the NS5A construct did not result in an

increase in the output from the 5BR assay in our hands (Fig. 7A).

Both NS5B and NS5A are associated with membranes. To

examine whether membrane association will affect their interac-

tion, we compared NS5A’s effect on 1bD21 versus 1b5B using the

5BR assay. At all concentrations tested, 1bD21 was inhibited less

well than that with 1b5B (Fig. 7C). These results suggest that that

TMH and/or membrane association by NS5B contribute to

interaction with NS5A. To test this notion, we attempted to co-

immunoprecipitate 1b5A with either 1b5B or 1bD21. The results

from three independent experiments consistently showed that at

least two-fold more 1b5B co-precipitated with 1b5A than did

Figure 3. Effect of Ribavirin and cyclosporine A on the 5BR assay. A) Effects of Ribavirin on the 5BR results with the 1bD21 and 1b5B
polymerases. Ribavirin was dissolved in DMSO at various concentrations and added to the cells 2 h after transfection of the expression plasmids to
achieve the concentrations shown as well as a final DMSO concentration of 1%. The data were normalized to the ratio of the luciferase production of
the sample treated with 1% DMSO. B) Effect of cyclosporine A on the 5BR assay expressing 1bD21. Cyclosporine A (CsA) was dissolved in DMSO in
stocks and used at a final DMSO condition of 1% and the concentration of CsA shown on the horizontal axis of the graph. The samples treated with
CsA are in grey. C) Effects of CsA on the 5BR assay expressing 1b5B.
doi:10.1371/journal.pone.0022575.g003

An Assay for the HCV Polymerase

PLoS ONE | www.plosone.org 6 July 2011 | Volume 6 | Issue 7 | e22575



1bD21 (Fig. 7D). We also assessed the effect of 1b5A on 2a5B

versus 2aD21 to determine whether this interaction is dependent

on the HCV genotype (Fig. 7E). Similar to its 1b counterpart, the

1b5A inhibition of 2a5B was inhibited more efficiently than that of

2aD21. These results suggest that efficient NS5A/5B interaction

may require TMH of NS5B, but so far there is no evidence of

genotype–specific interaction between the NS5A and NS5B.

Furthermore, since NS5A was not changed in these assays, these

results suggest that RNA binding by NS5A is not primarily

responsible for the inhibition of the NS5B activity.

The 5BR assay in Huh7 cells
We transfected the plasmids for the 1b and 2a NS5Bs into

Huh7 cells to determine whether the assay can work in liver

hepatocytes. Both the 1b and the 2a NS5B proteins were found

to activate signaling by the co-expressed RIG-I protein (Fig. 8A).

Consistent with the results in HEK 293T cells, the 2a5B-

expressing cells produced higher activity than the 1b5B (Fig. 8A).

Furthermore, active-site mutants (GAA for 1b and GDA for 2a)

were incapable of activating reporter activity in Huh7 cells and

cells expressing vector alone instead of RIG-I or RIG-I mutants

did not show an increase in luciferase reporter activity (Fig. 8A

& B). Also consistent with the results from HEK 293T cells,

MDA5 could replace RIG-I for activation of signaling, but

TLR3 could not (Fig. 8C). We note that in contrast to HEK

293T cells, full-length NS5B was more active than the C-

terminal truncated version in Huh7 cells. Finally, we observed

that co-expression of the 1b5A inhibited 1b5B in Huh7 cells in a

manner similar to results from HEK 293T cells (Fig. 8D). These

results show that the 5BR assay can work in either Huh7 or

HEK 293T cells.

