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ABSTRACT Forage nutritive value impacts animal nutrition, which underpins livestock productivity,
reproduction and health. Genetic improvement for nutritive traits in perennial ryegrass has been limited,
as they are typically expensive and time-consuming to measure through conventional methods. Genomic
selection is appropriate for such complex and expensive traits, enabling cost-effective prediction of
breeding values using genome-wide markers. The aims of the present study were to assess the potential of
genomic selection for a range of nutritive traits in a multi-population training set, and to quantify
contributions of family, location and family-by-location variance components to trait variation and
heritability for nutritive traits. The training set consisted of a total of 517 half-sibling (half-sib) families,
from five advanced breeding populations, evaluated in two distinct New Zealand grazing environments.
Autumn-harvested samples were analyzed for 18 nutritive traits and maternal parents of the half-sib families
were genotyped using genotyping-by-sequencing. Significant (P , 0.05) family variance was detected for
all nutritive traits and genomic heritability (h2g) was moderate to high (0.20 to 0.74). Family-by-location
interactions were significant and particularly large for water soluble carbohydrate (WSC), crude fat, phos-
phorus (P) and crude protein. GBLUP, KGD-GBLUP and BayesCp genomic prediction models displayed
similar predictive ability, estimated by 10-fold cross validation, for all nutritive traits with values ranging from
r = 0.16 to 0.45 using phenotypes from across two locations. High predictive ability was observed for
the mineral traits sulfur (0.44), sodium (0.45) and magnesium (0.45) and the lowest values were observed
for P (0.16), digestibility (0.22) and high molecular weight WSC (0.23). Predictive ability estimates for most
nutritive traits were retained when marker number was reduced from one million to as few as 50,000. The
moderate to high predictive abilities observed suggests implementation of genomic selection is feasible for
most of the nutritive traits examined.

KEYWORDS

genomic
selection

heritability
nutritive traits
perennial
ryegrass

water soluble
carbohydrates

Perennial ryegrass (Lolium perenne L.) (2n = 2x = 14) from permanent
pasture is the major feed component for ruminant production systems
in temperate regions of the world. Historically, improvement of annual
and seasonal drymatter yield (DMY) have been significant objectives for
perennial ryegrass breeding (Wilkins and Humphreys 2003; Williams

et al. 2007; Van Parijs et al. 2018). Today, seasonal distribution of
DMY features as the major component of economic ranking indices
developed for this species in New Zealand (Forage Value Index,
FVI) (Chapman et al. 2017), Australia (Leddin et al. 2018) and Ireland
(Pasture Profit Index, PPI) (Mcevoy et al. 2011; Mcevoy et al. 2014).
Nutritive traits in forages are also important for livestock productivity,
maintenance of body weight and for supporting reproduction and
health in the grazing animals (Waghorn and Clark 2004). Al-
though there is existing information that demonstrates the im-
portance of nutritive value traits and the potential economic
returns from trait improvement, the overall breeding effort for
nutritive traits in ryegrass has received considerably less attention
than for DMY (Smith et al. 1997). Increased breeding effort for
nutritive traits, with validated outcomes for animal productivity,
would provide enhanced on-farm value to farmers (Jafari et al.
2003a; Chapman et al. 2017).
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Compared to other forage grass species, perennial ryegrass is
regarded as having relatively high nutritive value, providing a cost
effective, nutrient rich feed for ruminant livestock (Wilkins 1991;
Baert and Muylle 2016). Breeding for improved nutritive value in this
species has focused principally on higher in vitro dry matter (DM)
digestibility to enhance energy availability and voluntary intake from
grazed pasture (Jung andAllen 1995). This is a key selection criterion in
many ryegrass breeding schemes (Casler and Vogel 1999; Easton et al.
2002; Muylle et al. 2013), particularly in Europe, where Wilkins and
Humphreys (2003) reported genetic improvement of approximately
10g kg-1 per decade for DM digestibility. Breeding to increase water-
soluble carbohydrate (WSC) content in ryegrass herbage, one of few
reported studies of successful breeding for a nutritive trait in perennial
ryegrass (Humphreys 1989a; Jones and Roberts 1991; Smith et al.
1997), has been a major contributor to genetic improvement of digest-
ibility (Wilkins and Humphreys 2003; Muylle et al. 2013). More re-
cently, there has been increased emphasis on addressing digestibility
through the improvement of fiber degradability per se, by targeting
changes in the biochemical composition of the cell wall (Faville et al.
2010; Van Parijs et al. 2018).

