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On the performance of pre-microRNA detection
algorithms
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MicroRNAs are crucial for post-transcriptional gene regulation, and their dysregulation has
been associated with diseases like cancer and, therefore, their analysis has become popular.
The experimental discovery of miRNAs is cumbersome and, thus, many computational tools
have been proposed. Here we assess 13 ab initio pre-miRNA detection approaches using all
relevant, published, and novel data sets while judging algorithm performance based on ten
intrinsic performance measures. We present an extensible framework, izMiR, which allows
for the unbiased comparison of existing algorithms, adding new ones, and combining multiple
approaches into ensemble methods. In an exhaustive attempt, we condense the results of
millions of computations and show that no method is clearly superior; however, we provide a
guideline for biomedical researchers to select a tool. Finally, we demonstrate that combining
all of the methods into one ensemble approach, for the first time, allows reliable purely
computational pre-miRNA detection in large eukaryotic genomes.
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ince their discovery, about two decades ago, microRNAs

(miRNAs) have been detected in a large number of

organisms including microbes!, sponges’, metazoan’,
plants?, and viruses’. Nowadays, miRNAs are considered
important factors in many human diseases and they are believed
to be good candidates for disease markers and therapeutics®. In
plant breeding studies miRNAs are applied to control agrono-
mical traits such as tolerance to biotic and abiotic stress factors, to
increase yield, modify fruit development, and influence crop
quality” &,

Dysregulation of miRNAs is a hallmark of diseases; among
them cancer’, that makes miRNAs interesting as biomarkers'?,
even more so since they are often detectable in bodily fluids'! and
thus are accessible with low-invasive methods. Modulation of
miRNA abundances may lead to therapeutics'? that may prove to
be especially useful in personalized medicine!®. Particularly when
taking into account miRNAs’ possible roles in cell-cell (circulat-
ing miRNAs)'* and pathogen-host communication'®. Experi-
mental detection of miRNAs can be achieved using miRNA
profiling approaches, such as microarray, quantitative real-time
PCR (qPCR), and deep sequencing technologies'®~!8, There exist
some challenges in employing such experimental methods!®. For
instance, QPCR-based and microarray miRNA experiments suffer
from low specificity and need extensive normalization!® 18, Both
approaches also cannot detect novel miRNAs' since either pri-
mer (qPCR) or target sequences (microarray) need to be pre-
determined. This need for a priori knowledge does not pose a
problem for sequencing-based approaches, but they are hampered
by the need for extensive downstream computational analyses,
such as by tools covered and discussed here!®. Finally, a miRNA’s
effect is in the best case established on the protein level, and
therefore all approaches need to be amended with Western blot
or mass spectrometry analyses, adding significantly to the
experimental complexity?°.

Considering the massive impact of miRNAs especially in
human disease and plant breeding (i.e., human nutrition) and
taking into account our inability to experimentally determine all
pre-miRNAs, it is crucial for the community to be able to rely on
computational methods for pre-miRNA detection.

Although many tools for the detection of pre-miRNAs have been
developed (Table 1) a number of key issues remain unaddressed.
The first problem is that many of the tools do not provide a readily
working implementation (Table 1), which makes it impossible for
researchers to select the right tool for their data. Moreover, the most
popular tool according to Google Scholar citations will turn out to
be, in general, the least effective one according to our findings (see
below). It is thus evident that guidelines for tool selection need to be
provided to enable researchers to make an informed choice when
selecting a tool. In addition, performance comparison among tools
cannot be done based on their published metrics since they are
based on different data sets, used different approaches to estab-
lishing pre-miRNA detection models, and present diverse perfor-
mance measures. A unified, unbiased evaluation was lacking. Lastly,
previous evaluations have been performed for a subset of the state
of the art, but only when a new tool was to be published and using
different data as well as varying parameters, which obfuscates
comparative evaluations.

Here, we introduce the first neutral, comprehensive, and
quantitative evaluation of the state of the art in ab initio pre-
miRNA detection. To cope with the combinatorial complexity, we
developed izMiR, a freely available platform (http://jlab.iyte.edu.
tr/software/izmir), which allowed the exhaustive application of
the 13 tools compared in this study. The izMiR framework fur-
ther enables the streamlined developing of new approaches and
repurposing of the methods provided for specific scenarios for the
community.
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In the following, we present an in-depth comparison of the 13
most popular tools (Table 1). We employed all published positive
and negative data sets and added eight additional ones for tool
comparison (Table 2). Part of the data was used in training and
testing, and those data sets provide intrinsic, whereas, remaining
data sets provide extrinsic performance measures. For both kinds,
we record ten statistics, but only discuss accuracy and the area
under the receiver operator characteristic (area under the curve
AUCQ) in the following although each of the measures could be
used for the ranking of the 13 approaches. Using our izMiR fra-
mework, for each of the 13 tools, we picked the best models from
3000 trials to represent it for further analysis. These models were
applied to all known pre-miRNAs and to thousands of sequences
that likely host no miRNAs leading to millions of calculations. All
izMIR results are stored within the framework and can be directly
inspected at every step of the calculation. Thus, integration and
comparison with future results is seamlessly supported without the
need for computationally expensive recalculations.

We condense the final results of more than 20 million com-
putations into a final summary and guideline. First, we observe
that no tool significantly outperforms all other tools on all data
sets. We, therefore, consider ensemble methods which unify all 13
tools into 6 different predictors. These ensemble predictors, when
analyzed in the same manner as the single tools, provide a sig-
nificant boost in prediction performance. In general, the Aver-
agepr ensemble classifier works best.

