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The plastid metalloprotease FtsH6 and small
heat shock protein HSP21 jointly regulate
thermomemory in Arabidopsis
Mastoureh Sedaghatmehr1,2, Bernd Mueller-Roeber1,2 & Salma Balazadeh1,2

Acquired tolerance to heat stress is an increased resistance to elevated temperature following

a prior exposure to heat. The maintenance of acquired thermotolerance in the absence of

intervening stress is called ‘thermomemory’ but the mechanistic basis for this memory is not

well defined. Here we show that Arabidopsis HSP21, a plastidial small heat shock protein that

rapidly accumulates after heat stress and remains abundant during the thermomemory

phase, is a crucial component of thermomemory. Sustained memory requires that HSP21

levels remain high. Through pharmacological interrogation and transcriptome profiling,

we show that the plastid-localized metalloprotease FtsH6 regulates HSP21 abundance.

Lack of a functional FtsH6 protein promotes HSP21 accumulation during the later stages of

thermomemory and increases thermomemory capacity. Our results thus reveal the presence

of a plastidial FtsH6–HSP21 control module for thermomemory in plants.
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I
n their natural environment, plants are exposed to recurrent,
sometimes irregular, environmental changes. Appropriate
responses to environmental cues are required as plants cannot

change their location on imposition of stress. Plants have an
inherent ability to survive certain levels of stress (called basal
tolerance), a characteristic that varies between species and
genotypes. In addition, plants have the ability to acquire tolerance
to otherwise lethal stresses and experimental evidence indicates
the existence of a molecular ‘memory’ that enables them to
withstand stress better if previously confronted with the same or a
similar type of stress1,2. Pre-exposure to stress, called priming,
induces the configuration of a new cellular state (through
molecular and biochemical recasting) that is different from the
(pre-stress) naive situation and allows the plant to respond in a
superior manner to subsequent stimuli (called triggering). The
intervening time, during which plants experience a non-stress
situation, is called the ‘memory’ phase and can range from several
hours to days, or even generations. However, the molecular
machinery that underlies stress memory in plants is so far largely
unknown.

An important environmental factor that often impairs plant
growth, survival and productivity is heat. Heat stress affects the
integrity of the proteome by causing misfolding and/or
denaturation of proteins, thereby negatively affecting cell viability.
Misfolded proteins are toxic to the cell and must be refolded,
degraded or delivered to distinct quality control compartments
that sequester potentially harmful misfolded proteins3.

Heat shock proteins (HSPs) are molecular chaperones
that perform major roles in protecting the proteome against
environmental stresses4. They are grouped into different families,
based on their molecular masses: HSP70, HSP90, HSP100/ClpB
(Hsp101) and small HSP (sHSP) families. SHSPs with a monomer
molecular mass ranging from 12 to 42 kDa belong to an
evolutionary conserved family harbouring a common
a-crystallin domain located in the C-terminal part5. They occur
in all eukaryotic organisms but are particularly abundant in
plants, such as Arabidopsis thaliana and rice (Oryza sativa) which
have 19 and 23 sHSPs, respectively, while there are 10 sHSPs in
humans, 4 in Drosophila melanogaster, and 1 or 2 in bacteria6,7.
The activity of sHSPs is independent of ATP and they are unable
to refold non-native proteins, however, sHSPs provide immediate
protection against unfavourable conditions by selectively binding
to unfolded proteins and facilitating their subsequent refolding
by other, ATP-dependent chaperones6–10. Hence, sHSPs play a
critical role in the protein quality control system. Heat
stress-induced expression of HSP genes is mainly controlled by
heat shock transcription factors (HSFs) although other
transcription factors also play a role11,12. In plants, sHSPs are
targeted to different cellular compartments, including the cytosol,
chloroplasts, mitochondria, and the endoplasmic reticulum13,14.
Organelle-targeted sHSPs are unique to plants, the only
known exception being mitochondrion-targeted sHSP22 in
Drosophila15,16. Several sHSPs were shown to have important
functions in the response of plants to heat stress and in acquired
heat stress tolerance6,10,17.

The nuclear-encoded chloroplast protein HSP21 (monomer
size 21 kDa, also known as HSP25.3-P (ref. 18)) is a plastid-
localized sHSP in Arabidopsis19. It harbours a unique region
towards its N terminus with several conserved methionine
residues proposed to recognize hydrophobic stretches in
partially unfolded proteins, and is mainly associated with
thylakoid membranes20,21. Under conditions of oxidative stress
the methionines are oxidized, and this process is reversed by a
plastid-localized methionine sulfoxide reductase, which restores
the chaperone activity of HSP21 (ref. 22). Under optimal growth
conditions, HSP21 expression is largely restricted to pollen grains

but its expression rapidly and strongly increases in most organs
on high-temperature stress21,23. Overexpression of HSP21 in
transgenic Arabidopsis plants enhances tolerance towards heat
stress when imposed together with high light, a combination
known to cause oxidative stress, while thermotolerance was not
significantly altered in a low-light regime19; however, HSP21 is
essential for chloroplast and early seedling development in the
presence of heat stress21. In tomato (Solanum lycerpersicum),
HSP21 was reported to protect photosystem II (PSII) on exposure
of the plant to excessive temperature24.

Expression of HSP21 is controlled by Heat shock factor A2
(HsfA2), a master transcriptional regulator of thermomemory
in Arabidopsis. and the hsfa2 knockout mutant is defective in
thermomemory25. HSP21 transcript is absent 24 h after heat
priming in the hsfa2 mutant while it is still highly abundant in
wild-type plants. Absence of HSP21 transcript is also evident
in the rof1 knockout mutant whose defective thermomemory
phenotype resembles that of hsfa2 (ref. 26). ROF1 (AtFKBP62)
encodes an FK506-binding protein-type peptidyl prolyl cis/trans
isomerase. Similar to HsfA2, ROF1 is required for extending the
duration of acquired thermotolerance (thermomemory), but not
for its induction26.

Besides chaperones, proteases play a regulatory role in
maintaining proteome homoeostasis in most subcellular com-
partments. Four major families of proteases; Clp, FtsH, DegP
(in chloroplasts) and Lon protease (in chloroplasts and
mitochondria)27, have been characterized in Arabidopsis and
act as central elements of chloroplast and mitochondrial protein
quality control systems28.

