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Towards reproducible MRM based 
biomarker discovery using dried 
blood spots
Sureyya Ozcan1,*, Jason D. Cooper1,*, Santiago G. Lago1, Diarmuid Kenny2, Nitin Rustogi1, 
Pawel Stocki2 & Sabine Bahn1

There is an increasing interest in the use of dried blood spot (DBS) sampling and multiple reaction 
monitoring in proteomics. Although several groups have explored the utility of DBS by focusing 
on protein detection, the reproducibility of the approach and whether it can be used for biomarker 
discovery in high throughput studies is yet to be determined. We assessed the reproducibility of 
multiplexed targeted protein measurements in DBS compared to serum. Eighty-two medium to high 
abundance proteins were monitored in a number of technical and biological replicates. Importantly, 
as part of the data analysis, several statistical quality control approaches were evaluated to detect 
inaccurate transitions. After implementing statistical quality control measures, the median CV on 
the original scale for all detected peptides in DBS was 13.2% and in Serum 8.8%. We also found 
a strong correlation (r = 0.72) between relative peptide abundance measured in DBS and serum. 
The combination of minimally invasive sample collection with a highly specific and sensitive mass 
spectrometry (MS) technique allows for targeted quantification of multiple proteins in a single MS run. 
This approach has the potential to fundamentally change clinical proteomics and personalized medicine 
by facilitating large-scale studies.

Reproducible quantification of proteins across multiple samples is essential in biomarker research. Although 
immunoassays still remain the predominant method in clinical laboratories, they suffer from several drawbacks 
including batch to batch antibody variation, high cost and relatively large sample volume requirements1,2. Protein 
quantification using mass spectrometry (MS) overcomes some of these obstacles and offers sensitive, specific and 
reproducible data yielding fewer false positive and false negative detections. Consequently, over the last decade, 
MS has become increasingly important for quantitative proteomics3.

Quantification by MS can involve a targeted or an untargeted approach. Traditional hypothesis-free untar-
geted quantification uses a method commonly known as shotgun proteomics which aims to identify and quantify 
as many proteins as possible4,5. However, this approach often suffers from poor reproducibility, especially when 
analysing lower abundant proteins. On the other hand, the hypothesis-driven targeted approach, known as mul-
tiple reaction monitoring (MRM; also known as selective reaction monitoring), provides for sensitive and robust 
quantification of pre-selected proteins6,7. Both approaches have been widely used for quantitative analysis of 
proteins in various complex sample matrices including Dried Blood Spots (DBS) and serum8–12.

In MRM, a pre-selected specific peptide is fragmented by collision induced fragmentation and the intensity of 
the resulting fragment ions, called transitions, are measured. Stable isotope standard (SIS) peptides are commonly 
implemented as internal standards for MRM analyses using a technique known as stable isotope dilution13. The 
SIS peptides are synthetically produced with either a heavy arginine or lysine, and are added to the sample, ideally 
in a ratio of 1:1 to the endogenous peptides. As the SIS peptides have identical chromatographic, ionization and 
fragmentation properties as the endogenous peptides, they greatly improve the specificity of the acquired MRM 
data14. This is particularly important in large-scale clinical proteomics studies, where reproducibility is vital. The 
selection of peptides and interference-free transitions is also crucial for protein quantification. Various resources 
are available including PeptidePicker15, PeptideTracker16, SRMAtlas17,18, PeptideAtlas18, PASSEL18 and Passport 
Protein Assay Portal. These tools assist researchers by assembling publically available experimental data into 
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databases. Such portals are very useful. However, both peptide and transition selections are affected by the bio-
logical matrix and experimental settings (digestion protocols, instrument specifications and instrument settings). 
Therefore, each study needs to be optimized in terms of achieving the highest sensitivity and specificity based on 
the biological samples and instrument specific settings.