Results

Comparison of available tools. Uniform implementations for all
tools evaluated in this study were created since few of the original
tools have been available and functional (Table 1). For our ana-
lysis, we used three machine learning algorithms, decision trees
(DT), support vector machines (SVM), and naive Bayes classifiers
(NB) (Online Methodology; Fig. 1). Figure 1 provides an overview
of the accuracy distribution using 1000 fold Monte Carlo cross-
validation (MCCV)?! for the averaged performance of all three
classifiers (per classifier distributions are also available: DT:
Supplementary Fig. 1, NB: Supplementary Fig. 2, and SVM:
Supplementary Fig. 3; Supplementary Table 1).

It can be directly observed from Fig. 1 that there is no
universally best model and this is further supported by
Supplementary Figs. 1-3 and Supplementary Tables 2, 3.

Figure 1 indicates that although Chen,,, has the highest
absolute performance, Ng,; and Ding,,, displayed better overall
performance since their accuracy distribution is much less data-
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Fig. 1 Classifier accuracy distribution. Box-whisker plots showing the
accuracy distribution among selected studies for 1000-fold MCCV. The
individual accuracy measures of the DT, NB, and SVM classifiers were
merged to create this plot. Per classifier results can be found in
Supplementary Figs. 1-3
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Table 1 Available pre-miRNA detection tools

available genomes and
ncRNAs from rFam

Study ML algorithm Feature Positive data Negative data Sampling Implementation Number of
number citations
(Google
Scholar)
Xue?® SVM 32 MiRBase 5.0 CODING dataset (Pseudo) Random selection * 412 (34)
(approx. 1:1 positive
negative ratio)
Jiang®’ RF, SVM 34 MiRBase 8.2 pseudo Random sampling * 376 (48)
(approx. 1:1 positive
negative and 1:1.5
training testing ratio)
Ng37 SVM 29 MiRBase 8.2 pseudo Random selection * 203 (19)
without replacement
(1:2 positive negative
ratio)
Batuwita®® SVM 21 MiRBase 12 pseudo & Human other Outer-5-fold-cv + 172 (16)
ncRNAs
Xu4® A novel ranking 35 MiRBase Random, non-overlapping ~ Random selection (1:2 * 80 (4)
algorithm based (September 1, 90nt fragments from the positive to negative
on random walks 2007) human genome ratio)
& SVM
Ding>© SVM 32 Known miRNAs ~ UTRdb & ncRNA from Outer 3-fold cross- - 61 (11
Rfam 9.1 validation
Chen¥! LibSVM 99 miRBase (2013) pseudo & Zou Leave-one-out + 31(24)
Burgt>! L score classifier 18 non-plant miRNA - 10-fold cross-validation ~ * 31 (4)
hairpin sequences
(miRBase version
9.0)
Gudys*© NB, MLP, SVM, 28 MiRBase 17 From genomes and mRNAs  Stratified 10-fold CV + 27 (5)
RF, APLSC of ten animal and seven
plant species as well as 29
viruses
Ritchie>2 SVM 36 Murine miRBase  Transcripts without - - 20 (5)
v17 evidence of processing by
Dicer
Bentwich®3 - 26 Hairpins from 10000 hairpins found in - 20 (2)
Human Genome  non-coding regions
Lopes>* SVM, RF, GZDE 13 MiRBase 19 pseudo Non-standard training * 16 (6)
and testing scheme.
Gao®® SVM 57 MiRBase v20 Exonic regions of our some 1.1 positive to negative  * mnm

ratio

implementation exists, — no implementation, * experienced problems with the implementation

whether an implementation is available

SVM support vector machine, NB Naive Bayes, MLP Multi-Layered Perceptron, RF Random Forest, APLSC Asymmetric Partial Least Squares Classification, G2DE Generalized Gaussian Density Estimator, +
Previously published studies performing ab initio pre-miRNA detection using machine learning (ML). Listed are the number of features that were effectively used, the training data that was employed and

The negative data (see Online Methods) “pseudo” was generated by Xue'® but downloaded from Ng'”. The Table is sorted by the number of citations in Google Scholar (please note that there is a
relationship between year of publication and number of citations, therefore, the number of citations in 2016 is provided in parentheses, as well)

and/or classifier-dependent (Supplementary Tables 2, 3) than
Chen,y,, and since the difference among their maximum accuracy
is not very large (Chengyy: 0.91, Ngpr: 0.90, and Dingyp: 0.89).
The results further show that all models perform much better
than random guessing (0.5); but also that none significantly
outperforms all others. Therefore, we designed six consensus
models integrating the best models from all studies (refer to
“Methods” section and http://www.nature.com/protocolex
change/protocols/4919). These consensus models were compared
to the individual studies regarding their receiver operator
characteristic curves (Supplementary Figs. 4, 5). The Averagepr
model performed best reaching an AUC of 0.99, thereby being
much better than the next best models Dingp, (AUC: 0.93) or
Chenpt (AUC: 0.91).

Model performances. The performance of the generated models
is data dependent and, therefore, we applied the NB and the DT
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models to all published positive and negative data sets as well as
to eight novel ones (Table 2). Positive data sets derive from
miRBase and MirGeneDB, where the latter is indicated with a
“+7 suffix. The mmu* data set represents a filtered version of the
available mouse data in miRBase (mmu + represents mouse data
from MirGeneDB) and the novel positive data sets we create
present random values constrained to specific ranges (see
“Methods” section).