A relatively well-characterized family of proteases is the FtsH
(filamentation temperature sensitive) family. FtsH proteases
consist of an N-terminal transmembrane domain followed by a
hydrophilic region containing an AAA (ATPase associated with
various cellular activities) and a protease domain belonging
to the M41 peptidase family, which carries a zinc-binding
motif and therefore is categorized into the family of zinc
metalloproteases29–31. Most bacteria have a single gene
encoding FtsH, while 12 FtsH genes are present in the genome
of Arabidopsis thaliana. In Arabidopsis, three proteins (FtsH3,
FtsH4 and FtsH10) are targeted to mitochondria, eight (FtsH1,
FtsH2, FtsH5 to FtsH9 and FtsH12) enter the chloroplast,
while FtsH11 is dually targeted to both mitochondria and
chloroplasts27–29,32,33. In addition, four proteolytically inactive
FtsHs (designated as FtsHi) are targeted to chloroplasts34. FtsH6
has high-sequence similarity to FtsH2 and FtsH8 (refs 32,35).
Involvement of FtsH6 in degradation of the PSII light harvesting
proteins Lhcb1 and Lhcb3 during dark-induced senescence or
high-light treatment has been demonstrated in vitro36, however,
additional studies have so far not revealed an in vivo function of
FtsH6 in high light acclimation or any other biological
process32,35. Notably, FtsH6 is expressed at very low levels in
plants grown at normal growth temperature, but is highly
induced after heat treatment in Arabidopsis (Arabidopsis eFP
Browser; http://bar.utoronto.ca/efp_arabidopsis) and other species
across the plant kingdom including the dicot crops rapeseed
(Brassica napus37) and tomato (Solanum lycopersicum38), and the
monocot crops wheat (Triticum aestivum39) and sorghum
(Sorghum bicolor40). Thus, heat inducibility of FtsH6 expression
appears to be evolutionary conserved in plants suggesting an
important role of this metalloprotease in the response to heat
stress.

Here we show that the sole plastidic sHSP, HSP21, plays a
crucial role in extended thermomemory in Arabidopsis. We
provide evidence that the ability to maintain high levels of HSP21
protein after priming determines the duration of memory in
genetically modified plants as well as natural accessions of
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Arabidopsis with contrasting thermomemory capacity.
Furthermore, we show that HSP21 abundance during the
memory phase is negatively regulated by heat-induced plastid-
localized metalloprotease FtsH6. Our results thus demonstrate the
presence of a plastidial FtsH6–HSP21 control module for
thermomemory in plants.

Results
Identification of thermomemory-associated genes. To study
thermomemory, 5-day-old seedlings of Arabidopsis Col-0 plants
were subjected to an established thermomemory protocol (see
Methods; Fig. 1a). Seedlings of both primed and unprimed plants
became pale green and turned white after 4 days of heat stress/
triggering stimulus. However, 7 days after the triggering, primed
but not unprimed plants started to generate new leaves and grow
further (Fig. 1a). To identify genes associated with thermo-
memory, we performed transcript profiling using Affymetrix
ATH1 microarrays comparing Col-0 seedlings 4, 8, 24 and 48 h
after the priming stimulus (that is, during the memory phase)
with control plants (unprimed). Considering a two-fold cut-off
on fold changes (FC), thermomemory-associated genes were

selected as follows: genes whose expression was induced 4 h after
priming and remained high at all examined time points until 48 h
into the memory phase (60 genes), and genes whose expression
was downregulated at 4 h after the priming stimulus and
remained low until 48 h (19 genes) (Supplementary Data 1).

Upregulated genes were classified into several gene ontology
(GO) functional categories, among them ‘response to stress’ (that
is, high temperature, hydrogen peroxide, high light and oxidative
stress) and ‘protein folding’ were the most enriched categories
(Fig. 1b). Of the 60 upregulated genes, 17 encode for HSPs
(Supplementary Data 1). Among the top thermomemory
upregulated genes was HSP21 (AT4G27670), which encodes a
small HSP (21 kDa monomer size) localized in plastids of both
roots and leaves13. As shown in Fig. 1c,d, transcript levels of
HSP21 as well as its protein abundance remain high until 48 h
into the thermomemory phase suggesting a role for this HSP in
the maintenance of extended thermomemory in Arabidopsis.

HSP21 confers priming-induced thermotolerance. To investi-
gate whether HSP21 plays a role in heat stress priming and
memory, we first generated transgenic Arabidopsis lines with
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Figure 1 | Differential response of primed and unprimed plants to heat stress and identification of thermomemory-associated genes. (a) Schematic

representation of the thermomemory experimental set-up. Unless otherwise indicated, five-day-old Arabidopsis thaliana seedlings were subjected to a

priming heat regime of 90 min, 37 �C, followed by 90 min recovery at 22 �C, and 45 min at 44 �C. After priming, seedlings were returned to normal growth

condition at 22 �C for 3 or 4 days (memory phase), and then subjected to the heat stress triggering stimulus (90 min, 44 �C). Subsequently, seedlings were

transferred to normal growth condition (22 �C) and photographed after 0 h (right after triggering), 4, 7 and 14 days, respectively. Unprimed plants received

only the triggering stimulus. Note, cotyledons of both, primed and unprimed seedlings bleach, but only primed plants (not unprimed plants) develop new

leaves (arrows point to examples) and continue to grow after triggering. (b) Classification of memory-induced genes into functional categories (biological

processes) according to their GO term. (c) Quantative reverse trancription–PCR and (d) Immunoblot analyses revealed enhanced transcript and protein

abundance of HSP21 until 48 h into the memory phase in Arabidopsis accession Col-0. In c, values were expressed as the difference between an arbitrary

value of 40 and dCt, so that high 40-dCt value indicates high gene expression level. Error bars indicate means±s.d. of three independent biological

replicates each containing a pool of B100 seedlings. Asterisks indicate statistically significant difference (Po0.01; Student’s t-test) from the unprimed

conditions. In d, immunodetection was performed using anti-HSP21 antibody (top panel). RbcL, Ribulose 1,5-bisphosphate carboxylase/oxygenase large

subunit (loading control; bottom panel). kDa, kilo Dalton.
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enhanced or reduced HSP21 expression (Supplementary
Fig. 1a–d) and subjected 5-day-old HSP21 transgenic and Col-0
seedlings to our standard priming and triggering stimulus pro-
tocol. As shown in Supplementary Fig. 2 there were no significant
differences in the development of the HSP21 transgenic plants
and Col-0 before priming as well as after 3 and 4 days of recovery,
respectively. HSP21-amiRNA and 35S:HSP21 transgenic plants
recovered and generated new leaves after a heat stress treatment
given 3 days after priming, similar to Col-0 plants (Fig. 2a).
Although there was no difference in the recovery rate (Fig. 2b)
among HSP21 transgenics and Col-0 seedlings, the seedling fresh
weight was significantly lower in HSP21-amiRNA than Col-0
seedlings, but higher in 35S:HSP21 (Fig. 2c). When the memory
phase was extended to 4 days, the proportion of highly damaged
seedlings (indicated as weak and dead) was significantly increased
in Col-0. Notably, HSP21-amiRNA plants exhibited a more severe
phenotype with significantly less fresh weight than Col-0, while
35S:HSP21 plants showed a higher survival rate and seedling fresh
weight under this condition (Fig. 2a, top panel, b, and c). Our
data thus clearly indicate that HSP21 is required for Arabidopsis
plants to retain the memory of a prior exposure to heat stress.