Minerals and trace elements are essential elements for plant growth
and are critical to various biological functions of the plant. In forages,
these macro- and micronutrients are also important components of
nutritive quality, critical for maintaining livestock health (Waghorn
2007). For example, metabolic disorders can be caused or contributed
to by mineral imbalances in the diet, such as hypomagnesaemia (grass
tetany) which is caused by insufficient magnesium and calcium in the
diet. Earlier studies have identified genetic variation among families
(Easton et al. 1997; Smith et al. 1999) or genotypic variation among
cultivars (Crush et al. 2018a; Crush et al. 2018b) for micro- and mac-
ronutrients, indicating that breeding for mineral content is a realistic
opportunity.

The reduced emphasis on breeding for nutritive traits in forages is
affected by a number of factors, including a lack of consensus on specific
breeding targets (Wheeler and Corbett 1989; Chapman et al. 2015),
ambiguous evidence for the impact of specific nutritive traits on animal
production outcomes (Easton et al. 2002; Edwards et al. 2007; Mcevoy
et al. 2011), the confounding influence of environment and genotype
x environment (G x E) interactions, and the significant additional
resources needed in a breeding program to undertake nutritive
trait measurements in large panels of selection candidates (Smith
et al. 1997).

Genomic selection (GS),wherebreedingvalue for a traitmaybe cost-
effectively predicted for selection candidates using genome-wide
markers, was initially proposed for animal breeding by Meuwissen
et al. (2001). In GS, a training population combining phenotypic and
genotypic information is used to develop amodel that can subsequently
be used to predict genomic estimated breeding values (GEBVs) for
individuals in a test or selection population that have been genotyped
only. In essence, GS replaces the need to phenotype the target trait in
selection candidates for one or more cycles of recurrent selection. GS
has been demonstrated in dairy cattle breeding, where the rate of ge-
netic gain was doubled by reducing generation interval from 7 to
2.5 years or from 4 to 2.5 years, depending upon selection strategy
(García-Ruiz et al. 2016). Over the last decade the declining cost of
genotyping single nucleotide polymorphisms (SNPs), largely through
reduced representation sequencing approaches such as genotyping-by-
sequencing (GBS) (Elshire et al. 2011), has made this tool feasible
for plant breeding. GS is now being applied in major crop species,
including wheat (Rutkoski et al. 2011; Poland et al. 2012; Lopez-Cruz
et al. 2015; Hayes et al. 2017), maize (Zhao et al. 2012; Fristche-Neto

et al. 2018) and barley (Zhong et al. 2009; Lorenz et al. 2012) and is
under adoption in forage species, including perennial ryegrass (Fè et al.
2016; Grinberg et al. 2016; Byrne et al. 2017; Arojju et al. 2018; Faville
et al. 2018; Pembleton et al. 2018), and alfalfa (Annicchiarico et al.
2015; Li et al. 2015; Biazzi et al. 2017; Jia et al. 2018), principally in
terms of assessing the influence of training set size and composition,
trait characteristics and genotyping approaches on predictive ability. In
perennial ryegrass, so far only two studies have evaluated the possibility
of using genome-wide markers to predict GEBVs for nutritive quality
traits. Grinberg et al. (2016) reported predictive ability of 0.45 and 0.32
forWSC and N and Fè et al. (2016) reported predictive ability for NDF
(0.68) and HMW WSC (0.45). A comprehensive study on a range of
nutritive traits is still lacking.