The generated models were trained using human examples
from miRBase, and they may not be applicable for other species
in miRBase. In order to test how well these models generalize,
they were used to predict all available pre-miRNAs from all
223 species available in miRBase (http://jlab.iyte.edu.tr/software/
izmir) using the mirbase data set, data from MirGeneDB, and all
negative data (Table 2). The Bentwichyg model performed best
with 97.53% correct predictions, followed by the Consensuspr
model with 96.71% (Supplementary Table 3). This analysis
established the positive prediction rate of the trained models.
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Table 2 Data sets

all features (pseudo)

Dataset Type Size Property Source
hsa Positive 1881 All human miRNAs in miRBase http://www.mirbase.org
mirbase Positive 28596  All miRNAs available in miRBase http://www.mirbase.org
mmu Positive 1193 All mouse miRNAs in miRBase http://www.mirbase.org
mmu* Positive 380 Mouse miRNAs in miRBase (RPM > =100) http://www.mirbase.org
mirgenedb  Positive 1434 All miRNAs available in MirGeneDB http://www.mirgenedb.org
hsa+ Positive 523 All human miRNAs available in MirGeneDB http://www.mirgenedb.org
mmu+ Positive 395 All mouse miRNAs available in MirGeneDB http://www.mirgenedb.org
gga+t Positive 229 All chicken miRNAs available in MirGeneDB http://www.mirgenedb.org
dre+ Positive 287 All zebra fish miRNAs available in MirGeneDB http://www.mirgenedb.org
NegHsa Negative 68046 Extracted from genome and mRNAs of H. sapiens http://adaa.polsl.pl/agudys/huntmi/huntmi.
htm
Zou Negative 14246 Extracted from coding regions http://datamining.xmu.edu.cn/main/
~leyiwei/mirnaDetect.html
pseudo Negative 8492  Popular, used in many studies, constructed by using the protein coding http://web.bii.a-star.edu.sg/archive/stanley/
sequences (CDSs) of human RefSeq genes with no known alternative splice  Publications/Supp_materials/06-002-supp.
events html
Chen Negative 3054 Excerpt of the combination of Zou and Pseudo http://bioinformatics.hitsz.edu.cn/iMiRNA-
SSF/Material.jsp
NotBestFold Negative 1881 Created by not using the best fold proposed by RNAFold for human hairpins  http://jlab.iyte.edu.tr/software/izmir
from miRBase
Shuffled Negative 1423 Created by shuffling hsa data http://jlab.iyte.edu.tr/software/izmir
hsarg Positive 5000  Created by random number generation between minimum and maximum for http://jlab.iyte.edu.tr/software/izmir
all features (hsa)
hsagq Positive 5000  Created by random number generation between lower and upper quartile for http://jlab.iyte.edu.tr/software/izmir
all features (hsa)
hsaam Positive 5000  Created by random number generation between 40th and 60th percentile for http://jlab.iyte.edu.tr/software/izmir
all features (hsa)
pseudogg Negative 5000  Created by random number generation between minimum and maximum for http://jlab.iyte.edu.tr/software/izmir
all features (pseudo)
pseudogg Negative 5000 Created by random number generation between lower and upper quartile for http://jlab.iyte.edu.tr/software/izmir
all features (pseudo)
pseudoam Negative 5000  Created by random number generation between 40th and 60th percentile for http://jlab.iyte.edu.tr/software/izmir

List of positive and negative data sets used to create and evaluate pre-miRNA detection tools. The first 13 rows refer to previously available data sets whereas the latter 8 are created for this study

Additionally, prediction on a subset of the positive data like hsa,
mmu, and mmu* was tested, and Consensuspt performed well in
all cases (Table 3).

It is important to assign positive examples correctly, but it is
equally important to reject negative ones accurately. In order to
establish how efficient non-miRNAs are rejected, nine data sets
containing putative negative examples were acquired or estab-
lished (Table 2). Xuyp performed best for the combination of all
negative data sets, followed by Xueyp and Jiangysp. Interestingly,
Bentwichyg achieved very poor results for the prediction of pre-
miRNAs (last rank) and the models performing well in negative
data fail for positive data ranking in the bottom of the list
(Supplementary Table 3). These results clarify that both positive
and negative prediction rates need to be considered at the same
time. Evaluating the tools according to the summed rank for both
measures concurrently, the consensus models showed highest
performance taking the first three ranks (Table 3).
Opverall, Averagepr performed best which is consistent with the
receiver operating characteristic (ROC) analysis (Supplementary
Fig. 4).

Using izMiR on eukaryote genomes. Can computational models
be applied to the analysis of large eukaryotic genomes is a
question that needs careful evaluation. To test this, we analyzed
the Drosophila melanogaster (dme) genome. We used izMiR
models generated using human (hsa model) and Drosophila (dme
model) hairpins. As a representative for human models, Aver-
agepr was used to establish whether the known hairpins for dme
can be found. Applying confidence thresholds of 0.96 and 0.84 to
the 256 dme hairpins from miRBase, 183 hairpins were identified
using the dme model while 144 hairpins were detected with the
hsa model. As should be clear from previous works®> and from
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the filtered mouse results, it is unlikely that all dme hairpins in
miRBase are true miRNAs.