To investigate the specificity of the role of HSP21 for
thermomemory, we tested whether altering HSP21 expression
has an effect on basal and acquired heat stress tolerance (see
Methods section for details). As shown in Fig. 2a (lower middle
and bottom panels), HSP21 overexpression and knockdown
plants were similar in acquired and basal heat stress tolerance to
Col-0 control plants suggesting that HSP21 is specifically required
for maintenance of thermomemory.

Hypocotyl elongation assays have previously been employed
for testing the effect of temperature on seedling growth41,42.
Therefore, we next analysed hypocotyl growth in the HSP21
transgenic plants to test for changes in the thermomemory. To
this end 4-day-old etiolated seedlings were subjected to the
following temperature regime: 1.5 h, 37 �C (priming stimulus);
2 days recovery at 22 �C; and 45 min, 44 �C (triggering stimulus).
As control, 6-day-old etiolated seedlings were subjected to
45 min, 44 �C without pre-adaptation. Hypocotyl elongation was
quantified five days after the triggering stimulus. As shown in
Fig. 2d, all genotypes failed to elongate their hypocotyl after
treatment at 44 �C when no pre-treatment was given. However,
wild-type and HSP21 overexpression seedlings retained the ability
for hypocotyl elongation when 44 �C was given 2 days after a
priming stimulus. In contrast, HSP21-amiRNA seedlings showed
a severe block of hypocotyl elongation under this condition
(Fig. 2d,e) further supporting the model that HSP21 is crucial for
extended memory maintenance.

HSP21 is more abundant in strong memory accession N13.
Accessions of Arabidopsis offer an excellent tool to explore
natural diversification of a biological process of interest. Thus,
to identify an accession with a better thermomemory than Col-0
we performed a screen (performed twice) with 40 additional
Arabidopsis accessions (see Methods section) for differences in
heat stress priming and memory. We identified N13 as a
strong memory accession, which survives high-temperature stress
(90 min, 44 �C), given 3 or 4 days after the priming treatment,
significantly better than the Col-0 control. As displayed in Fig. 3a,
both Col-0 and N13 survived heat stress applied 3 days after the
priming treatment; the fresh weight of seedlings was significantly
lower in Col-0 compared to N13 when analysed 14 days after the
heat stress triggering stimulus. When 4 days was applied as the
memory time, we observed a higher number of damaged seed-
lings for Col-0, whereas N13 seedlings recovered significantly
better from severe repeated heat stress (Fig. 3a–c) demonstrating

that N13 was better able to respond to the heat priming stimulus
and to memorise the past heat stress experience. This conclusion
was supported by analysing hypocotyl elongation in N13 and
Col-0 under the condition of heat stress. Hypocotyl elongation
after the triggering heat stress was more prominent in N13 than
Col-0 (Fig. 3d,e). We did not observe any significant difference
between N13 and Col-0 seedlings for basal heat stress tolerance,
when 7-day-old seedlings were subjected to 45 min, 44 �C
(Supplementary Fig. 3).

To investigate whether variation in HSP21 level contributes to
the differential thermomemory performance of N13 and Col-0,
we analysed its transcript and protein abundance in the two
accessions at different time points along the memory phase.
HSP21 protein was undetectable in both, Col-0 and N13 in
unprimed conditions, but as seen in Fig. 4a, pronounced
accumulation of HSP21 to the same level was evident in both
accessions already 1.5 h after the first phase of the priming
stimulus (1.5 h, 37 �C). However, during the thermomemory
phase, HSP21 protein level progressively decreased to about 25%
of its heat stress-induced level in Col-0 by day 4, but remained at
above 80% of its induced level in N13 (Fig. 4a,b). At day 4, HSP21
protein was 3.4-fold more abundant in N13 than in Col-0
(Fig. 4b). Our data thus support a model where HSP21 plays an
important role in the molecular machinery of thermomemory.

We then compared HSP21 expression in Col-0 and N13 during
the memory phase. HSP21 was significantly higher expressed in
Col-0 than N13 at 8 h and 24 h after the priming, but this
difference vanished at the later time points (2, 3 and 4 days),
suggesting that the diminished HSP21 protein in Col-0 is not
correlated with HSP21 transcript level (Fig. 4c).

To investigate whether the more rapid decrease of HSP21
protein level in Col-0 compared to N13 during the thermo-
memory phase is due to an amino acid sequence polymor-
phism(s), which might alter protein structure and/or stability,
we compared the amino acid sequences of HSP21 from the
accessions. To strengthen our analysis, we included one more
accession, Tsu-0, with a similar pattern of HSP21 accumulation
and thermomemory behaviour as Col-0 (Supplementary Fig. 4).
Sequence analysis of complementary DNA (cDNA) from the
selected accessions identified one polymorphic site as amino acid
codon 77, which in Col-0 encodes for threonine (ACC) but for
alanine (GCC) in both, N13 and Tsu-0 (Supplementary Fig. 4a
and b). Furthermore, HSP21 transcript levels during the
recovery/memory phase were similar in the three examined
accessions (Supplementary Fig. 4c). Therefore, we concluded that
the amino acid polymorphism in the N13 protein sequence is
unlikely to be responsible for higher accumulation/stability of
HSP21 and consequently strong thermomemory.

Taken together, the results suggest that HSP21 protein
abundance during the thermomemory is controlled by regulatory
mechanisms at the translational and/or post-translation level.