GS can accelerate genetic gain particularly for complex traits, which
are controlled by many genes with small effects and for traits which are
difficult to measure and expensive (Heslot et al. 2015). GS is therefore a
very attractive tool for nutritive traits, given the barriers, described
above, to routine integration of nutritive traits into forage breeding
programs. The success of GS primarily depends on predictive ability,
which is influenced by trait heritability (h2n), training population size,
marker density, extent of linkage disequilibrium (LD) and relatedness
between training and test population (Daetwyler et al. 2013).While the
heritability of a trait and the extent of LD in a training population
cannot be easily optimized, the density of markers and the size and
composition of the training population are two factors that can be
controlled. Several methods have been developed for genomic predic-
tion and can be broadly classified as whole-genome regressionmethods
(discussed by De Los Campos et al. (2013)) or machine learning meth-
ods (outlined by González-Camacho et al. (2018)). Based on simulation
and empirical results, Daetwyler et al. (2013) concluded that genomic
best linear unbiased predictor (GBLUP) and Bayesian variable selection
methods (BayesB and BayesCp) were the benchmark for genomic pre-
diction, as these methods are appropriate for a range of genetic archi-
tectures, from traits which are controlled by many genes with small
effects (infinitesimal model) to traits with large SNP effects (variable
selection model).

The principle aim of the current study was to assess genomic
predictive ability for 18 nutritive quality traits, measured in a large
multi-population training set in two key New Zealand grazing
environments, and to investigate the impact of marker density
and of genomic prediction models with different prior assumptions
regarding the distribution of SNP effects. The study also provided an
opportunity to assess the magnitude of genetic variation and to
estimate heritability for a large range of nutritive traits under New
Zealand grazing environments.

MATERIALS AND METHODS

Plant material and experimental design
The half-sibling (half-sib) families used in this study were derived from
five different advanced breeding populations (Pop I – Pop V) which are
part of the Grassland Innovation Ltd breeding program. From each
population, 102 to 117 plants that tested positive for endophyte infec-
tion (Epichloё festucae var lolli) by immunoblotting (Hahn et al. 2003),
were polycrossed in isolation during spring 2012 in Palmerston North,
New Zealand (Faville et al. 2018). Polycrosses were performed sepa-
rately for each population, without admixing, and seeds from the ma-
ternal parents were harvested and cleaned. In total 543 half-sib families
were harvested for seed, however only 517 families had sufficient seed
($ 3.6g) for sowing field trials. Further details regarding population
development are presented in Table S1.
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A total of six trials were sown for measuring DMY (Faville et al.
2018), of which two were used for the current study. These were trials
established at Lincoln (Canterbury region, southern New Zealand,
43.38�S 172.62�E; Wakanui silt loam) and Aorangi (Manawatu region,
central New Zealand, 40.34�S 175.46�E; Kairanga sandy loam), during
the autumn of 2013. The experimental design at each site was row-
column with three replicates. Within each trial, populations were
blocked, and families randomized in three replicates within these
blocks. Multiple repeated checks were also randomly allocated within
and across the replicated blocks. Half-sib families were evaluated as a
1m row of plants (referred to fromnow as plots), by sowing 0.2 g of seed
(which is equivalent to 14 kg ha-1, if a sward was sown at 7 rows m-1).
Space between the plots was 25-30 cm and 30-50 cm separated the ends
of neighboring plots. Nitrogen and phosphate fertilizer was applied at
the rate of 15-30 kg N ha-1 and 8.8 kg P ha-1, in late autumn each year
(Faville et al. 2018). Climate data regarding rain fall, sunshine hours
and air temperature of the two locations during the trial period was is
provided as Figure S1.

