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In this work, it is shown that surface-enhanced Raman scattering (SERS) measurements
can be performed using liquid platforms to perform bioanalysis at sub-pM concentrations.
Using magnetic enrichment with gold-coated magnetic nanoparticles, the high sensitivity
was verified with nucleic acid and protein targets. The former was performed with a DNA
fragment associated with the bacteria Staphylococcus aureus, and the latter using IgG
antibody, a biomarker for COVID-19 screening. It is anticipated that this work will inspire
studies on ultrasensitive SERS analyzers suitable for large-scale applications, which is
particularly important for in vitro diagnostics and environmental studies.

Keywords: SERS, COVID-19, SARS-CoV-2, bacteria, analysis

INTRODUCTION

Surface-enhanced Raman scattering (SERS) spectroscopy holds promises for ultrasensitive detection
of analytes in complex environments (Ding et al., 2016; Langer et al., 2020). This is of significance for
two reasons: First, disease-related biomarkers are often present at concentrations lower than the limit
of detection (LoD) of existing techniques (Wu et al., 2019). Examples of such samples include
circulating tumor biomarkers (e.g., microRNA and cells), proteins, exosomes, bacteria pathogens,
and SARS-CoV-2 biomarkers in blood (Mattioli et al., 2020; Jiang et al., 2020a; Sitjar et al., 2021).
Second, SERS is capable of detecting single molecules (Bell et al., 2020; Zheng et al., 2015; Kneipp
et al., 2006), and as a vibrational spectroscopic tool, the Raman spectra can provide molecular
fingerprints of the sample that is highly specific (Zheng et al., 2013; Zheng et al., 2015; Ye et al., 2019;
Langer et al., 2020; Mattioli et al., 2020), the signal of which is significantly enhanced when
performed in ultraviolet (Renard et al., 2019; Chen et al., 2021). The dual sensitivity/selectivity of
SERS is desirable for several applications, particularly in vitro diagnostics and environmental
monitoring (Long and Gooding, 2016; Liu et al., 2017; Wei et al., 2017; Zhang et al., 2018; Chen
et al., 2020a).

One goal for SERS is ultrasensitive quantification of rare species (e.g., sub-pM) using techniques
that are both accessible and reproducible (Joseph et al., 2012). Conventional SERS measurements
typically require substrates made with, for example, electron beam lithography, self-assembled
nanoparticle arrays on solid support, or simply mixing analytes with nanoparticle suspensions
(Ciallam et al., 2012; Thai et al., 2012). Among them, nanofabrication produces well-defined
substrates but is challenging to manufacture at large scale (Ying et al., 2008). Colloidal
suspensions are attractive for their straightforward production, but the resulting organization of
the substrate can be poor due to the random structures formed (Banholzer et al., 2008).
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Self-assembled super-lattice arrays on solid surfaces are
promising for their reasonably good organization and easy
fabrication (Thai et al., 2012; Ye et al., 2019). Issues remain in
developing SERS-based detection to address real-world problems,

where factors such as sensitivity, specificity, cost of the
instrument, and reproducibility of the assay should all be
addressed to meet production requirements and analytical
standards (Fan et al., 2020). Of interest is recent studies
showing that well-defined SERS substrates can be produced
directly in the liquid-state via self-assembling gold
nanoparticles between the phases of immiscible solvents (Ma
et al., 2016; Tian et al., 2018; Du et al., 2019; Su et al., 2019). This is
attractive as gold colloids can be obtained easily, and it provided a
simple and reproducible method to perform SERS at minimal
cost. This was suitable for large-scale applications which
predominantly rely on solution-based measurements.

In this work, we demonstrate that the limit of detection (LoD)
of liquid interfacial SERS can be improved by three orders of
magnitude to allow pM-level (parts per trillion) immunosensing.
We show that using surface-modified, gold-coated magnetic
nanoparticles (Au@MNPs), nucleic acid and protein targets
with concentration lower than that of pM could be quantified.
Protein assays were performed using IgG antibodies, a biomarker
elevated in patients infected with SARS-CoV-2 viruses (Yao et al.,
2020). The results were compared with paper-based lateral flow
assays which are currently used for COVID-19 antibody
screening (Chan et al., 2020). The experimental results were
supported with a simple electromagnetic (EM) simulation,
showing significantly enhanced SERS signals in the gap
formed between the Au@MNP and the substrate. The current
work demonstrated that magnetically enhanced liquid SERS
could be used to detect analytes of ultralow abundance, which
is pertinent for clinical and environmental applications, such as
in vitro diagnostics and water quality monitoring (Beveridge
et al., 2011).