Cycloheximide blocks decline of HSP21 in Col-0 during
memory. To test whether high levels of HSP21 protein at later
memory time points in accession N13 require de novo protein
synthesis, we used cycloheximide (CHX) to inhibit protein
translation. To this end, seedlings of both Col-0 and N13 were
treated with CHX at 6 h after priming (when HSP21 level was
high; Fig. 4a,b), and HSP21 protein level was analysed by
immunoblotting at days 3 and 4 into the memory phase. As
shown in Fig. 5a,b, CHX treatment did not inhibit the induction
of HSP21 in N13 revealing that de novo translation is not the
primary cause for accumulation of HSP21 in N13 at days 3 and 4
of the memory phase. Interestingly, CHX treatment of Col-0
seedlings resulted in significantly higher accumulation of HSP21,

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12439

4 NATURE COMMUNICATIONS | 7:12439 | DOI: 10.1038/ncomms12439 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


90´ 8 d

5 d

14 d4 d

90´ 14 d3 d

Primed

OX Col-0amiRNA

Unprimed

OX

2 d 5 d

5 d

*

E
lo

ng
at

io
n 

of
 h

yp
oc

ot
yl

pr
im

ed
-u

np
rim

ed
 (

m
m

)

OXCol-0amiRNA
0

1

2

3

4

5

6

7

8

D
is

tr
ib

ut
io

n 
of

ph
en

ot
yp

e 
cl

as
se

s

4 d

amiRNA Col-0
0%

20%

40%

60%

80%

100%

120%
Dead

Weak

Green

3 d

amiRNA Col-0 OX

S
ee

dl
in

g 
fr

es
h 

w
ei

gh
t (

g)
 

co
m

pa
re

d 
w

ith
 c

on
tr

ol

*

*
*

*

0

0.1

0.2

0.3

0.4

0.5

0.6
amiRNA

Col-0

OX

3 d 4 d

44°C
45´

22°C
6 d

44°C
45´37°C

90´
22°C
4 d

OXCol-0amiRNA

44°C
90´

44°C
45´37°C

90´

22°C
5 d 90´

22°C
5 d

44°C
90´

44°C
45´37°C

90´

22°C
5 d

44°C
100´37°C

90´

22°C
7 d

44°C
45´

a

b c

ed
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more evident at day 4 of the memory phase, indicating the
presence of an unknown protein in Col-0, possibly a protease,
whose de novo translation is required for HSP21 degradation at a
later stage of the memory phase.

FtsH6 metalloprotease affects HSP21 level during memory. In
an attempt to understand how HSP21 is degraded at the later
stage of the memory phase, we first examined our thermomemory
Affymetrix transcriptome data for expression of major
nuclear-encoded (plastid) chloroplast proteases including
stromal ATP-dependent Clp proteases, lumenal DegPs and the
FtsH metalloproteases27,29. Interestingly, of 39 genes for plastid

proteases the expression of only 1 gene encoding an FtsH
metalloprotease (AT5G15250; FtsH6) was enhanced at 4 h into
the memory phase and remained high until 24 h (Fig. 5c and
Supplementary Data 2). FtsH6 (filamentation temperature-
sensitive H6) is a nuclear-encoded chloroplast zinc- and
ATP-dependent protease associated with the thylakoid
membrane. Expression of FtsH6 is strongly induced by heat in
Arabidopsis and other plant species including rapeseed37,
wheat39, sorghum40 and tomato38.

To test a potential involvement of metalloproteases for HSP21
degradation, we treated Col-0 seedlings with the metalloprotease
inhibitor 1,10-phenanthroline and detected HSP21 protein by
immunoblotting at days 3 and 4 of the memory phase. As shown
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from the heat stress triggering stimulus and compared between primed and unprimed conditions. Means±s.d. are given (n¼6 plates with B20 seedlings

each). Asterisks in c and e indicate statistically significant difference (Po0.01; Student’s t-test) from the Col-0 control.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12439

6 NATURE COMMUNICATIONS | 7:12439 | DOI: 10.1038/ncomms12439 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


in Fig. 5d,e, treatment with 1,10-phenanthroline largely
blocked the late thermomemory decrease of HSP21 protein level.
The sustained induction of FtsH6 expression during the
thermomemory phase as well as inhibition of HSP21 degradation

on treatment with 1,10-phenanthroline suggest FtsH6 as a
candidate protease involved in the degradation of HSP21 during
the memory phase in Col-0.

To investigate whether variation in FtsH6 is responsible for
differential abundance of HSP21 protein in N13 and Col-0,
and thus their contrasting thermomemory behaviour, we first
compared expression of FtsH6 between Col-0 and N13 during the
memory phase (until 3 days) by quantative reverse trancription–
PCR (Fig. 6a). In Col-0, the expression of FtsH6 was drastically
induced on priming treatment and remained high until day 2 of
the memory phase. We observed a similar induction pattern for
FtsH6 in N13, albeit with a more rapid decline at the later time
points. However, as we show below, N13 FtsH6 transcript is
non-functional.

Next we detected FtsH6 protein by immunoblot analysis in
N13 and Col-0 seedlings at different time points of the memory
phase and compared it with control plants (unprimed). As shown
in Fig. 6b, FtsH6 was undetectable in both Col-0 and N13 under
unprimed condition. In Col-0, FtsH6 protein was abundant until
day 3 of the memory phase in accordance with its higher
transcript levels. Intriguingly, however, no FtsH6 protein was
detected in N13 during the entire memory phase, even at an
earlier time point (4 h) when its transcript was still abundant.
Comparing the FtsH6 coding sequences of N13 and Col-0, we
identified several nucleotide polymorphisms (Supplementary
Fig. 5a), including a single-nucleotide deletion (nucleotide ‘G’ at
position 379 of the Col-0 coding sequence is deleted in N13)
resulting in a frame-shift mutation and a premature stop codon in
the N13 sequence. This observation explains the absence of FtsH6
protein in N13. Only a few amino acid substitutions (0 to 3
residues) were found in FtsH6 proteins of the 30 other accessions
we tested for heat stress priming and triggering compared with
Col-0 (see above; Supplementary Fig. 5b); no genome sequences
were available for the remaining 9 accessions.

This finding provides further evidence for FtsH6 as a potential
protease involved in the regulation of HSP21 turnover during
thermomemory. Lack of functional FtsH6 in N13 could be
responsible for the higher accumulation of HSP21 and therefore
enhanced thermomemory in this accession.