Phenotypic measurements
Plotharvestswere undertakenatLincoln startingApril 14, 2014 (24days
post-defoliation by sheep grazing) and at Aorangi starting April 29,
2014 (25 days post-defoliation), during the southern hemisphere au-
tumn. At each site a single harvest was undertaken over three days,
between 10:30 AM and 3:00 PM on each day to minimize the influence of
diurnal variation on levels of measured constituents. Split harvesting of
populations or replicate blocks over two days was avoided. Plots were
cut to a height of approximately 5 cm, above the pseudostem, meaning
that only leaf lamina material was harvested. Harvested foliage was
placed into micro-perforated plastic bread bags and immediately snap
frozen in liquid nitrogen. Samples were subsequently maintained
at ca. -80� on frozen CO2 to preserve labile components and then
freeze-dried at one of two commercial facilities - Genesis Bio-Laboratory
Ltd (Christchurch, New Zealand) or Horowhenua Freeze-Dry (Levin,
New Zealand). Freeze-dried samples were milled to powder through
a 1mm sieve and thoroughly mixed to homogenize the sample. Sub-
samples were weighed out and transferred to Hill Laboratories

(Hamilton, New Zealand) for near-infrared spectroscopy (NIRS)
and minerals analysis and to AgResearch (Palmerston North, New
Zealand) for analysis of water‐soluble carbohydrate (WSC). A total
of 3082 samples (n = 1476 from Lincoln and n = 1606 from Man-
awatu) were provided for analysis. Hill Laboratories provided NIRS
data for a range of nutritional traits, as outlined in Table 1. Data
for mineral concentrations (Table 1) were based on inductively coupled
plasma-optical emission (ICP-OES) analysis of plant material digested
with nitric acid: hydrogen peroxide (2:1). Grass tetany ratio was
calculated as [K/(Mg + Ca)] using the data provided for the
individual minerals. WSC was extracted and quantified as described
by Hunt et al. (2005). Briefly, 25 mg of milled leaf material was
extracted twice with 1mL of 80% ethanol (low‐molecular‐weight frac-
tion; LMW WSC) and then twice with 1 mL water (high‐molecular‐
weight fraction; HMWWSC), for 30 min at 65�. Extracts were centri-
fuged, and supernatants of the respective fractions were analyzed
using anthrone as a colorimetric reagent (Jermyn 1956).

Statistical models and variance components
Data analyses were performed across the five populations, for individual
locations and across the two locations, using the restricted maximum
likelihood (REML) method, by fitting a linear mixed model in GenStat
(Payne et al. 2009). Analyses were also performed on the five popula-
tions individually, by fitting linear mixed models in DeltaGen (Jahufer
and Luo 2018). Family, family-by-location interaction, replicates, rows
and columns were considered as random effects, whereas location,
population and repeated checks were considered as fixed effects. Three
different mixed linearmodels were used: (i) Model 1, to estimate family
variance components, pooling all five populations, all 517 families to-
gether, within individual locations; (ii) Model 2, for estimating family
variance components and interactions of family and location, pooling
all five populations, across locations; and (iii) Model 3, for estimating
family variance and family-by-location interactions, among half-sib
families within individual populations, across locations.

Model 1: Mixed model for individual locations.

yijkln ¼ mþ gi þ pn þ bnl þ rnlj þ cnlk þ eijkln (1)

n■ Table 1 Trait family (s2
g), family-by-location interaction (s2

gl) and residual error (s2
e ) variance components and their associated standard

errors (SE), repeatability (R) and genomic heritability (h2g), estimated for the range of nutritive traits, among 517 half-sib families of
perennial ryegrass evaluated across the two locations (Lincoln and Aorangi). All s2

g for nutritive traits were significant (P < 0.05).