From the genome-wide miRNA search in the dme chromo-
some 2L, we could not extract 16 out of the 56 drosophila
hairpins mapped to the 2L chromosome in miRBase. Manual
inspection revealed that the secondary structure predicted for the
affected regions in the genome did not include structures suitable
for pre-miRNAs. We discuss the validity of the 16 dme examples
on the website for izMiR (http://jlab.iyte.edu.tr/files/izmir/
HairpinAssessment.pdf). We note here that the dme model
retrieved all of the hairpins we reject while the hsa model only
detected 12 (missed ones: dme-mir-4943 (score: 0.33), dme-mir-
288 (score: 0.24), dme-mir-1004 (score: 0.18), and dme-mir-4914
(score: 0.02). This analysis confirmed that both models can be
used for the detection of pre-miRNAs in the dme chromosome
2L. For the remaining 40, we analyzed the prediction scores from
Averagepr, and we set thresholds based on lower quartile values
as 0.96 for dme model and 0.84 for the hsa model (Supplementary
Fig. 9). With these cutoff scores, 25 of the miRNAs in the 2L
chromosome were found in our extracted hairpins in both
models’ predictions while dme-mir-275, dme-mir-9378, dme-
mir-1006, dme-mir-966, dme-mir-967 hairpins, and dme-mir-
125, dme-mir-275, dme-mir-9374, dme-mir-960, dme-mir-962,
dme-mir-9c¢ hairpins passed the hsa or dme models, respectively.
Overall we predicted 17,455 candidate miRNAs with the dme
model and 43,103 candidates with the hsa model out of
581,883 hairpins in the 2L chromosome (Supplementary Fig. 8).
Among these sequences, there are likely to be redundant ones, as
we confirmed using USEARCH for clustering of the
~290,000 sequences, which lead to the elimination of ~65,000
highly similar sequences from the pool. The threshold of the dme
model is already very high, but the hsa model’s threshold can be
further adjusted to reach a number of predictions suitable for

| DOI: 10.1038/541467-017-00403-z | www.nature.com/naturecommunications
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Table 3 Model performance summary

Model Negative Positive Total rank

NegHsa Zou Pseudo NotBestFold Shuffled Chen Pseudogr Pseudogq Pseudoay Neg Rank hsa mmu mmu* mirbase hsagg hsagq hsaam mirgenedb hsa mmu gga dre Pos rank

+ o+ + +

Averagept 82 56 93 31 93 77 30 100 100 99 97 83 95 91 91 100 100 97 98 96 98 96 52 151
Consensusyg 89 52 86 24 96 77 53 100 100 97 86 82 93 89 100 100 100 96 96 93 98 97 84 181
Consensuspr 74 44 90 20 88 72 16 100 100 155 99 87 96 93 97 100 100 98 99 97 100 97 31 186
Dingns 93 47 84 9 96 73 30 100 100 127 88 84 94 90 100 100 100 97 97 96 97 97 59 186
Averagens 92 58 89 95 97 82 86 100 100 50 83 77 91 87 99 100 100 94 95 91 96 95 148 198
Ngpr 74 64 89 13 91 77 31 100 100 n8 89 80 93 88 85 100 100 96 96 94 98 97 100 218
Consensus 84 69 96 69 89 81 58 100 100 70 97 76 94 87 33 100 100 92 95 89 93 92 157 227
Model
Batuwitang 90 53 83 n 97 76 45 100 100 14 86 79 92 87 98 100 100 96 9% 93 97 97 120 234
Bentwichyg 37 23 71 9 69 52 21 100 100 222 92 92 98 95 99 100 100 99 99 97 100 100 26 248
Ngne 74 42 81 9 87 63 36 100 100 187 86 83 95 91 99 100 100 96 97 94 98 98 63 250
Mean 80 56 86 51 89 75 52 98 97 85 75 89 84 67 9% 97 89 89 86 89 89

to the complete results in Supplementary Table 5

Top ten models from the two machine learning algorithms generated for all 13 studies and 6 ensemble methods and their performance in respect to the 21 data sets examined in this study. The table is
sorted by total rank which indicates the overall best performance considering all data sets equally. The minimum possible total rank is 21, and the maximum one is 672. Values are the prediction
correctness (positive/negative) for the different data sets (Table 2). The complete results are provided in Supplementary Table 5 including highlighting similar to a heat map. The calculated mean refers

experimental validation. For example, choosing a threshold of
0.99 for the hsa model leads to a mere 585 hairpins that need to
be examined (Supplementary Table 6).

Forming consensus is better than individual effort. Deciding
which of the 13 methods to use can be a daunting task. Initially,
tools need to be acquired, but some may not be available or
functional (Table 1). Then these tools need to be compared and
their settings need to be optimized for the given problem, which
is a complicated and time-consuming process. With the izMiR
framework, we solved all of these problems by providing a
working implementation of all 13 tools. Furthermore, for all these
tools we analyzed their performance on all known pre-miRNAs in
miRBase, all previously used negative data sets, and novel ones.
For different models generated from different classifiers (DT, NB,
and SVM) Ding, NG, and Chen perform best (Supplementary
Table 1), but only Xue and Lopes can be readily discarded as
alternatives while among the others none significantly outper-
forms all others (Fig. 1). To overcome this decision-making
processes, we developed ensemble methods, and notably, Aver-
agepr outperforms all other tools (Table 3). Applying this
methodology to all available data on miRBase shows that it
performs extremely well for most species, including plants
(Fig. 2).

We were not able to determine a relationship between any
parameters like evolutionary distance and the true prediction rate
(TPR). However, spikes in the graph may indicate the presence of
pre-miRNAs which are erroneously named such. This conclusion
is further supported by the difference in mmu and mmu*
performance (Fig. 2) as well as by the fact that dme is in the lower
accuracy range, and we showed that at least 1% of the pre-
miRNAs are unlikely to be correct and finally by the spike in
human for which we previouslg showed that some of the pre-
miRNAs are unlikely to be true’?.