If FtsH6 is a key protease for degradation of HSP21 during the
memory phase, the decrease in HSP21 level at later stage of
thermomemory phase should be retarded in an ftsh6 knockout
mutant. Therefore, we compared HSP21 protein level of wild type
and the ftsh6 mutant (Salk_012429; Col-0 background) at
different stages of thermomemory phase. As shown in Fig. 6c,d,
protein level of HSP21 was identical in both genotypes after the
first step of priming treatment (1.5 h, 37 �C) and until 8 h of the
thermomemory phase. However, at later stages (24 h, 2, 3 and 4
days) the level of HSP21 was significantly higher in the ftsh6
mutant than in Col-0 (about 1.8-fold higher in ftsh6 than Col-0 at
days 2, 3 and 4; Fig. 6d). Our data thus show that FtsH6 is
involved in the degradation of HSP21 at the later stages
of the memory phase. A slightly higher accumulation of HSP21
protein was observed after 1,10-phenanthroline treatment
(Fig. 5d,e) compared to the ftsh6 mutant, suggesting that other
metalloproteases are also involved in controlling the level of
HSP21 later in the memory phase.

We next subjected 5-day-old ftsh6 mutant and Col-0 seedlings
to our priming and triggering stimulus protocol. ftsh6 mutants
revealed a slightly better thermomemory behaviour than Col-0,
measured by seedling survival rate and fresh weight
(Supplementary Fig. 6a–c). However, ftsh6 plants had similar
basal and acquired heat stress tolerance as Col-0 control plants.
We also determined the role of FtsH6 for thermomemory by
analysing hypocotyl elongation after priming and triggering and
observed that hypocotyl elongation was much less affected by the
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Figure 4 | Differential abundance of HSP21 in Arabidopsis accessions N13

and Col-0 during the thermomemory phase. (a) Immunoblot analysis of

HSP21 protein level after the first step of priming treatment (90 min, 37 �C)

and during the thermomemory phase. RbcL, Ribulose 1,5-bisphosphate

carboxylase/oxygenase large subunit (loading control). kDa, kilo Dalton.

(b) Signals of immunoblot analyses were quantified using ImageJ and

normalized to the amount of RbcL in the same samples. Means±s.d. are

given (n¼ 3, independent biological replicates each representing a pool of

B120 seedlings grown on six plates; full gel blots used for the

quantifications are shown in Supplementary Fig. 10). (c) HSP21 expression

in N13 and Col-0 seedlings during memory phase compared to unprimed

controls. FC, fold change. Means±s.d. (n¼ 3, independent biological

replicates each representing a pool of B120 seedlings grown on six plates).

Asterisks in b and c indicate statistically significant difference (Po0.05;
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triggering heat stress in the ftsh6 mutant than the wild type
(Col-0; Supplementary Fig. 6d and e), underscoring the
contribution of FtsH6 to restricting the thermomemory by
controlling HSP21 abundance.

To test whether the effect of CHX treatment on the induction
of HSP21 protein level in the Col-0 accession (Fig. 5a,b) is due to
the inhibition of de novo synthesis of FtsH6, Col-0 seedlings were
treated with CHX at 6 h after priming and FtsH6 protein level was
analysed by immunoblotting at days 2, 3 and 4 into the memory

phase. As illustrated in Supplementary Figure 7a and b, treatment
with CHX resulted in a significant reduction of the level of FtsH6
during thermomemory phase. This experiment shows that
degradation of HSP21 during the memory phase in Col-0
correlates with enhanced FtsH6 protein synthesis.

Finally, we overexpressed FtsH6 from Col-0 in the N13
accession (35S:FtsH6Col-0/N13 plants; Supplementary Fig. 8a and
b) and tested the effect of this on the thermomemory. Both, the
seedling survival assay (Fig. 7a–c) and the hypocotyl elongation
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Col-0 at days 3 and 4 of the memory phase on cycloheximide (CHX) and mock (0.1% dimethylsulphoxide) treatments. CHX or mock treatment was
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original blot images are shown in Supplementary Fig. 10. (b) Signals of immunoblot analyses like in a were quantified using ImageJ and normalized to the
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assay (Fig. 7d,e) revealed a decreased thermomemory on FtsH6
overexpression in the N13 accession. Furthermore, HSP21
protein level declined much faster in the 35S:FtsH6Col-0/N13
than in N13 empty-vector (EV) control plants during the
thermomemory phase (Fig. 7f), supporting our conclusion that
FtsH6 plays a key role in determining HSP21 abundance during
memory. In accordance, we did not detect a difference between
35S:FtsH6Col-0/N13 overexpressors and control plants when
testing basal and acquired heat stress tolerance (Supplementary
Fig. 8c).

Discussion
Although the importance of stress priming and memory in
bacteria and plants is increasingly recognized1,2, the details
of the molecular mechanisms underlying the stress memory
phenomenon remain largely unexplored, in particular in plants.
Experimental evidence indicates that plants have an ‘epigenetic’
memory, which may involve changes at the chromatin level
including histone modifications and DNA methylation, which
both occur in the response to stress43–47. Another mechanism for
stress priming in plants could be RNA polymerase II stalling at
gene promoters, which was suggested as a memory mark after
drought stress in Arabidopsis48. The accumulation of inactive

transcription factors (or cofactors) after a priming stimulus,
and their activation on experiencing the triggering stimulus,
may represent a further molecular mechanism of priming
and memory49–51. Currently, however, details about how
transcription factors affect thermomemory in plants are largely
missing, although HsfA2 has been identified as a key element in
this25. HsfA2 regulates the expression of a number of HSP
genes52,53 and in a transcription regulatory cascade is located
downstream of the NAC transcription factor JUNGBRUNNEN1
(JUB1), which like HSFA2 shows high expression during the
thermomemory phase54,55. Hsa32 encoding a heat shock-
associated protein of 32 kDa has also been shown to be a key
component of thermomemory in Arabidopsis by interacting with
HSP101 (refs 41,56). In addition, microRNAs (miRNAs), which
cause the degradation of mRNAs or translational inhibition,
contribute to modulating the priming of stress responses in
plants57. Finally, priming and stress memory might involve
metabolic changes that are maintained throughout the memory
phase, thus allowing a more rapid response of the plant to an
upcoming new stress58–60.

Our results presented here provide evidence for a role of the
plastid-localized sHSP HSP21–FtsH6 control module for thermo-
memory, whereby HSP21 protein abundance is negatively
controlled by heat stress-induced FtsH6 (see model in Fig. 8).
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Previous studies have indicated a role of HSP21 in protecting
photosystem II against oxidative and heat stress, a function
that may be achieved by HSP21’s ability to maintain
chloroplast function through an interaction with pTAC5, a
nucleoid protein that interacts with the plastid-encoded RNA

polymerase-dependent transcription complex, an important
component of the chloroplast transcription machinery19,21. This
capacity of HSP21 might be key to the role it has for extending
the thermomemory. Notably, the abundance of cytosolic HSP101
is not affected during the thermomemory phase when FtsH6 is
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mutated (Supplementary Fig. 9), suggesting a specific role of
FtsH6 for the plastidic component of plant thermomemory.