RESULTS AND DISCUSSIONS

Analysis of Staphylococcus aureus Nucleic
Acid
The synthesis and characterization of gold-coated magnetic
nanoparticles is discussed in detail in the supporting
information. In short, Au@MNPs were prepared via typical
solution-based approaches via electrostatic adsorption, and
then coated with DNA to form well-organized self-assembled
monolayers on the surface. The performance of magnetically
enhanced liquid SERS was first tested for a nucleic acid target. In
this work, Staphylococcus aureus (S. aureus) was chosen, as it
played a critical role in cross-infections among hospitalized
patients (Pazos-Perez et al., 2016). A three-fragment assay was
performed (Figure 1A), in which single-stranded DNA (surface
strand, 20 bases) was attached onto Au@MNPs via gold–thiol
bonding using freeze-induced surface modifications (Liu and Liu,
2019). The Au@MNPs were then coated with polyethylene glycol
to reduce nonspecific adsorptions, after which target strands (S.
aureus DNA fragments, 40 bases) were added. The sticky end of
the target DNA was complementary to the signal probe strand
labeled with Cy3 (20 bases), a standard dye for SERS analysis. In
this way, thermodynamically stable, double-stranded surface
geometry can be formed when the target strand was present.

FIGURE 1 | Ultrasensitive detection of nucleic acid fragments of S.
aureus with the liquid-state SERS platform. (A) Sample preparation and
analysis flowchart. (B) SERS spectra of nucleic acid samples with different
concentrations. (C) Concentration vs. integrated intensity curve using a
signature peak at 1,424 cm−1, showing linearity of the SERS signal from ∼10
pM to 106 pM. The error bar was obtained by finding mean to six
measurements on the same sample, and averaged out of three samples. The
signal probe used in this case was Cy3, a standard Raman dye for DNA
labeling.
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The SERS spectra were measured for targets at various
concentrations, as shown in Figure 1B. Analysis was performed
in solution when incubating Au@MNPs with the target strands
prior to applying the magnetic field. Quantification was performed
using an excitation source of 785 nm continuous wave laser
(power: 100 mW, integration time: 15 s) and signal recorded
with a Raman fiber spectrometer. Using a signature peak of the
Cy3 dye at 1,424 cm−1, which corresponds to the C-H in-plane
deformation mode (Li et al., 2020a), a linear trend between the
concentration of the nucleic acid and peak intensity was observed
in the dynamic range between 10 pM and 106 pM, with a linear

correlation coefficient of>0.99. A limit of detectionwas found to be
∼8.5 pM using a signal-to-noise (S/N) ratio above three. The use of
the liquid SERS substrate was important because it was found that
the Raman signature was weak with only using Au@MNPs
(Supplementary Figure S1). This also suggested that the liquid-
state SERS substrate remained stable even when magnetic
nanoparticles were attached to it.

We further verified the performance of the magnetically
enhanced SERS with protein targets, as seen in Figure 2. The
SARS-CoV-2 antibody, immunoglobulin G (IgG), was chosen as
the target antigen. The IgG antibody binds strongly to the S spike
protein fragments on the surface of SARS-Cov-2 virus, and is a
standard biomarker for tracking and screening COVID-19
patients, typically using blood samples (Chen et al., 2020b; Yao
et al., 2020). In practice, the concentration of IgG in serum is often
below the LoD of many of the existing technologies, down to the
pM range (Li et al., 2020b; Kohmer et al., 2020). This is challenging
for early-stage/asymptomatic infections. Given the scale and
severity of the COVID-19 pandemic with a possibility to prevail
in the next few years given the many emerging mutants, such as
Delta and Lamda variants (Kemp et al., 2021), it is of importance to
develop reproducible methods to quantify IgG antibodies with high
sensitivity (Deeks et al., 2020).