Discussion
MiRNAs are of major interest as they can be disease markers,
therapeutics, or agents to increase agricultural productivity. Since
it is convoluted to detect novel miRNAs experimentally, imple-
mentation and use of computational tools for miRNA analysis
has gained importance. All available tools for pre-miRNA
detection discussed here (Table 1) employ machine learning for
which training data quality is of crucial importance.
Unfortunately, it is currently impossible to establish a true
negative data set and, therefore, the quality of available negative
data sets is hard to assess®> % The Zou, NotBestFold, and
pseudopr data sets are difficult to solve for most algorithms
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(Table 3). This may stem from the use of coding sequences for the
construction of Zou, which may in part contain pre-miRNAs**.
Our NotBestFold data set consist of pre-miRNAs from miRBase,
but suboptimal folds were used in its construction, so that
approaches focusing on sequence will still be able to name them
pre-miRNAs, whereas those using structure-related features may
not. Finally, pseudopr was generated using random number
generation within the maximum range in the pseudo data set,
which apparently shifts the distribution such that the data set
becomes much harder to solve this is supported by the better
performance of pseudopq and pseudoys which were generated
using smaller intervals (see “Methods” section). The
minimum free energy and p value distributions among data sets
show that the ones for Zou and Chen are quite similar to the
positive examples (hsa, mmu), which may explain low perfor-
mance of models and may need further scrutiny (Supplementary
Figs. 6, 7).

Positive training data is generally taken from miRBase, and
while it is clear that having true negative data is not currently
possible, our previous analysis?> and our results for mouse
(Table 3, Fig. 2) indicate that positive data may also need further
scrutiny. A simple filtering approach based on removing mouse
hairpins with low transcriptomic evidence (read per million
counts of less than 100) led to a 10% difference for correct pre-
diction rate (Fig. 2). Using only mouse hairpins from MirGeneDB
further improved the results but led to a wider spread among
model performance. Considering that the proteins taking part in
miRNA biogenesis are conserved in most eukaryotes’> 2°,
increasing the positive data quality may help produce better
models that can be applied to a wide range of organisms as izMiR
exemplifies (Fig. 2). To enable future studies in this regard, we
combined the building blocks for a machine learning approach
into a unified, comprehensive, yet adjustable and extensible data
analytics workflow that is publicly available at http://jlab.iyte.edu.
tr/software/izmir.

All relevant studies in the field of ab initio pre-miRNA
detection were compared impartially, and it was established that
Bentwichyp most correctly classified positive data achieving
97.53% TPR, closely followed by Consensuspr with a TPR of
96.71% (Supplementary Table 5). For negative data, Xuxp per-
formed best, achieving a true negative rate (TNR) of 94.66%
followed by Xuenp and Jiangyp, which achieved a TNR of 94.66%
and 93.68%, respectively. More important than these individual
achievements is whether a model performs well for TPR and TNR
at the same time. The best average correct prediction rate was
achieved by Averageng (90.72%) followed by Gaog (86.20%), but
these numbers may be affected by outliers so that we base our
decisions on the lowest sum of ranks for all data sets. Among the
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http://jlab.iyte.edu.tr/software/izmir
http://jlab.iyte.edu.tr/software/izmir
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Performance

100 1 %%y g s . = =
xAg'f!.;;:..‘.}.-, el )
= FOPPR bl RS- BN T
A \ /a Yo g a Tep e
WO TP Lt
90 4 ’ a1 Lia
I I
Lo H
' '
2 80 - 0 !
[ " L
5 vl i
5 [ [
| i
5 70 4 I o
e [ L
a . "y
[} " "
Bl [ L
= 601 | |
I '
= Average DT 0 !
50 « Consensus DT L L
+ Consensus model 1 | i
I I
+ NgDT V! P
> Ding NB 0l |
40 - K N
LI B S e B ) e
EX5 T+ +UT+EDI+HTEZQO 3T
TH5HTTON=35D0 305D ]
g O’ggm_‘:mﬂ-ﬁ SE®° %D EE

Organisms
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added for simplifying visual tracking

13 studies evaluated, Burgtp, and Xuepy had the lowest sum of
ranks (tie), but most of our ensemble methods ranked in the top
ten. When not considering ensemble methods, we advise to use
either Jiangyp or Dingyp, which on average perform similarly
well. Taking into account ensemble methods, Averagepr had a
lower sum of ranks than Consensusyp and considering the
trained models (Supplementary Figs. 4, 5), Averagepr performed
best and reached an area under the ROC curve of 0.99 while
Averageyp only achieved 0.93 and only ranked fifth (Table 3).
Therefore, we suggest using Averagepr for detection of pre-
miRNAs as a default. Homology-based pre-miRNA detection is
not discussed in this work since the automatic selection of
homologs from a suitable evolutionary distance in a framework
like izMiR is currently not possible. However, homology-based
features can seamlessly be integrated into izMiR allowing spe-
cialists to extend the framework accordingly. We suggest, how-
ever, to separate these tasks and first perform pre-miRNA
detection using izMiR followed by an evolutionary assessment of
the detected hairpins by using tools like RNAmicro?®.