Importantly, we discovered genetic diversity of thermomemory-
related HSP21 accumulation in two natural accessions of
Arabidopsis contrasting in their thermomemory capacity.
HSP21 protein abundance remained elevated for longer in
accession N13, which we show has strong thermomemory,
than in Col-0, which has a weak thermomemory. Using a
combined pharmacological (protease inhibitor) and transcrip-
tomic approach, we identified plastid-localized metalloprotease
encoded by FtsH6 to be functionally involved in regulating the
abundance of HSP21, in particular towards the end of the
thermomemory phase. Notably, FtsH6 is mutated in N13,
precluding the formation of FtsH6 protein, as confirmed by
western blot analysis, while in Col-0, FtsH6 protein is readily
detected after heat stress priming (Fig. 6b). Expressing FstH6
from Col-0 in N13 leads to a faster decline of HSP21 protein
abundance during the thermomemory phase, concomitant with a
reduced thermomemory compared with the N13 control line
(Fig. 7), providing further evidence for the important role of
FtsH6 in determining the thermomemory (Fig. 8).

A biological function for FtsH6 has not been identified
previously and ftsh6 knockout mutants did not show a detectable
phenotype under the experimental conditions applied earlier35,36,
while FtsH1, FtsH2, FtsH5 and FtsH8 are involved in the
degradation of photodamaged D1 protein of photosystem II,
together with lumenal Deg proteases (reviewed in Wagner
et al.29). In contrast to other FtsH genes, FtsH6 is rapidly and
highly induced by heat stress in Arabidopsis (Fig. 5c) and other
species including dicot and monocot crops37–40, indicating
evolutionary conservation and ecological relevance of FtsH6
heat inducibility. In accordance with this, our data presented here
demonstrate a role of FtsH6 in regulating the stability of HSP21
after a priming heat stress, although the molecular mechanism
through which this occurs is not clear at present. Whether FtsH6

has a similar function in other plant species, including crops,
needs to be determined in the future.

Although FtsH6 plays an important role in regulating HSP21
protein level it is likely not the only metalloprotease involved, as
indicated by the fact that 1,10-phenanthroline treatment triggers
a higher accumulation of HSP21 than knocking out FtsH6
(cf. Figs 5e and 6d). This finding is in accordance with the
observation that ftsh6 has only a mild thermomemory effect in
the survival assay, albeit a much stronger effect is observed when
the mutant is tested in the hypocotyl elongation assay
(Supplementary Fig. 6d and e). Finding further molecular
processes controlling HSP21 protein level during the thermo-
memory phase will therefore remain an important task for the
future.

Both HSP21 and FtsH6 are strongly induced by heat stress.
HSP21 is a target of HsfA2 (ref. 52), a heat-inducible
transcription factor that plays a crucial role for setting the
thermomemory in Arabidopsis25. It is also upregulated by
HsfA1a/b61, indicating that heat-induced expression of HSP21
is under the control of multiple heat-associated transcription
factors. However, a direct upstream regulator of FtsH6 has not
been reported so far, suggesting that a currently unknown
upstream transcription factor(s) controls expression of FtsH6
during heat stress. We thus propose that coordinated expressional
regulation of the HSP21 and FtsH6 genes by different
transcription factors contributes to the fine-tuning of the
thermomemory. Future research has to uncover the details of
this transcriptional regulatory network that underlies heat stress
priming and that helps the plant to configure its thermomemory.

In conclusion, our work demonstrates a crucial role of
chloroplasts (or plastids in general) for the duration of the
thermomemory in plants, which involves the plastid sHSP
HSP21 in combination with FtsH6 metalloprotease as central
components: continued high levels of HSP21 protein abundance
after a priming heat stress promote the extension of the memory
phase (Fig. 8). The level of HSP21 at the later phase of the
thermomemory is negatively controlled by FtsH6, which is
missing in the strong thermomemory accession N13, but
produced on heat stress in the weak thermomemory accession
Col-0. Besides HSP21, FtsH6 may interact with other proteins to
determine the extent of the thermomemory, but such further
targets remain unknown at present. The analysis of the proteome
of FtsH6-modified lines (knockouts or overexpressors) at
different time points throughout the memory phase may be a
fruitful approach to identify additional targets of FtsH6.
Furthermore, as natural variation exists for the HSP21–FtsH6
control module, addressing the selective forces that maintain this
variation, as well as possible trade-offs that might be associated
with an extended thermomemory, are further interesting aspects
to study in the future. In addition, considering the involvement of
plastids in establishing the thermomemory it is an interesting
observation that chloroplast translation involving chloroplast
ribosomal protein S1 is required for the heat stress-induced
expression of HsfA2; however, whether ribosomal protein S1 is
also required for thermomemory was not tested62.

Regulating the abundance of chaperones such as HSP21 after a
priming heat stress could be a general mechanism for setting the
temporal frame for maintaining thermomemory (or the memory
to any other type of stress). Similarly, Hsa32 and large HSP
HSP101 have recently been shown to form a regulatory
interaction circuit in the cytosol that controls the abundance of
HSP101 by Hsa32 and thereby thermomemory56. We propose
that the control of HSP (or, more general, chaperone protein)
abundance is a key mechanism for determining the duration of
the memory phase. Future research will unravel the molecular
details of the cellular networks that control the abundance and
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Figure 8 | Proposed model for the regulation of thermomemory via the

control of HSP21 protein abundance by FtsH6. A priming treatment (heat

stress) induces HSP21 and FtsH6 expression, and accumulation of the two

plastidial proteins. On progression into the memory phase, HSP21 protein

abundance decreases due to FstH6 activity, which restricts the duration of

the thermomemory. Right: No FtsH6 protein is produced in Arabidopsis

accession N13, due to DNA polymorphisms in its coding sequence (the

asterisk indicates the premature stop codon in the N13 FtsH6 sequence).

The lack of FtsH6 allows HSP21 protein to remain at higher abundance for a

longer time, thereby extending thermomemory duration. In addition to

HSP21, FtsH6 may control the abundance of other, currently unknown,

target proteins during the thermomemory phase (not indicated).
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functionality of heat stress-related chaperones as key components
of the plant’s thermomemory.