The 5BR assay with NS5Bs from all six major HCV
genotypes

We have observed that NS5Bs from HCV 1b and 2a genotypes

could induce RIG-I signaling (Fig. 1 & 5). To test whether NS5Bs

from the other genotypes could induce RIG-I, we cloned NS5B

from genotypes 1a, 3, 4 and 6a and their corresponding catalytic

mutants in pUNO vector. All proteins were expressed with a hexa-

his tag at the C-terminus and their expression in HEK293T cells

was confirmed by Western blot (Fig. 9A). In the 5BR assay, all six

NS5Bs activated RIG-I signaling while their counterparts with

active site mutation did not (Fig. 9B). The 2a5B and the 3a5B had

robust activity while the 1a, 5a and 6a NS5Bs showed similar

activity. Lastly, the 4a NS5B and the 1b5B had more modest

activities. This suggests that 5BR assay could be used to study and

compare the activities of the NS5B from all six genotypes of HCV

that lack an efficient cell-based assay system.

Figure 4. Inhibition of the 1b HCV polymerase by benzothiadiazine derivatives. A) BTDs 330 and 888 can inhibit the 1bD21 polymerase in
a concentration-dependent manner. The BTD compounds are dissolved in DMSO and added to the media of the HEK 293T cells to the final
concentrations shown on the horizontal axis. DMSO was at present at 1% final concentration. B) Effect of BTDs 330 and 888 on full length NS5B, 1b5B.
The conditions for the assay are identical as described for 1bD21 polymerase. C) RIG-I was not inhibited by the BTDs. A RIG-I assay was performed in
the absence of HCV polymerase using 3PdsR24 as the agonist. Where present, the compounds were tested at either 10 or 50 mM final concentration.
D) Resistant mutations in 1bD21 can partially overcome the effects of BTD derivatives. ‘‘Vec.’’ denotes the cells transfected with the empty pUNO
vector. The mutants tested in the 5BR assay were all constructed in the 1bD21 background and named only by the amino acids substituted. Results
from cells treated with 10 mM of 888 or 330 are shown as grey striped and grey bars, respectively. All bars contain data from at least three
independent samples. E) Sample tested with full length NS5B, 1b5B. The format of the results are identical to those from panel D. F) Location of
residue 414 relative to the catalytic motif of the 1b Con 1 HCV polymerase. The 1b polymerase is shown in a cross section (PDB: 1QUV) and M414 is
denoted in red color and motif C GDD from residues 317–319 is in gold.
doi:10.1371/journal.pone.0022575.g004
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Discussion

There remains a significant need to develop effective inhibitors

targeting the HCV polymerase as well as to understand the many

roles of the HCV polymerase in the infection process. We have

developed a cell-based assay for HCV NS5B from all genotypes

named the 5BR assay that couples RNA synthesis to the detection

and subsequent reporter production by innate immune receptor

RIG-I. This assay format does not activate signaling by Toll-like

receptor 3, but can activate the RIG-I-like receptor, MDA5.

MDA5 has been reported to require RNAs that are kilobasepairs

in length [24,32], this suggests that at least some of the HCV

polymerase products could be quite long. Mutations of the residues

in NS5B that are essential for RNA polymerization reduced

readout from the assay. The 5BR assay was validated for

compounds previously characterized to specifically target the 1b

HCV replicons. Mutations that conferred resistance to benzothia-

diazines in HCV replicons are resistant in the 5BR assay format.

The 5BR assay could also duplicate an inhibitory activity of NS5A

when it is co-expressed with NS5B. Intriguingly, the transmem-

brane helix in NS5B could be deleted without affecting the ability

to activate RIG-I signaling, but the lack of the transmembrane

helix decreased the interaction with NS5A, how divalent metals

affect RNA synthesis, and sensitivity to cyclosporine A.

This assay provides an advantage to existing subgenomic HCV

replicon assay and biochemical assays for HCV polymerase

activity. It could be used to validate whether compounds identified

to be effective in the replicon assays, targets the HCV polymerase.