Non-invasive diagnostics have an obvious appeal for both patients and clinicians, and are a focus of research 
in both academia and biopharma19,20. Several clinical trials of non-invasive diagnostic tools are underway world-
wide for various diseases, bringing new concepts to the field of biomarker discovery, such as liquid biopsies20. 
For clinical proteomics, serum and plasma samples have been widely used as they are easier to obtain than other 
biological specimens, such as more invasive biopsies. However, the collection, shipment and storage of serum 
and plasma samples can be an obstacle, particularly, outside hospital environments. DBS is a form of sampling 
where blood samples are blotted and dried on a filter paper and offer an attractive and cost effective alternative 
as the approach is far less invasive and kits for self sample collection can be sent to the home. Samples can then 
be shipped and stored at room temperature until analysis. DBS sampling also reduces the infection risk as the 
blood samples are dried21. Furthermore, many analytes are more stable in a dried sample at room temperature 
than aqueous samples22,23. The use of DBS sampling in the clinical environment first came to prominence with the 
screening of new-borns for the metabolic disease phenylketonuria24 and is now utilized in screening for a wide 
range of other metabolic disorders. Although DBS sampling has predominantly been used in metabolite-based 
clinical diagnostics25,26, there is an emerging interest in the use of this alternative biological source in proteomics 
for biomarker discovery8–10,27,28; particularly for diseases such as psychiatric disorders in which patient recruit-
ment is notoriously difficult and expensive. Despite the cost, collection, shipment and storage advantages, the 
complexity of DBS samples (including cellular components) represents a challenge for proteomics investigations. 
Consequently, further method development is required to achieve clinical utility as neither current serum nor 
plasma assays can be readily applied to DBS samples12. In this respect, targeted proteomic approaches provide an 
opportunity to overcome the limitations of DBS sample complexity.

Over the past decade, advances have been made in the use of DBS in proteomics, resulting in the success-
ful identification of around one hundred proteins using targeted and untargeted MS methods8–11,28. However, 
in-depth research on the DBS proteome has been limited. The DBS proteome shows great similarity to the serum 
proteome but additionally contain proteins derived from red and white blood cells present in whole blood8,28. 
While previous studies have mainly focused on the feasibility of DBS sampling for profiling proteins in small 
sample sets, the practicality and reproducibility of large-scale DBS sampling is yet to be explored.

The aim of this study was to investigate whether we can reproducibly quantify targeted proteins in DBS 
samples. To this end, we selected 82 medium to high abundant proteins and evaluated: (1) existing statis-
tical approaches for the identification of inaccurate peptide-transitions; (2) the reproducibility of relative 
peptide-transition abundances (including sample preparation and peptide detection) in DBS as compared to 
serum; and, (3) the correlation between relative peptide abundances measured in DBS and serum samples. In 
this particular application, the existing statistical approaches to detect inaccurate peptide-transitions all failed. 
Consequently, we developed an alternative approach.

Results
A comprehensive workflow including sample preparation, MRM multiplex assay development and statistical 
analysis is depicted in Fig. 1. DBS and serum samples were prepared in a 96-well plate format using an automated 
liquid handler to improve reproducibility. A conventional trypsin digestion approach was utilized for both the 
DBS and serum sample preparations. An additional solid phase extraction (SPE) step was implemented to the 
DBS workflow to reduce matrix complexity. Pooled DBS samples and Sigma serum (Human Sera S7023, Sigma 
Aldrich) were used as QC samples to optimize the experimental workflow as described in the materials and 
method sections.

Identification of inaccurate peptide-transitions. The between run interference score7 which is based 
on the endogenous peptide only, by definition was detecting peptide-transitions with a correlation coefficient 
below the threshold level (r <  0.8) with the mean of their transition abundance for the corresponding peptide 
across the MS runs rather than inaccurate peptide-transitions. In addition, when several peptide-transitions were 
measured, an ‘outlying’ transition can affect the mean and result in only the outlying transition being retained. The 
score flagged (r <  0.8) 17.7% of DBS and 3.8% of serum peptide transitions as “inaccurate” (Table 1). However, 
the visual inspection revealed that almost all of the flagged transitions were erroneously flagged in the DBS and 
serum respectively (Table 1).

In the all-pairs approach29, 58.4% of DBS and 69.4% of serum peptide-transitions were flagged, mostly in 
error, as a result of the measurement error associated with the lower abundant peptide-transitions (Table 1). 
Given the problems with the measurement error of the lower abundant peptide-transitions as highlighted in 
the all-pairs approach, the simpler peptide-transition rank and proportion approaches, both based upon 
comparisons between the peptide and respective internal standard, also performed poorly, 24.4–34.3% and  
51.5–62.5% respectively (Table 1). It was also observed that there is little consistency between the four approaches 
(Supplementary Table 1).