Methods
Plant material and growth conditions. The following Arabidopsis thaliana (L.)
Heynh. accessions were included in our preliminary screen for differences in
thermomemory: Col-0, N13, Cvi-0, C24, Ct, Can-0, Lip-0, Mdn-1, Mh-0, Mt-0,
Aitba-1, Abd-0, Bl-1, Bur-0, Dog-4, Tsu-0, St-0, Kas-1, Yo-0, Xan-1, Kondara,
Ler-0, Ko-2, Ri-0, Fei-0, Leo-1, Yeg-1, Ste-0, ICE1, Kin-0, Le-0, Oy-0, N14, Sah-0,
Berk, Hiro, Ita, HEK2, Stepn, Shign and Borsk2. Seeds were obtained from the
Arabidopsis thaliana Resource Centre for Genomics (INRA, France; http://
dbsgap.versailles.inra.fr/publiclines), or from Ellen Zuther and Roosa Laitinen,
Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany. Surface-
sterilized seeds were germinated in Petri dishes containing an identical volume
of Murashige-Skoog agar medium supplemented with 1% sucrose (w/v)) and
seedlings were grown under a diurnal cycle of 16 h light (120 mE m� 2 s� 1) at 22 �C
and 8 h dark at 22 �C.

Generation of transgenic plants. Constructs were generated by PCR and
restriction enzyme-mediated cloning. Sequences of oligonucleotides (Eurofins
MWG Operon; Ebersberg, Germany) are given in Supplementary Table 1.
PCR-generated amplicons were checked by DNA sequence analysis (MWG or
Seqlab). To generate HSP21 knockdown plants we engineered amiRNAs by
replacing the original miR319a/miR319a� sequence in plasmid pRS300 (ref. 63)
with HSP21-specific amiRNA sequences. To this end, three different amiRNAs
(amiRNA1: 50-TTAGTATCTAACATTTGTCGC-30; amiRNA2: 50-TGTATCTAAC
ATTTGTCGCAT-30; amiRNA3: 50-TATAATGTTGATCGAGTCCTA-30) were
designed using ‘WMD3: Web MicroRNA Designer 3’ to target different sites
of the HSP21 transcript (Supplementary Fig. 1). The amiRNA constructs were
subsequently cloned via added PmeI-PacI sites into pGreen0229-35S plant
transformation vector64 behind the cauliflower mosaic virus (CaMV) 35S
promoter. For 35S:HSP21, the HSP21 open reading frame was amplified by PCR
from Arabidopsis Col-0 leaf cDNA, inserted into pCR2.1 vector using TA cloning
kit (Invitrogen), and then cloned via added PmeI–PacI sites into pGreen0229-35S.
The 35S:FtsH6 construct was generated in the same way. Constructs were
transformed by floral dip into Arabidopsis using Agrobacterium tumefaciens.

Heat stress treatments. All heat stress treatments were performed in a water bath
or incubator, in the dark. Thermomemory experiments were performed as
described65. For the priming heat stress, seedlings were subjected to a heat regime
of 1.5 h, 37 �C; 1.5 h recovery at 22 �C; and 45 min, 44 �C. After the priming heat
stress treatment, seedlings were returned to normal growth condition for 3–4 days
(recovery or memory phase) and then subjected to heat stress/triggering stimulus,
that is, 1.5 h, 44 �C, a treatment normally lethal to plants that have not experienced
a priming stimulus. For acquisition of thermotolerance, plants were initially heated
to 37 �C for 90 min, returned to normal growth condition for 90 min, before finally
heating to 44 �C for 100 min. Basal thermotolerance was assayed by heating plants
to 44 �C without prior treatment at 37 �C. After heat treatments, plants were
returned to normal growth conditions until analysis.

The quantitative hypocotyl elongation assay was adopted from ref. 42. In our
assay, 4-day-old vertically grown, etiolated seedlings were primed at 37 �C for
90 min, then subjected to recovery for 2 days at 22 �C (memory phase), and finally
subjected to the triggering heat stress (44 �C, 45 min). The priming heat treatment
was omitted in control experiments. Hypocotyl length was measured 5 days after
the heat stress.

Immunoblotting and signal quantification. Total proteins from Arabidopsis
seedlings were prepared by phenol-based method66. Tissue powder was
homogenized in 500ml 0.7 M sucrose/0.5 M Tris/50 mM EDTA/0.1 M potassium
chloride, pH 9.4, containing 2% (v/v) 2-mercaptoethanol and cOmplete Protease
Inhibitor Cocktail (Roche; diluted to 1� final concentration) added before use.
The homogenate was mixed with 500 ml phenol and centrifuged at 20,000g
(centrifuge 5427 R, Eppendorf) for 10 min at 4 �C. The upper, phenol phase
was taken, and proteins were precipitated with the addition of 1 ml of 0.1 M
ammonium acetate in methanol and overnight incubation at � 20 �C. The protein
pellet obtained following centrifugation was washed sequentially with methanolic
ammonium. The protein pellets were dissolved in 1% SDS. The protein
concentration was determined with the BCA Protein Assay kit (Thermo Fischer
Scientific).

Proteins were resolved by SDS polyacrylamide gel electrophoresis. For
immunoblot analysis, proteins were blotted to Protan nitrocellulose membrane
(Sigma-Aldrich). Rabbit polyclonal antibodies were used in the following dilutions
(v/v): anti-Hsp21 (Abcam; product number: ab80175), 1:3,000; anti-FtsH6
(Agrisera; AS05094A), 1:1,000; anti-HSP101 (Abcam; ab80121), 1:1,000. IRDye
800CW-conjugated goat anti-rabbit IgG(Hþ L) antibody was used as secondary
antibody at 1:10,000 dilution (LI-COR Biosciences; 926-32211). Capturing bands
of interest was done using the Odyssey Infrared Imaging System (LI-COR

Biosciences), followed by quantifying band density with ImageJ software
(www. imagej.net).

In all western blot experiments, loading controls originated from the same gel.
For HSP21 and HSP101, the gels were cut into two parts. For HSP21, the lower part
was used for immunodetection and the upper part was used for quantification of
the protein (RbcL) loading, while for HSP101, the upper part was used for
immunodetection and the lower part was used for quantification of RbcL loading.
For FtsH6, the membrane was stripped after immunodetection and then stained
with Ponceau S (Sigma) for loading control. For the comparisons between
Arabidopsis Col-0 and N13 accessions, experiments were done in parallel in
identical incubation solutions and with identical incubation times and conditions.
Gel and immunoblot images have been cropped for presentation. Full-size images
are presented in Supplementary Fig. 10.