The izMiR framework contains all 13 individual models and
their 6 ensemble methods. For the consensus models, we assigned
equal weights to all studies although they did not perform equally
well, which may be improved upon in the future. Moreover, our
model selection is based on the highest accuracy scores, which
may not be the most reliable method in all cases. To overcome
this issue, we provided other scores like the F-measure and
Youden’s index to aid alternative model selection strategies. We
present the state of the art in ab initio miRNA detection, intro-
duce methods to combine available models synergistically, and
provide an implementation for all analyzed studies as well as for
our consensus methods. The developed framework further sim-
plifies the generation of new classifiers, and enables their com-
parison to the state of the art, thus accelerating future
developments.

How well do models trained for one species generalize to all
other species available on miRBase? Unfortunately, this question
cannot be directly answered when simply applying the models to
all available data from all species (Fig. 2; http://jlab.iyte.edu.tr/
software/izmir). We conclude that the quality of the data available
in miRBase determines the TPR and that any other factors are
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likely of less importance (Fig. 2). Thus, Averagept should be used
for the detection of pre-miRNAs from any species. The izMiR
framework allows the generation of new models which can be
more effective for particular scenarios, for example, a selected
species. It should be noted that although the number of different
types of pre-miRNAs is unknown, we experienced difficulties
when training models with less than 1000 positive examples.
These 1000 examples further need to be very good, for which high
RPMs seems to be one indication (e.g.: RPM > 100), but the best
would be to manually review all examples and remove the ones
that seem unlikely. Therefore, we suggest to only train new
models for very specific scenarios. The izMiR framework can also
be used to develop new approaches and ensemble methods, and
compare them to the state of-the art. We believe that there is still
room for improvement and encourage the use of izMiR for the
development of new approaches.

Millions of candidate hairpins exist in eukaryotic genomes, but
the unequaled performance of the Averagepr model facilitates the
computational detection of pre-miRNAs in even larger eukaryotic
genomes, which is of great interest since they are hard to detect
experimentally. The application of our Averagepr model using
the dme genome showed that although our models are generated
on human pre-miRNAs, they can perform well in other organ-
isms (Table 3, Fig. 2). Through manual inspection of the Dro-
sophila hairpins from miRBase, which were not classified as pre-
miRNAs by our consensus models, such as dme-mir-4914, dme-
mir-4912, and dme-mir-9382, we found that they have ques-
tionable secondary structures which do not conform to expecta-
tions for pre-miRNAs recognizable for proteins in the miRNA
biogenesis pathway (detailed assessments for all missed pre-
miRNAs are available on the izMiR website). Evaluating the 56
dme pre-miRNAs of the chromosome 2L available in miRBase
reveals that the human-trained izMiR model generally gave lower
scores to the dubious hairpins than the Drosophila-trained izMiR
model. Applying both models to the candidate hairpins, 32 passed
the hsa model at a confidence of 0.84 while 43 passed the dme
model at a 0.96 confidence threshold. All but two of the dubious
dme models are excluded using the hsa model whereas the dme
model includes six of them. Further adjustment of the hsa model
threshold can reduce the number such that experimental

| DOI: 10.1038/541467-017-00403-z | www.nature.com/naturecommunications


http://jlab.iyte.edu.tr/software/izmir
http://jlab.iyte.edu.tr/software/izmir
http://jlab.iyte.edu.tr/izmir
www.nature.com/naturecommunications

ARTICLE

confirmation of all predictions becomes possible. However, we
suggest to include instead targeting information?” and expression
information'™ 28, which further reduces the number of candidates
and allows experimental validation of thusly filtered candidates.
Pre-miRNAs are not the final mature form of miRNAs. izMiR
does not predict mature miRNAs, but after detecting high-quality
pre-miRNAs using izMiR, mature miRNAs can be situated within
them using existing tools like MatureBayes?’ and MaturePred>".

iZMIiR is instrumental for pre-miRNA detection from next
generation sequencing data. With the advent of next-generation
sequencing (NGS), small RNAs like miRNAs have been suc-
cessfully detected using read mapping to a reference genome or to
a de novo assembled transcriptome. Computational pipelines for
the detection of pre-miRNAs from NGS data have been devel-
oped, and all contain a module which checks whether the mapped
mature sequences are part of a viable pre-miRNA31'33. These
pre-miRNA tests (some of which are quite basic) employ features
describing pre-miRNAs and/or read mapping, but have not been
rigorously tested. Separating such tests into pre-miRNA detection
using izMiR and filtering by read-mapping statistics would ensure
that at least the pre-miRNA detection functionality has been
thoroughly assessed.

In conclusion, izMiR allowed the impartial comparison of
existing ab initio pre-miRNA detection tools, enabled the devel-
opment of new and the integration of existing tools, was easily
trained with novel data, was applicable to a wide range of species
using Averagepr, and facilitated the detection of pre-miRNAs in
large eukaryotic genomes.