Given the poor performance of these four approaches when applied to our data for the identification of inac-
curate peptide-transitions, we adopted an approach based on the most abundant peptide-transitions, which are 
the most reproducibly measured transitions (see Discussion). We selected the most abundant peptide-transitions 
with greater than 80% consistency across MS runs between endogenous and isotopically-labelled peptides and, 
for the most abundant peptide-transitions with less consistency, we visually checked the peptides for interference 
from the matrix and manually selected the most abundant transition based on the pooled plate QC samples. In 
addition, a relative abundance ratio filter was applied. Theoretically, the optimal ratio between endogenous and 
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isotopically-labelled peptides is 1:1 on the original scale of measurement, but in practice, the complexity of opti-
mization increases with the number of protein peptides. Consequently, we implemented the clinical guidelines 
suggesting a ratio range of 1:10 to 10:130,31, importantly, calculated on the original scale of measurement.

Coefficient of variation. The CVs for peptide-transition abundance ratios measured in DBS and serum 
samples from the single-sample set are summarized in Fig. 2 (Supplementary Table 2). The median CV across 
sample preparations was 6.50% in serum (range 5.90% to 6.84%; excluding the pooled sample) and 8.90% in DBS 
(range 8.19 to 9.93) samples. The CVs for peptide-transition abundance ratios measured in DBS and serum sam-
ples from the ten healthy volunteers (ten-sample set) are summarized in Fig. 3 and Supplementary Table 3. The 
median CV across the ten-sample set was 8.80% in serum (range 7.77% to 10.43%) and 13.18% in DBS (11.47% to 
23.98%) samples. The median CV in the DBS healthy volunteer samples was inflated by increased variation in the 
first DBS sample. Exclusion, this sample resulted in a CV of 12.47% (range 11.47% to 15.05%).

Figure 1. Detailed experimental workflow for targeted DBS protein quantification. The protocol consists 
of the following stages; (i) Automated sample preparation containing protein extraction and digestion, (ii) 
Multiplex MRM method development including protein/peptide selection, charge-state/transition filtering and 
endogenous/internal peptide ratio adjustment, (iii) Statistical analysis.
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Correlation between DBS and serum peptide-transition relative intensities. The correlation coef-
ficients between DBS and serum mean peptide-transition abundance ratios was strong (r =  0.72 and rho =  0.80 
Fig. 4). This strong correlation indicates a relative consistencies between DBS and serum peptide-transition abun-
dances. The correlation plot contains two clusters of peptide-transitions that stand out from the observed linear 
trend. The first cluster has higher relative abundance in DBS compared to serum and consists of one peptide 
transition from Apolipoprotein A-I (APOA1) and one from Ig gamma-1 chain C region (IGHG1). The second 
cluster has higher relative abundance in serum compared to DBS and consists of two peptide transitions from 
Albumin (ALBU).

Discussion
MRM assays offer great sensitivity and specificity for protein quantification over a wide dynamic range of con-
centrations. The design of MRM experiments starts with the selection of unique prototypic peptides for each 

Inaccurate peptide-transitions (% of total)

Between run interference score All-pairs Rank Proportion

Serum
Flagged 14 (3.8%) 259 (69.4%) 91 (24.4%) 233 (62.5%)

Correctly flagged out of the 
7 (1.9%) identified visually 0 7 7 7

DBS
Flagged 66 (17.7%) 218 (58.4%) 128 (34.3%) 192 (51.5%)

Correctly flagged out of the 
10 (2.7%) identified visually 1 5 8 7

Consistently flagged peptide-transitions 
between DBS and serum 8 (2.1%) 174 (46.6%) 85 (22.8%) 141 (37.8%)

Table 1.  A summary of the number of peptide-transitions flagged as ‘inaccurate’ based upon the four 
published approaches for the detection of inaccurate transitions. The threshold correlation coefficient for the 
between run interference score was 0.8. Total number of peptide-transitions was 373.