Chemical treatments. Five-day-old primed seedlings were transferred to liquid
culture medium containing 10 mM cycloheximide, 150mM 1,10-phenanthroline or
0.1% (v/v) dimethylsulphoxide (mock) as control. The seedlings were harvested at
the indicated time points and analysed by immunoblotting.

RNA isolation and microarray analysis. Global gene expression analysis by
Affymetrix was performed in one experiment. The RNeasy Plant Mini kit (Qiagen,
Hilden, Germany) was used to extract total RNA from primed and unprimed Col-0
seedlings at different time points (4, 8, 24 and 48 h) into the memory phase. Each
sample was a pool of B160 seedlings. A 3-mg aliquot of quality-checked total RNA
was then processed for use in Affymetrix ATH1 microarray hybridizations. Probe
preparation and Affymetrix ATH1 microarray hybridizations were performed by
ATLAS Biolabs (Berlin, Germany). Data analysis was performed as reported67. GO
annotation was done using the Singular Enrichment Analysis tool from AgriGO
(http://bioinfo.cau.edu.cn/agriGO)68 with the 60 upregulated genes (corrected P-
value smaller than 0.0015).

Quantative reverse trancription–PCR. Synthesis of cDNA and quantative reverse
trancription–PCR using SYBR Green were done as described67,69. Data were
analysed using the comparative Ct method70 with ACTIN2 (AT3G18780) as the
reference gene. Briefly, the Ct value of each gene was normalized to the Ct value of
the reference gene, revealing delta Ct (dCt). The level of expression was expressed
as the difference between an arbitrary value of 40 and dCt, so that a high 40-dCt

value indicates high gene expression level. Primers were designed using
QuantPrime (www.quantprime.de). PCR reactions were run on an ABI PRISM
7900HT sequence detection system (Applied Biosystems Applera, Darmstadt,
Germany). Primers were obtained from Eurofins MWG Operon; sequences are
given in Supplementary Table 1.

Sequence analyses. For sequence analyses, the tools of the National Center for
Biotechnology Information (http://www.ncbi.nlm.nih.gov/) and the Arabidopsis
Information Resource (http://www.arabidopsis.org/) were used.

Data availability. Microarray expression data are available from the NCBI Gene
Expression Omnibus (GEO) repository (www.ncbi.nlm.nih.gov/geo/) under
accession number GSE72949. The authors declare that all other data supporting the
findings of this study are available within the article and its supplementary
information files or are available from the corresponding author on request.
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Anna Stief from our department for establishing the heat priming protocol employed
in this study.

Author contributions
S.B. and B.M.-R. conceived the study and designed the experiments. S.B. supervised the
work. M.S. carried out the experiments. S.B. and B.M.-R. wrote the manuscript.

Additional Information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interest.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Sedaghatmehr, M. et al. The plastid metalloprotease FtsH6
and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis.
Nat. Commun. 7:12439 doi: 10.1038/ncomms12439 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12439

14 NATURE COMMUNICATIONS | 7:12439 | DOI: 10.1038/ncomms12439 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Identification of thermomemory-associated genes
	HSP21 confers priming-induced thermotolerance

	Figure™1Differential response of primed and unprimed plants to heat stress and identification of thermomemory-associated genes.(a) Schematic representation of the thermomemory experimental set-up. Unless otherwise indicated, five-day-old Arabidopsis thali
	HSP21 is more abundant in strong memory accession N13
	Cycloheximide blocks decline of HSP21 in Col-0 during memory

	Figure™2HSP21 affects thermomemory.Seedlings of HSP21 transgenic and wild-type (Col-0) plants were exposed to different heat stress regimes (schematically shown on the right of a and d). (a) Upper middle and top panels: heat stress triggering after extend
	FtsH6 metalloprotease affects HSP21 level during memory

	Figure™3Accession N13 has a superior ability to memorise a past heat stress.(a) Five-day-old seedlings of Arabidopsis accessions N13 and Col-0 were subjected to the heat stress triggering stimulus 3 or 4 days after priming, as shown schematically on the r
	Figure™4Differential abundance of HSP21 in Arabidopsis accessions N13 and Col-0 during the thermomemory phase.(a) Immunoblot analysis of HSP21 protein level after the first step of priming treatment (90thinspmin, 37thinspdegC) and during the thermomemory 
	Figure™5The effect of cycloheximide and 1,10-phenanthroline on the accumulation of HSP21.(a) Immunoblot analyses of HSP21 in accessions N13 and Col-0 at days 3 and 4 of the memory phase on cycloheximide (CHX) and mock (0.1percnt dimethylsulphoxide) treatm
	Discussion
	Figure™6Metalloprotease FtsH6 is involved in thermopriming.(a) FtsH6 expression in Arabidopsis N13 and Col-0 seedlings during the memory phase compared to unprimed controls. FC, fold change. Error bars indicate meansPlusMinuss.d. of three independent biol
	Figure™7Overexpression of FtsH6 restricts thermomemory in N13.(a) Seedlings of 35S:FtsH6Col-0solN13 and N13 EV were exposed to different heat stress regimes schematically shown on the top of each section; heat stress triggering stimulus after 3 days (left
	Figure™8Proposed model for the regulation of thermomemory via the control of HSP21 protein abundance by FtsH6.A priming treatment (heat stress) induces HSP21 and FtsH6 expression, and accumulation of the two plastidial proteins. On progression into the me
	Methods
	Plant material and growth conditions
	Generation of transgenic plants
	Heat stress treatments
	Immunoblotting and signal quantification
	Chemical treatments
	RNA isolation and microarray analysis
	Quantative reverse trancription-PCR
	Sequence analyses
	Data availability

	BalmerA.PastorV.GamirJ.FlorsV.Mauch-ManiB.The aposprime-omeapos: towards a holistic approach to primingTrends Plant Sci.204434522015HilkerM.Priming and memory of stress responses in organisms lacking a nervous systemBiol. Rev. Camb. Philos. Soc.2015202015
	We thank the Deutsche Forschungsgemeinschaft (DFG) for funding of the Collaborative Research Centre 973 ’Priming and Memory of Organismic Responses to StressCloseCurlyQuote (www.sfb973.de), Christiane Funks (Umea University, Sweden) for providing homozygo
	ACKNOWLEDGEMENTS
	Author contributions
	Additional Information