This assay could also be performed with multiple cells types as

opposed to hepatocytes for subgenomic replicon and JFH1

infection assays. When the polymerases are expressed from

integrated transgenes, this assay should be suitable for high-

throughput screening efforts to identify HCV polymerase

inhibitors. The assay is also advantageous when compared to

biochemical polymerase assays since polymerase activity is

examined under physiological conditions. In addition, the assay

Figure 5. Differential effects of BTDs on the 1b and 2a HCV polymerases. A) RNA synthesis in vitro by the 1bD21 and the 2aD21 in the
presence of two BTD derivatives. The sequence of the template (LE21) used is given on the top. The amount of the 21-nt de novo initiated product
made was quantified and given below as percent synthesis relative to the sample treated with only DMSO. B) The full-length 2a NS5B (2a5B) and the
2aD21 polymerases can induce both RIG-I and MDA5 dependent luciferase production in the 5BR assay. The ratio shown in the graph denotes the
ratio of firefly to Renilla luciferase activities in HEK 293T cells. C) Comparison of the effects of BTD derivatives 330 and 888 on the 1bD21 and the
2aD21.
doi:10.1371/journal.pone.0022575.g005
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does not require extensive purification of the polymerase prior to

assessing the properties of mutations in the polymerase. The

availability of polymerases from all six genotypes of HCV (Fig. 9)

can allow examination of genotype-specific effects of cellular

factors and polymerase inhibitors.

Moriyama et al [49] have shown that expression of HCV NS5B

in HepG2 cells could induce IFN-b in a TLR3-dependent manner

and NS4A, NS4B and NS5A inhibited this activation. In our 5BR

assay, TLR3 is not activated by 1b and 2a NS5Bs in either HEK

293T or Huh7 cells (Fig. 1D and Fig. 8C). TLR3 recognizes the

internal structure within a dsRNA, and recognition strongly

requires acidic conditions, like those found in endosomes

[25,50,51]. We believe that RNAs synthesized by NS5B are

inaccessible to TLR3 harbored in the endosomes and that there is

a strong dependence on RIG-I as well as de novo initiation by the

HCV polymerases to produce the ligand to activate innate

immune signaling. Of the HCV nonstructural proteins we tested

(NS3, NS3-4A, NS4B, and NS5A), only NS5A affected NS5B

activity (Figure S2 & Fig. 7). NS5A is a logical candidate to

reconstitute an effect on NS5B since it can act in trans of HCV

replicase [52,53]. We did observe an effect of protease-active NS3

and NS3-4A on the assay, but this is likely due to NS3 protease

cleaving the RIG-I adaptor IPS-1 (which we confirmed to occur in

Western blots) and a mutation in the NS3 protease activity

prevented any obvious effect on the 5BR assay (Figure S2). NS4B

is the other HCV nonstructural protein that could act in trans of

the HCV replicase [49]. However, we did not observe modulation

of NS5B-dependent RIG-I signaling by NS4B. Since this is a

negative result, it is best to not over-interpret its relevance. In

summary, there are obvious differences and utilities between our

assay and the one of Moriyama et al. [49].

There are several lines of evidence suggesting that a de novo

initiated RNA produced by the HCV polymerase is responsible for

activating RIG-I. First, all mutants that were defective for de novo

initiation of RNA synthesis in the absence of Mn2+ in biochemical

assays were unable to efficiently induce RIG-I signaling (Fig. 2C–

E). Second, mutants that are capable of extension from a primer

were incapable of inducing reporter activity in the 5BR assay.

Third, the addition of Mn2+, a cofactor known to increase de novo

initiation in vitro, increased the NS5B-dependent luciferase

production (Fig. 2A). Fourth, the HCV 2aD21, which is more

active for de novo initiated RNA synthesis than 1bD21 in vitro, is

Figure 6. Effects of the NS5B transmembrane helix and sensitivity to BTDs. A) Subcellular fractionation to examine the localization of 1b5B
and 1bD21. The cellular fractionation protocol was from that of Ramsby et al. [27]. The proteins were detected by Western blots probed with a
monoclonal antibody to 1b NS5B. B) Effects of the NS5B transmembrane helix on the activity of HCV polymerase at 37uC and 39uC. Conditions for the
assay were exactly the same except for the temperatures used. C and D) Effects of compound 330 and 888 (10 mM) on 1b5B and 1bD21 activity in the
5BR assay at 37uC (C) and 39uC (D).
doi:10.1371/journal.pone.0022575.g006
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better at activating luciferase production in the 5BR assay (e.g.,

compare Fig. 1B and 5B, and Fig. 8A). Fifth, an inhibitor of de

novo initiation in vitro, BTD [20] inhibited output from the 5BR

assay (Fig. 4A). These results should allow future analysis of HCV

polymerase activities in cells. The excellent correlation between

RNA synthesis in biochemical assays and the 5BR assay (Fig. 2E)

also validates the use of biochemical approaches to studying

properties of HCV polymerase for RNA synthesis in vitro.