Au@MNPs were modified with a biotinylated PEG layer
before being coated with a streptavidin-labeled, anti-IgG
primary antibody, as shown in Figure 3A. Using a secondary
antibody (Alexa-488 labeled goat anti-mouse antibody) to
capture IgG, the assay was conducted in a standard sandwich
format, and SERS measurements were performed following
magnetic pull-down. The reason that Alexa 488 (instead of
Cy3 used for DNA measurements) was used was due to the
commercial availability of the dye as protein labels. As can be seen
in Figure 3, B-C, with target enhancement, clean SERS spectra
were obtained for target concentrations below 1 nM. Using a
signature peak in Alexa 488, which occurred at 1,306 cm−1,
corresponding to the amide stretch (Chen et al., 2011), a clear
linearity between peak intensity and analyte concentration was
seen between ∼0.5 and ∼500 pM, a detection range inaccessible to
current liquid-SERS measurements. In this case, an LoD was
found to be ∼0.37 pM using the S/N ratio of 3.

Since the majority of IgG tests for COVID-19 in clinical
environments are performed with serum samples, the
performance of the SERS analyzer was further studied using a
commercially obtained whole blood mimic. As seen in Figures
3A,B, the performance of the magnetically enhanced SERS sensor
was comparable to when using buffer-based systems, with a linear
trend observed when concentration of the target was between ∼0.5
and ∼500 pM, with a correlation coefficient over 0.98. An LoD of
∼0.42 pM was determined using the S/N ratio of above three. The
fact that the assay could be performed using whole blood mimic
was promising, as the use of the PEG layer on the surface of
nanoparticles could minimize nonspecific adsorption of serum
proteins (Wang et al., 2012; Zheng et al., 2013; Jiang et al., 2020b).

The performance of the SERS analyzer was compared with the
paper-based lateral flow assay (LFA) (Figure 3C). The paper-based
LFA is a standard method for antibody screening and had
comparable LoD with the enzyme-linked immunosorbent assay

FIGURE 2 | Ultrasensitive detection of protein targets (IgG antibody) in a
typical sandwich assay format. (A) Schematic illustration of the antibody
detection process. The antigen here is the IgG antibody which is elevated in the
serum of patients with COVID-19. An S2 protein fragment was used as the
primary antibody, and an Alexa 488 dye labeled anti-IgG antibody was used as
the secondary antibody. (B) SERS spectra for targets of various concentrations.
(C) Linear trend showing a detection limit of IgG down to ∼1 pM.
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(ELISA) but has the advantage of not relying on instruments.
Herein, it was prepared using a standard nitrocellulose filter
membrane (Quesada-González and Merkoçi, 2015), the testing
line (T-line) was imprinted with anti-IgG antibody (goat
anti-mouse), and the control line (C-line) was imprinted with
rabbit IgG antibody (IBL, JP17312). To perform an IgG antibody
test, a mixture containing three components was added: (1) gold

nanoparticle solution with surfacemodified with S protein, (2) gold
nanoparticle colloidal with surface modified with goat anti-rabbit
IgG antibody (Abcam, ab6702), and (3) the target antibody (IgG).
A gradual increase of color was observedwhen the concentration of
IgG was varied between 0 and 66 nM, with an LoD found to be in
between 4 and 8 nM. The results indicated that the magnetic
liquid-SERS analyzer has superior LoD than paper-based LFA.

FIGURE 3 | Ultrasensitive analysis of IgG antibodies using whole blood mimic and comparison to a paper-based lateral flow assay. (A) Typical SERS spectra with
targets of different concentrations. (B) Linearity showing increasing intensity of the signature peak at varied concentrations of the analyte. Three samples were used for each
measurement. (C) Principle and (D) results of the paper-based lateral flow sensor, showing a LoD of between 4 and 8 nM in a typical paper-based lateral flow assay.