Methods
Data sets for machine learning. Positive examples for machine learning were
retrieved from miRBase®*, the de facto standard for positive training data used in
ab initio pre-miRNA prediction (release 21). We performed filtering operations like
removing hairpins with identical sequences which reduced the overall amount of
positive examples to 1828 human pre-miRNAs for the human training data set. For
prediction, however, unfiltered miRBase data were used. In the Drosophila mela-
nogaster analysis, we also generated models by using 256 hairpins from miRBase as
the positive dataset. Moreover, all of the miRNAs listed in miRGeneDB (v1.1)%*
were included for prediction as species specific and as one combined data set.
Similar to an idea we outlined in a previous paper in the field of proteomics®, it
is vital that training and testing data sets become more challenging with increased
accuracy of trained models. Therefore, we used a variety of negative data sets in
order to enable comparison among detection methods and to establish the current
state of the art:

®  Pseudo: previously published by Ng*/, used for learning and prediction
since the data set is challenging but not unsolvable®® and, therefore, a
good basis for creation of robust models (negative data; 8492 hairpins)

®  Shuffled: derived from shuffling sequences of human positive data from
miRBase, used for prediction (negative data; 1423 hairpins)

®  NotBestFold: created by not using the best fold proposed by RNAFold for
human hairpins from miRBase, used for prediction (negative data; 1881
hairpins)

®  NegHsa: previously published by Gudys?, used for prediction (negative data;
68,048 hairpins’)

®  Zou: previously published by Zou et al.?%, used for prediction (negative data;
14,246 hairpins)

®  Chen: previously published by Chen et al.*!, composed of samples from
Pseudo and Zou, used for prediction (negative data; 3054 hairpins)

®  mirgenedb: all miRNAs available in miRGeneDB (v1.1)3>, used for prediction
(positive data; 1434 hairpins)

® jsa+: Homo sapiens miRNAs available
used for prediction (positive data; 523 hairpins)

®  mmu+: Mus musculus miRNAs available in miRGeneDB (v1.1)%%,
used for prediction (positive data; 395 hairpins)

in miRGeneDB (v1.1)%,

® gwa+: Gallus gallus miRNAs available in miRGeneDB (v1.1)%,
used for prediction (positive data; 229 hairpins)
® dre+: Danio rerio miRNAs available in miRGeneDB (v1.1)%,

used for prediction (positive data; 287 hairpins)

®  jhisapg: created by generating random numbers between minimum and
maximum values of each feature in human miRNA data set based on
miRBase, used for prediction (positive data; 5000 hairpins)

®  jisapg: created by generating random numbers between lower quartile and
upper quartile values of each feature in human miRNA data set based on
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Fig. 3 Model training workflow. Filtered human miRNA hairpins from
miRBase served as positive data and pseudo hairpins for negative data.
Each data set is randomly sampled individually; 70% of positive data and
the same number of negative examples were used during 1000-fold Monte
Carlo cross validation (MCCV) 30. The remaining 30% of positive data and
the same number of negative examples are used for testing the model. In
the end, the best models for naive Bayes and decision tree were stored for
prediction in PMML format while SVM performance was not stored as a
PMML model due to limitations of the available SVM implementation

miRBase, used for prediction (positive data; 5000 hairpins)

®  hsasn: created by generating random numbers between 40 quantile and 60
quantile values of each feature in human miRNA data set based on miRBase,
used for prediction (positive data; 5000 hairpins)

®  pseudopg: created by generating random numbers between minimum and
maximum values of each feature in pseudo data set, used for prediction
(negative data, 5000 hairpins)

®  pseudopq: created by generating random numbers between lower quartile and
upper quartile values of each feature in pseudo data set, used for prediction
(negative data; 5000 hairpins)

®  pseudoys: created by generating random numbers between 40 quantile and 60
quantile values of each feature in pseudo data set, used for prediction (negative
data; 5000 hairpins)

"Note, that the original data set of NegHsa (http://adaa.polsl.pl/agudys/huntmi/
huntmihtm) contains many duplicate identifiers and we forced them to be unique,
thereby reducing the amount of data from 87,000 to ~68,000 examples.

Hairpin extraction from genome data. In order to extract hairpins from a gen-
ome, it was first divided into 500 nt fragments with 250 nt overlaps, and then, the
sequence was converted to RNA (T—U) as well as reverse complemented for the
template strand. All secondary structures were predicted using RNAfold*®, and
regular expressions were used to extract all structures that resembled a hairpin
(stem with at least three consecutive matches and a terminal loop with at least three
nucleotides). The resulting hairpins were filtered according to human hairpin
length distribution on miRBase, and duplicate sequences were removed. All fea-
tures for pre-miRNA detection were calculated for the remaining hairpins and
analyzed with the trained human models according to the protocol we deposited on
Nature Protocol Exchange (http://www.nature.com/protocolexchange/protocols/
4919).

The human genome (GRCh38, DNA, primary assembly) contains 12,399,093
fragments from which 108,788,895 putative hairpins for one strand and
108,276,240 hairpins for the other were extracted and filtered based on hairpin
length (between 36 and 180; representing the smallest and the longest human stem
loops in miRBase). After removing duplicate sequences from the 34,856,229 length-
filtered hairpins, 27,932,492 putative pre-miRNA sequences remained. The same
filtering approach resulted in 28,074,667 hairpins for the other strand.

The dme genome (BDGP6 genome assembly) was fragmented into overlapping
(250 nt) fragments of 500 nt in length (575,896 fragments). RNAFold was used to
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create the secondary structure of all fragments, and regular expressions were used
to extract all structures remotely similar to hairpins leading to about 5 million
hairpins per strand. Hairpins with less than 30 nucleotides were filtered leaving ~2
million hairpins per strand. The chromosome 2L contained about 360,000 hairpins
per strand, and after removing duplicates, all hairpin features were calculated for
this subset of putative pre-miRNAs (about 290,000 per strand).

For human, we would have to calculate about 700 features for all putative
hairpins which could take several months on a high-end personal computer.
Processing such a large data set was beyond the scope of this study, and we selected
the 2L chromosome of dme to exemplify the effectiveness of our pre-miRNA
detection method even for evolutionary distant species by employing a human-
trained izMiR and a Drosophila-trained izMiR model.