Figure 2. The ‘single-sample’ set CVs for 86 peptide-transitions (58 proteins) after abundance ratio filter 
exclusions applied, common to both DBS and serum. (a) The CV for peptide-transition abundance ratios 
measured in ten DBS sample preparations from the same healthy volunteer. (b) The CV for peptide-transition 
abundance ratios measured in ten serum sample preparations from reference Sigma Serum. Note that the CVs 
were based on eight injections for each sample preparation. Pool – pooled sample of all ten sample preparations.
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Figure 3. The ‘ten-sample’ set CVs for 81 peptide-transitions (56 proteins) after abundance ratio filter 
exclusions applied, common to both DBS and serum. (a) The CV for peptide-transition abundance ratios 
measured in DBS samples collected from ten healthy volunteers. (b) The CV for peptide-transition abundance 
ratios measured in serum samples from ten healthy volunteers. Note that the ten donors provided both DBS and 
serum samples and that the CV was based on three injections for each sample preparation.

Figure 4. The ‘ten-sample’ set correlation between DBS and serum for 81 peptide-transitions (56 proteins) 
after abundance ratio filter exclusions applied, common to both DBS and serum. The correlation is based 
on the mean relative abundance ratios between DBS and serum samples from ten healthy volunteers. The 
DBS =  b0 +  b1serum regression line is plotted. The boxplots in the margins show the distribution of the DBS 
(y-axis) and serum (x-axis) abundance ratios. The figure was plotted using the R package car41.
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targeted protein. The selection of qualifier and quantifier transitions for each peptide is defined by several criteria 
including precursor charge states, fragment ion type, MS resolution and ionization. MRM based quantification 
methods require extensive method development to identify the most specific and sensitive transitions for each 
targeted peptide. As transitions are highly sensitive to the complexity of the biological matrix, interference free 
transitions have to be identified for each matrix. The increased specificity provided by SIS peptides offers a great 
advantage over semi-quantitative protein peptide assays. In addition, SIS peptides can also be implemented to 
normalize MS runs and minimize non-biological variation.

MRM method refinement requires the MS data to be visually checked for each targeted analyte in each given 
matrix to minimize interferences. Statistical approaches can complement the subjective and laborious process 
of transition filtering, improving the quality and reproducibility of the MS data. Unlike immunoassays in which 
quantification is at the protein level, MRM based proteomics studies monitor peptides by targeting specific tran-
sitions. As peptide-centric quantification strategies strongly rely on both protein digestion and peptide ionization 
efficiencies, selection of a representative feature becomes critical when breaking down proteins into peptides and 
further into transitions. From this perspective, reconstructing protein abundances from peptides and transitions 
can be challenging and requires further investigation.

Published research has approximated protein level analysis by analysing the following molecular surrogates: (1) 
summation of a defined number of peptide-transition abundances32; (2) peptide-transition abundances as repeat 
measurements7; and, (3) most abundant peptide-transitions containing a y fragment that is free of interferences33. 
As the measurement error is higher for the lower abundant transitions, the ‘noise’ introduced in the first approach 
will depend on the targeted peptides and their transition abundances. For the second approach, whether or not a 
peptide-transition correlation filter is used (e.g. between-run interference score7), the peptide fragmentation effi-
ciency will be an issue and noise will be introduced to the analysis. Finally, although not necessarily a surrogate for 
protein abundance, analysing the most abundant peptide-transition, as adopted here, has a number of advantages. 
The most important being that this transition is often the most robustly measured transition for a given peptide 
and consequently, if selected as a predictor disease biomarker would provide a robust prediction of disease risk. 
The CVs (Figs 2 and 3) clearly demonstrate the robustness of the most abundant peptide-transition measurements. 
This was further demonstrated by the relative consistency of measurements as indicated by the strong correlation 
between peptide-transition abundances measured in DBS and serum samples collected from the healthy volun-
teers. We note that not all peptide-transitions can be measured in both matrices. The main difference in the DBS 
and serum proteomes is likely to result from the cellular components in DBS derived from red and white blood 
cells8,34. To ensure MS data quality, the selection of accurate and robust transitions, application of appropriate 
statistical methods combined with the use of several QC samples throughout the run are essential. The use of iso-
topically labelled internal standards is equally important for large scale studies as it facilitates method optimization, 
improved transition specificity and normalization to minimize non-biological systematic variation across the MS 
runs. Normalization is particularly important for proteomics based biomarker studies which can be conducted 
over a number of weeks. For instance, in a study involving 500 clinical samples and additional QC samples to verify 
the sample processing, with tens of proteins profiled over a 60 min gradient and three replicate injections are per-
formed for each sample, the total run-time for such a study can take up to three months. It is very challenging to 
maintain the same instrument sensitivity through several months of run time. Therefore, implementing replicate 
QC sample injections through the run and using internal standards aid in monitoring instrument variations in 
large-scale clinical studies. However, in the absence of repeat sample injections, the total run-time can be reduced 
to 1 month. This example highlights the trade-off between the number of samples, the number of runs per sample 
(i.e. the accuracy of the measurement; technical replicates) and the study run-time. As proteomic based biomarker 
studies increase in size, robust and reproducible assays allowing single injections will be essential to achieve rea-
sonable throughput without compromising data quality. As we have demonstrated good reproducibility of relative 
peptide abundance ratios measured with a median CV of 8.8% in serum and 13.2% in DBS samples, a single run 
per sample will be sufficient. Consequently, study run-time can be substantially reduced.