Despite repeated effort, we have yet to observe a specific RNA

product made by NS5B in this assay. The template sequence

coding for NS5B contains a cis-acting replication element (CRE)

that allows the cis-preferential use of the HCV RNA for

replication [54]. Mutations in key nucleotides in the CRE that

abolished HCV replicon replication but did not alter the NS5B

protein sequence had no effects on the 5BR assay output in HEK

293T and Huh 7 cells (Figure S3). Extraction of the total RNAs

from cells active for the 5BR assay did not reveal obvious

differences from those of control cells. Furthermore, attempts to

extract RNAs associated with RIG-I after immunoprecipitation of

RIG-I generated smears of RNA suggesting that there are multiple

RNAs being recognized by RIG-I (data not shown). We currently

believe that the RNAs produced by the HCV polymerases are

heterogeneous and may use templates from cellular RNAs, as is the

case in vitro. The identification of the template(s) for the 5BR assay

would require more extensive analysis and could be the subject of an

independent study. However, regardless of whether one or many

templates are used by the HCV polymerases, the assay will be

valuable for a number of applications, as described below.

NS5B inhibitors
The 5BR assay and also the assay where MDA5 substitutes for

RIG-I can be used to determine whether NS5B is the target. The

availability of the polymerases from all six major HCV genotypes

in the assay could also allow rapid determination of the genotype-

specific effects of drug candidates. These assays could also be used

to examine the cellular factors that could modulate the HCV

polymerase activity. For example, our observation that cyclospor-

ine A can inhibit luciferase levels in the 5BR assay is in support of

the report that the HCV polymerase requires cyclophilins for

function [40,55].

The benzothiadiazines 888 and 330 have nanomolar IC50s for

RNA synthesis by the 1b NS5B in vitro and in the subgenomic

Figure 7. Effects of NS5A on the 5BR assay. A) Inhibition of the 5BR assay by increasing amount of plasmids expressing NS5A. B) The NS5A
protein does not affect RIG-I signaling in the absence of NS5B. ‘‘Vec.’’ denotes samples transfected with the empty vector and ‘‘1b5A’’ corresponds to
cells transfected to express NS5A. All samples expressed the RIG-I protein. C) A comparison of the sensitivity of 1b5B and 1bD21 to inhibition by
NS5A. Each point was analyzed in triplicate and the standard deviation for several of the points are small. D) Co-immunoprecipitation of NS5B with
NS5A and the effects of the membrane-spanning domains. Detergent-solubilized lysates from HEK 293T cells expressing the proteins labeled above
the gel image were first subjected to immunoprecipitation (IP) with mAb against 1b5A, then subjected to Western blots (WB) with antibodies listed to
the left of the gel images. Input controls for 1b5A and 1b5B are also shown. E) The 1b NS5A also inhibited the activity of the full-length (2a5B) or C-
terminally truncated (2aD21) 2a NS5B. As with the 1b polymerases, inhibition was greater with the full-length 2a5B.
doi:10.1371/journal.pone.0022575.g007
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replicon systems [20,56]. The compounds have low micromolar

IC50s in the 5BR assay (Fig. 4A). The difference between the

inhibitory effects is likely due to issues with the compounds gaining

access to the HCV polymerase in HEK 293T cells. Residue M414

in the HCV polymerase template channel that conferred

resistance to 888 was phenocopied by the 5BR assay (Fig. 4C).