FIGURE 4 | Finite-difference time-domain (FDTD) analysis showing enhanced electromagnetic (EM) field in between the gap formed by the Au@MNP and the liquid-
state SERS substrate.
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We attribute the excellent performance of the magnetically
enhanced liquid state SERS to two reasons. First, sampling is
improved when targets are enriched near the surface of the
liquid–liquid interface of the plasmonic substrate. Second,
magnetic enhancement leads to the formation of SERS hotspots
between the substrate and the nanoparticles, in which gap-mode
SERS can occur, as seen in Figure 4. In these scenarios, the EM
enhancement factor can reach ∼108 times or higher, which
corresponds to ∼1012 time SERS enhancement, much higher than
that of using the nanoparticle or substrate only. This is because

GSERS ≈ (|Elocal(ωr)|)4/(|E0(ω0)|)4,
whereG is the enhancement factor and E is the intensity of EM field
at particular frequency (ω). The gap-mode system shows stronger
enhancement than what can be achieved with the nanoparticles or
substrate only, regardless of the magnetic core.2 Saying this, due to
the limited scope of this work, a detailed analysis as to what extent
each factor contribute to the final LoD is not done, but can be
investigated in future studies. It is expected that with improved
geometry of the Au@MNP, such as using star-shaped nanoparticles,
the performance of themagnetic liquid SERS analyzer can be further
improved. Another direction worth exploring is the effect of surface-
enhanced resonant Raman scattering (SERRS) effects in this system.
Resonant Raman can be important for its high-bond selectivity and
capability for multiplexed detection (Faulds et al., 2005) This is
particularly attractive when performed in ultraviolet waveband
because DNAs and proteins absorb UV light strongly (Renard
et al., 2019; Wu et al., 2021)

Since there are many studies in the literature focusing on
ultrasensitive SERSmeasurements, a main advantage of this study
is not to show the sensitivity is more superior than that of others
but to demonstrate accessibility and high sensitivity can be
achieved at the same time with ease with cost-effective
instruments. In fact, pM sensitivity already answers to clinical
demand, and the method is scalable at an industrial level. A
comparison to several selected methods is shown in Table 1.

CONCLUSIONS AND FUTURE
PERSPECTIVE

This study can be summarized as follows: (1) magnetic
enhancements significantly improve the sensitivity of liquid-
state SERS by lowering the limit of detection (LoD) by at least
three orders of magnitude to enable pM-level detection of
biomolecules. (2) The LoD for nucleic acid targets was

determined by using DNA fragments associated with
Staphylococcus aureus, a bacteria associated with cross-
infections in hospitals. (3) Analysis for protein antibodies was
determined with IgG antibodies used for COVID-19 screening,
with a LoD of lower than 0.5 pM. The results were compared with
paper-based LFA, showing significantly improved LoD of the
magnetic liquid-SERS method. Due to the simple, reproducible
process of substrate preparation and high performance of the
assay toward both protein and nucleic acid targets, we expect this
work to inspire further studies toward ultrasensitive SERS
biosensors that could be scaled to mass production.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

ZJ, CZ, YY, and JJ performed experiments. HD performed
simulation. EF, XC, and SH supervised the study. All authors
contributed to the manuscript writing.

ACKNOWLEDGMENTS

We gratefully acknowledge the National Natural Science
Foundation of China (61905211, 91833303, and 61774131),
the National Key Research and Development Program of
China (2017YFA0205700), the Science Foundation of Zhejiang
Province (Y21B050009), the Key Clinical Specialty Discipline
Construction Program of Fuzhou, Fujian, China (201807111), the
Fundamental Research Funds for the Central Universities (Grant
nos. 511308*172210191 and 2019FZA5002), Key R&D Plan of
Zhejiang Province (2019C03089), and Ningbo Science and
Technology Project (2018B10093).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fbioe.2021.735711/
full#supplementary-material

TABLE 1 | Comparison of this work with typical SERS assay in the literature.

Assay type Limit of detection Scalability/accessibility Time of operation Instrument cost

Magnetic liquid SERS (this work) 10–12 M Excellent < 1 min Low
< 10 k USD

Liquid SERS (Ma et al., 2016; Tian et al., 2018) 10–9 M Excellent < 1 min Low
< 10 k USD

Nano star SERS (Indrasekara et al., 2014; Li et al., 2021) 10–15 M Good ∼ 5 min Varies
Single-molecule SERS (Yang et al., 2016; Li et al., 2021) 10–18 M Poor ∼ 15 min High

Over 100 K USD
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