DBS quality is one of the most significant limitations for quantitative proteomics studies. For example, insuffi-
cient sample (small spot size) and multiple-spotting will both affect the protein content. We found, based on two 
DBS pilot studies, clear sample collection instructions improved DBS quality (data not shown). In this study, the 
reproducibility suggested that DBS discs have comparable protein abundances. However, despite recent studies 
showing that many proteins are stable in DBS9,22, the long term storage effects on protein stability and abundance 
in DBS have yet to be established. In this respect, the use of non-human internal standard proteins to normalize 
total protein concentration offers a potential solution to address this issue in future studies of large-scale clinical 
cohorts derived from multiple clinical centres with varying collection dates.

The combination of minimally invasive DBS sample collection combined with a highly specific and sensitive 
mass spectrometry technique allows targeted quantification of a large number of proteins in a single MS run. This 
approach has the potential to fundamentally change clinical proteomics and personalized medicine by facilitating 
large-scale studies.

Methods
Study design and sample preparation. All participants were healthy volunteers enrolled under protocols 
approved by the University of Cambridge Human Biology Research Ethics Committee. The study protocol was 
carried out in accordance with guidelines approved by the committee. All subjects gave informed written consent 
and all clinical investigations were conducted according to the principles of the Declarations of Helsinki. Two 
sample sets were used to select interference free quantifier transitions and to assess the reproducibility of the pep-
tide-transition abundance measurements. The first set of samples (subsequently referred to as the ‘single-sample’ 
set) was used to evaluate the degree of variation of the peptide-transitions across different sample preparations of 
the same sample using the coefficient of variation (CV). It consisted of replicate preparations of two matrices: (1) 
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ten DBS discs collected from the same healthy volunteer; and, (2) ten aliquots of reference Sigma serum (S7023, 
Sigma-Aldrich, Gillingham, U.K). DBS and sigma samples were run separately on the MS. Sample preparations 
were randomized to a well-plate position and eight consecutive injections were taken from each well. The second 
set of samples (subsequently referred to as the ‘ten-sample’ set) was used to evaluate the correlation between 
relative abundance measurements in DBS and serum. It consisted of DBS and serum samples collected at the 
same time from ten healthy volunteers. Samples were randomized in a well-plate position and three consecutive 
injections were taken from each well. The ten-sample set was also used to evaluate the degree of variation of the 
peptide-transitions within sample.

Sample collection, semi-automated protein digestion and peptide quantification methods are briefly sum-
marized below and the details of the procedures are in the Supplementary Material. Protein extraction and 
digestion of DBS and serum samples were performed in a 96-well plate format using a liquid handling robotic 
system (Fig. 1). Trypsin-digested peptides were separated by C18 reverse phase chromatography prior to dynamic 
MRM-MS detection.