We have also showed that the 2a polymerase, with a glutamine at

residue 414, is not sensitive to BTDs in vitro or in the 5BR assay

format (Fig. 5). In fact, the 2a polymerase may even be stimulated

to higher levels of RNA synthesis by 888. The 5BR assay thus can

allow examination of NS5B inhibitors in the absence of other

HCV drug targets in a cellular environment. We note that this

provides an advantage over the biochemical assays since the

uptake of inhibitors by cells is a major issue in the efficacy of

inhibitors.

Ribavirin only had a modest inhibitory effect on RNA synthesis

in the 5BR assay even when added to cells at 50 mM (Fig. 3A & B).

Higher ribavirin concentrations may be needed to compete with

the cellular NTP pool for incorporation into the polymerase

products. It is also possible that HEK 293T cells may not

efficiently convert ribavirin to the triphosphate form to concentra-

tions needed to affect RNA synthesis by NS5B (Fig. 3A & B). If

ribavirin or nucleoside analogs caused chain termination, we note

that RIG-I could be activated by RNAs that ca. 20-nt [24,32].

Transmembrane helix, polymerase conformation, and the
5BR assay

We observed a number of differences in the activity of NS5B

with and without the C-terminal transmembrane helix. First,

MnCl2-dependent activation of signaling in the 5BR assay was

observed only with 1b5B and not with 1bD21 (Fig. 2A). Second,

the P495A mutation had a differential effect in activating RIG-I

based on the protein (Fig. 2C & D). Third, the presence of the

NS5B TMH affected the inhibitory activity of cyclosporine A

(Fig. 3B & C). Fourth, BTDs showed differential effect on 1b5B

at 37 and 39uC (Fig. 6C & D). The effect of the TMH could be

due to association of the polymerase with the cellular

membranes and/or an effect on the active site of the HCV

polymerase. The sequence adjacent to the TMH lines the

template channel of the HCV polymerase [35,57,58]. Oh et al.

[59] also demonstrated that the full-length 1b NS5B could bind

RNA better than 1bD21, consistent with an effect on the

template channel. We surmise that the effect on the template

channel may have contributed to altered responses to Mn2+ and

could have influenced the effect of cyclophilins that contributes

to template binding by the HCV polymerase [55,60]. The 5BR

assay format could be used to further dissect the requirements

for how the C-terminal TMH can influence polymerase activity

within the cell.

Figure 8. The 5BR assay in Huh7 cells. A) Ratio of firefly to the Renilla luciferase production in transiently-transfected Huh7 cells. All of the cells
were transfected to express RIG-I or vector control, an IFN-b luciferase, the Renilla luciferase driven by CMV promoter, and the 1b or 2a polymerases,
as shown. The mean and standard deviation of the results are shown above the bars. Constructs identified with GAA or GDA contain mutation in the
catalytic pocket of the 1b or 2a polymerases, respectively. B) Mutations in the co-expressed RIG-I that affected signaling prevented activation of the
IFN-b luciferase reporter in Huh7 cells. C) HCV polymerases co-expressed with RIG-I and MDA5, but not TLR3, resulted in activation of IFN-b luciferase
reporter in Huh7 cells. D) 1b NS5A can inhibit NS5B-dependent RIG-I signaling in Huh7 cells.
doi:10.1371/journal.pone.0022575.g008
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Interaction with NS5A
1b5A inhibited both 1b5B and 2a5B activity in the 5BR assay in

a concentration-dependent manner (Fig. 7A and 7E). With regard

to the biological relevance of this interaction, it is known that

NS5A and 5B form a complex [47,61]. It is possible that the

interaction of these two proteins in the absence of all of the

components of the HCV replicase could lead to a repression of

RNA synthesis. This has been observed in biochemical assays

where higher concentrations of NS5A were present [47], although

lower concentrations of NS5A could increase both initiation and

elongation by the NS5B protein [48]. It is also likely that activators

as well as repressors must regulate HCV RNA synthesis and NS5A

could serve to repress HCV RNA synthesis, should excess RNA

synthesis trigger innate immune responses.