Features for pre-miRNA parameterization. For machine learning, pre-miRNAs
need to be parameterized, and many features have been described in the literature
(Table 1). The features that have been used for pre-miRNA prediction can be
divided into four categories; sequence-based, structural, probability-based, and
thermodynamic; although some features can be categorized into more than one of
these basic categories. For this study, we implemented ~900 features, covering the
features used or proposed in the 13 studies evaluated here (Table 1), published in
other studies or designed by us. Some of the proposed features were ambiguously
defined which opened room for their interpretation, and we implemented them to
the best of our understanding. There are various methods to calculate these fea-
tures*?, and we define the features used in pre-miRNA analyses in another work?
and on our web page: http://jlab.iyte.edu.tr/software/izmir.

Training models for pre-miRNA detection. In machine learning, first, a model is
trained based on examples (here: positive and negative examples). There are many
training and testing schemes used and different studies performing ab initio pre-
miRNA detection used different approaches. It is our apprehension that high ratios
of training (>=90%) to testing data are only useful when the amount of data is
severely limiting. We believe that such schemes would overestimate the actual
model performance. Since the availability of data is indeed limited, we settled for a
training-testing scheme of 70-30% (Fig. 3). Classification for model generation and
predictions on data sets were performed using KNIME*? which is a workflow
management and data analytics platform.

For classification (Fig. 3), since there was a big class imbalance among the data
which may influence the overall performance significantly?>, it was essential to
design an efficient strategy for learning. The popular approaches like k-fold cross-
validation and leave-one-out have many shortcomings*» 4, Due to this, we
decided to sample positive and negative data separately. After random sampling
equal amounts of examples from the positive and negative data pools, examples
were randomly divided into training (70%) and testing groups (30%). The input
data were used to train three classifiers NB, DT, and support vector machine SVM,
and their performance scores and PMML models (best only) were stored for each
iteration. Through 1000 iterations of the sampling and learning procedure, we
obtained the best PMML models for NB and DT. To evaluate model performance,
the following measures were recorded: recall, precision, sensitivity, specificity, F-
measure, accuracy, Cohen’s kappa, and Youden’s index. For SVM, Weka LibSVM
(3.7) was used since it was fast comparing to other SVM implementations available
in KNIME. However, since Weka models’ PMML outputs were not compatible
with our system, we could not save SVM models, but, produced scores during
learning and testing to enable comparisons with NB and DT classifiers. The
training workflow guarantees that each study and classifier receives identical data
in each iteration, ensuring a fair comparison. The training workflow is publicly
available on our web page: http://jlab.iyte.edu.tr/software/izmir and further
explained in detail on Nature Protocol Exchange (http://www.nature.com/
protocolexchange/protocols/4919).

Predicting pre-miRNAs with izMiR. Many studies present their findings of model
training but fail to actually provide the model so that it can be used for prediction.
In this study, we provide NB and DT models for each study as well as some
consensus models combining all studies.

For prediction, the best DT and NB models for each study were loaded into
another workflow which was designed to apply these models to input data and to
associate scores to predictions in order to allow detection of pre-miRNAs. The
individual PMML models for each classifier, which were produced during training
can be used for prediction of pre-miRNAs in our system developed in KNIME
(http://jlab.iyte.edu.tr/software/izmir). Additionally, some consensus schemes were
devised which combine the power of individual studies to improve classification
performance. These consensus approaches are also available in the izMiR
framework we provide.

In order to obtain a consensus result, equal weights were given to each model,
and a given sequence was labeled as “miRNA” by Consensuspr and/or
Consensusyp models if it was predicted as miRNA in seven or more studies
(majority vote).

For ConsensusRule based prediction, the average of DT and NB prediction
scores for each putative pre-miRNA were taken into consideration; if average DT
score or average NB score was larger than 0.89, then it was labeled as “miRNA”.
Conversely, if average DT score or average NB score was less than 0.5, it was
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labeled as “negative”. Finally, the remainder was labeled as “candidate” pre-
miRNA.

Averagepr and Averageyp-based predictions were performed in a similar
manner to ConsensusRule. The average of DT and NB prediction scores for each
putative pre-miRNA were taken into consideration; if their average value was
smaller than 0.5, then it was labeled as “negative”, otherwise it was labeled as
“miRNA”.

For ConsensusModel prediction, scores were obtained for human miRNAs and
pseudo data set by using the models from each study. Then, these scores, ranging
between 0 and 1, were used to train a multi-layer perceptron classifier (following
the same procedure as described for learning). The model with the highest accuracy
and F-measure was stored for later use.

The input data for prediction was applied to all individual and consensus
models described above, and the numbers of entries predicted as “miRNA”,
“negative”, and “candidate” were returned for all of them. TPR and TNR) were
calculated as performance measures according to the following expressions:

TPR = (number of hairpins correctly classified as “pre-miRNA”/number of
overall hairpins) x 100

TNR = (number of hairpins correctly classified as “negative”/number of overall
hairpins) x 100

ROC curves to estimate model performance. The models with the highest
accuracy score for DT and NB were applied to human pre-miRNAs from miRBase
and pseudo negative data set to estimate true and false positive rates and to con-
struct ROC curves. Along with the study-based models, Averagepr and Averageng,
referring to two of our consensus methods, were analyzed in this manner (Sup-
plementary Figs. 4, 5).

Data availability. The data sets generated during and/or analyzed during the
current study are available in the izMiR repository, http://jlab.iyte.edu.tr/software/
izmir.
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