MRM-Assay Development
Targeted Protein-Peptide Selection. Eighty-two proteins were selected for targeted proteomics analysis. 
Unique peptides, surrogates of the targeted proteins, were filtered using Protein Basic Local Alignment Search 
Tool (BLAST) (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Candidate peptides were then further filtered using the 
criteria listed below to reduce potential sources of variability. Peptides containing less than six amino acids (aa) 
were avoided to ensure uniqueness. Exclusion criteria also included large peptides ( >  20aa), potential ragged end 
peptides, peptides with known post-translational modifications (e.g. glycosylation and acetylation) and peptides 
containing missed tryptic cleavage sites (e.g. internal lysine or arginine residues) to prevent poor digestion and/
or variable ionization efficiencies. Exceptions were made when no alternative peptides were available for a given 
candidate protein6,33. All reference SIS peptides with a C-terminal 13C- and 15N-labeled arginine (R) or lysine 
(K) were purchased from JPT (JPT Peptide Technologies, Berlin, Germany) for each endogenous peptide and 
used as an internal standard.

Transition selection and interference screening. Ionization and fragmentation behaviours of all can-
didate peptides were extensively studied to select robust and interference-free peptide-transitions. A minimum 
of ten transitions, for each given peptide, for doubly and/or triply charged precursors in the range of 400–1200 Da 
were calculated using Skyline (version 3.1.0)35. All transitions were screened through the gradient to identify 
predominant charge state precursor-transition pairs. The preferred transitions were defined as follows: transition 
m/z greater than precursor m/z (to yield highest selectivity) and singly or doubly charged y ions. The b ions and 
transitions close to precursors were avoided to achieve the highest selectivity. Only peptides and transitions with 
maximum intensities and the highest spectral library similarity (dotp) were selected via Skyline using discovery 
proteomics data and available spectral data (Human NIST spectral library). Transition refinement and interfer-
ence screening were performed on (i) SIS peptide mix in buffer, (ii) crude digested Sigma serum and pooled DBS 
samples, and (iii) Sigma serum and pooled DBS samples spiked with SIS peptide mix. The relative intensities of 
each of the targeted peptide-transitionswere compared for each matrix. The ion intensities of the endogenous 
(also known as ‘light’) peptides and the SIS (also known as ‘heavy’) peptides were adjusted to be within a 10-fold 
ratio for each peptide.

Three to four interference free transitions yielding the highest intensities and lowest noise were manually 
selected for DBS and serum, separately. Candidate transitions were then further evaluated using statistical 
approaches as described below.

LC-MS/MS Analysis. An Agilent Infinity 1290HPLC and an Agilent 6495 QQQ LC/MS system with Agilent 
Jet Stream technology were utilized for peptide separation and detection. The separation was carried out on an 
Agilent AdvanceBio Peptide Map column (2.1 ×  150 mm 2.7-micron) at 50◦ C. Peptides were eluted over a linear 
gradient from 3% to 30% acetonitrile in 0.1% formic acid over 45 minutes. The MS was operated in positive mode. 
Instrument parameters including collision energies (CE) were then optimized to yield the highest sensitivity for 
all peptides and transitions.

Three to four interference-free transitions were selected for each target protein peptide as described above. 
Endogenous and corresponding SIS peptide-transitions were monitored and acquired simultaneously at unit 
resolution (0.7 Da) both in the first and third quadrupole (Q1 and Q3). Retention time (Rt) of each peptide was 
identified using full scan data. The final dynamic MRM method included 82 proteins, 156 peptides. Delta Rt win-
dow was 0.8 minutes and cycle time was 1 s. The minimum dwell time was 10 ms.

Data pre-processing and quality control. Raw MS files were processed using the Skyline software pack-
age (Version 3.1.0). Peaks were manually checked, and peak integrations were adjusted accordingly where nec-
essary. The endogenous peptide to internal standard SIS peptide peak area values were exported as a comma 
delimited data file for statistical analysis.

Statistical analysis. Statistical analysis was conducted using the software package R (Version 3.2.3)36. As the 
problems of interference and ion suppression depend on the biological matrix29, we pre-processed and applied 
quality control measures to DBS and serum MS data separately. The order of the statistical pre-processing was as 
follow: (1) peptide-transition exclusions; (2) normalization; and, (3) log transformation of the peak area ratio.

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Normalization. We performed normalization based on the internal standard to minimize non-biological, 
systematic variation (technical variation) across MS runs. In other words, normalization was required to make 
peptide-transition abundances comparable across MS runs. Normalization can minimize differences in sample 
total protein amounts and technical variations in chromatography, for example. We adopted a median scaling 
normalization approach, in which individual transition abundances were multiplied by a ratio of the median 
internal standard abundance across all MS runs divided by the median internal standard abundance per MS run. 
This normalization can only correct for global MS shifts across runs and does not compensate for biological var-
iation (interference and ion suppression) effects on individual peptide-transitions.