In terms of mechanism, NS5A could act through binding to

dsRNA or an interaction with NS5B. Our results suggest that a

more direct interaction between NS5A and NS5B is important for

the inhibition rather than RNA sequestration. First, if 1b5A acts

through binding RNAs, it should have inhibited the activation of

RIG-I by binding to the exogenously provided RIG-I agonists.

Second, RNA binding by NS5A should be unaffected by the

expression of 1b5B or the 1bD21. Instead, we observed that 1bD21

was not inhibited to the same level as 1b5B, suggesting that

membrane association of 5B contributes to inhibition by 5A

(Fig. 7C). In support of the direct interaction model, we showed

that 1b5B co-immunoprecipitated with NS5A better than it did

with 1bD21 (Fig. 7D). At present, we have not been able to detect

a stimulation of NS5B RNA synthesis by low levels of NS5A in our

assay [47,48]. It is possible that the TMH of NS5B could influence

NS5A-NS5B through protein-protein interactions directly or

through the formation of a complex that involves cellular

membranes. The 5BR assay should be useful to further dissect

how the two proteins interact. Furthermore, the negative effects of

NS5A on NS5B could be used as a basis to identify inhibitors that

prevent their interaction.

Future perspectives
The 5BR assay format could have a number of applications.

First, it could be used to study the interaction of viral polymerases

with viral or cellular factors that could modulate polymerase

activity. Second, the assay provides a way to characterize RIG-I

and MDA5 signaling without the use of exogenous agonists. Third,

the 5BR assay could be used to screen for inhibitors of polymerases

in the context of mammalian cells. Fourth, it can be used to

examine how motifs in the HCV polymerase can affect function.

This assay can be developed for use in a high throughput format

once the polymerase has been integrated into the cells under an

inducible promoter. One application that could be particularly

useful is that the assay could be used for viruses that cannot

replicate efficiently in cultured cells.

Supporting Information

Figure S1 Effects of inhibitors on signaling by RIG-I.
The concentrations of Ribavirin and Cyclosporin A (CsA) tested

are those that were able to inhibit the 5BR assay. A) Effects of

Ribavirin. B) Effects of CsA.

(DOC)

Figure S2 Effects of co-expressing NS3-4A, NS3-4A
mutant S135A, or NS4B on the 5BR assay. A) Analysis of

Figure 9. 5BR assay with NS5Bs from the six major HCV genotypes. A) A Western blot demonstrating the expression of the NS5B proteins
from all six HCV genotypes analyzed in the 5BR assay. The proteins were expressed in HEK 293T cells with C-terminal histidine tags and then probed
with a monoclonal antibody detecting the tag. B) Results from the 5BR assay for the HCV polymerases. Corresponding catalytic mutants (denoted by
GAA) were also tested as controls. The means and standard deviations of each result are shown. The results are representative of three independent
assays.
doi:10.1371/journal.pone.0022575.g009
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NS3 fused to 4A peptide and NS3 protease active site mutant

S135A on the 5BR assay. The S135A mutation is in a catalytic

residue of the NS3 protease domain. The constructs tested express

full-length NS3, but only the peptide from NS4A can enhance

NS3 protease activity. B) Analysis of a NS3 and full-length NS4A

fusion protein as well as mutant S135A on the 5BR assay. C)

Analysis of the NS4B protein on the 5BR assay. White and grey

bars correspond to RIG-I signaling in the absence and presence of

transfected RIG-I agonist 3PdsR24, respectively. The ratios of the

plasmids encoding the proteins used are given below the bars.

(DOC)

Figure S3 Analysis of cis-acting replication element
(CRE) in the sequence encoding NS5B. A. Predicted

secondary structure of the RNA corresponding to NS5B 39 end

coding for AA 539–591. The sequence and predicted secondary

structure of the CRE is shown on the right and derived from the

analysis of You et al. [52]. Mutations U71C and C90A inhibited

replication of HCV replicon but U86G did not have any

significant effect [52]. B&C) Effects of the mutations in the CRE

element on the 5BR assay performed with HEK 293T cells (B) and

Huh7 cells (C).

(DOC)
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