Peptide-transition relative quantification. Relative peptide quantification was based on the relative 
abundance of the endogenous peptide-transitions compared with those of the respective internal standard, also 
known as the peak area (light/heavy isotope) ratio. The abundance ratio was used to minimize any remaining 
technical variation.

Variance stabilization. As the variance of biological measurements often increases with intensity, we 
applied a log2 transformation, which is commonly used as a variance stabilising transformation as the variation 
of the logged abundances is less dependent on the absolute magnitude; skewed distributions become more sym-
metric and the influence of high-abundance transitions is reduced37.

Identification of inaccurate peptide-transitions. As we wanted to reduce the amount of time spent 
on manually checking the peptide-transition peaks to identify inaccurate and imprecise peptide-transitions, 
we initially considered the following approaches: (i) the ‘between-run interference score’7; (ii) the all-pairs 
method29; (iii) peptide-transition rank comparison between the endogenous and the internal standard; and, (iv) 
peptide-transition abundance proportion comparison between the peptide and respective internal standard. 
Inaccurate peptide-transitions were flagged and visually checked to establish the utility of the tests.

The between run interference score (i), as defined by Surinova et al.7 and based on the endogenous 
peptide-transitions only, represents the correlation across the MS runs, between individual run peptide-transition 
abundance and the mean of their transition abundances for the corresponding peptide. We flagged 
peptide-transitions with a correlation coefficient r <  0.80 (ref. 7).

In the all-pairs approach (ii), as defined by Abbatiello et al.29, the abundance ratios were estimated for all 
possible transition pairs within a peptide and then compared between the endogenous peptide and respective 
internal standard. It was assumed that the abundance ratios should not differ between them. We tested at the 
peptide-transition-level whether the abundance ratios were significantly different between the peptide and 
respective internal standard. Rather than using a paired t-test and combining the P-values for each transition29, 
we used a random intercept linear mixed model to analyse all the pairs for a given peptide-transition, the ran-
dom intercept allowing for differences between the healthy volunteer samples. We used the Benjamini-Hochberg 
false-discovery rate method to correct the P-values for multiple testing38.

In the rank approach (iii), for each individual MS run, we ranked the peptide-transition abundances within 
a peptide and required 80% rank consistency across the MS runs between the peptide and respective inter-
nal standard. Finally, in the proportion approach (iv), for each individual MS run, we simply calculated the 
peptide-transition proportion of the total peptide-transition abundance and tested for differences between the 
peptide and respective internal standard using a paired t-test, correcting the P-value for multiple testing as above.

Coefficient of variation. We used the coefficient of variation (CV), which describes the amount of variabil-
ity relative to the mean, to quantify the degree of variation for the peptide-transitions across the MS runs. For log2 
transformed data, the geometric CV =  − ×2 1 100sd2

 (ref. 39), where sd is the standard deviation of the 
log-transformed data. Note that it is important to estimate the CV on the original untransformed scale of 
measurement.

Correlation between DBS and serum peptide-transition relative abundances. Peptide-transition 
abundance in DBS and serum samples taken at the same time are unlikely to agree exactly due to the differences 
in the biological matrix. We used the ten-sample set to estimate correlation between DBS and serum. As we had 
three consecutive MS runs (injections) for each volunteer in the ten-sample set, we used the mean of the three 
relative peptide-transition abundances.

To measure the overall strength of the association between peptide-transition abundances derived from the 
two biological matrices, we calculated the Pearson product-moment correlation coefficient (r) and Spearman’s 
rank correlation coefficient (rho) between their relative abundances for the most abundant peptide-transitions. 
As the most abundant peptide-transition can vary with the biological matrix, we correlated the most abun-
dant peptide-transitions common to both DBS and serum peptide-transition (95%) consistent between matri-
ces. Perfect correlation (r =  1) between the abundance measurements does not necessarily indicate agreement 
between the measures, but rather that the points lie along any straight line. We only have perfect agreement when 
the points lie along the line of equality40.
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