Trait Abbreviation s2
g 6 SE s2

gl 6 SE s2
e 6 SE R h2g

Acid detergent fiber ADF 0.16 6 0.036 0.083 6 0.04 1.11 6 0.042 0.42 0.32
Neutral detergent fiber NDF 0.50 6 0.068 0.16 6 0.057 1.36 6 0.054 0.62 0.48
Digestible organic matter in dry-matter DOMD 0.41 6 0.088 0.22 6 0.096 2.49 6 0.097 0.44 0.35
Crude fat CFAT 4.99 6 1.380a 9.38 6 1.630a 30.0 6 0.001a 0.34 0.29
Metabolisable energy ME 0.01 6 0.002 0.005 6 0.002 0.06 6 0.002 0.45 0.36
Crude protein CP 0.15 6 0.052 0.148 6 0.065 1.64 6 0.064 0.31 0.27
Calcium Ca 0.57 6 0.073a 0.17 6 0.058a 1.48 6 0.058a 0.63 0.60
Potassium K 10.0 6 0.001a 5.19 6 1.890a 48.0 6 0.002a 0.49 0.46
Magnesium Mg 0.11 6 0.014a 0.03 6 0.010a 0.25 6 0.010a 0.65 0.62
Manganese (mg/kg) Mn 64.6 6 10.10 22.1 6 9.70 240.5 6 9.4 0.56 0.55
Sodium Na 2.32 6 0.236a 0.25 6 0.128a 3.93 6 0.015a 0.75 0.74
Phosphorus P 0.04 6 0.016a 0.04 6 0.021a 0.58 6 0.022a 0.26 0.22
Sulfur S 0.33 6 0.050a 0.15 6 0.045a 1.04 6 0.041a 0.57 0.53
Nitrogen N 3.08 6 1.250a 3.0 6 0.001a 40.0 6 0.001a 0.26 0.22
Tetany ratio (K/Ca+Mg) Tetany ratio 0.01 6 0.002 0.005 6 0.001 0.04 6 0.001 0.61 0.63
Total water soluble carbohydrates Total WSC 51.7 6 12.8 51.6 6 14.6 325.2 6 13 0.39 0.31
Low molecular weight carbohydrates LMW WSC 19.6 6 4.6 19.3 6 5.1 105.1 6 4.2 0.42 0.20
High molecular weight carbohydrates HMW WSC 13.7 6 4.3 11.9 6 5.1 141.3 6 5.5 0.32 0.34
a
x1023
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yijklno is the phenotypic value measured on half-sib family i in row j
and column k of replicate l nested within population n, and
i ¼ 1; . . . ; ng ; j ¼ 1; . . . ; nr; k ¼ 1; . . . ; nc; l ¼ 1; . . . ; nb; m ¼
1; . . . ; ns; n ¼ 1; . . . ; np, where g; r; c; b; and p are half-sib
families, rows, columns, replicates and populations respectively.
Where,m is the overall mean; gi is the random effect of half-sib family
i, Nð0; Is2

gÞ; pn is the fixed effect of population n; bnl is the random
effect of replicate l in population n, Nð0; Is2

bÞ; rnlj is the random effect
of row j within replicate l of population n; Nð0; Is2

r Þ; cnlk is the ran-
dom effect of column k within replicate l of population n,
Nð0; Is2

c Þ; eijkln is the residual effect of half-sib family i in row r
and column c of replicate b of population n, Nð0; Is2

e Þ.
Model 2: Mixed model for across locations.

yijklmn ¼ mþ gi þ sm þ ðgsÞim þ pn þ bnml þ rnmlj

þ cnmlk þ eijklmn (2)

yijklmn is the phenotypic value measured on half-sib family i in row
j and column k of replicate l nested in location m within population
n, and i ¼ 1; . . . ; ng ; j ¼ 1; . . . ; nr; k ¼ 1; . . . ; nc; l ¼ 1; . . . ; nb;
m ¼ 1; . . . ; ns; n ¼ 1; . . . ; np, where g; r; c; b; s and p are half-
sib families, rows, columns, replicates, locations and populations re-
spectively. In the equation, m is the overall mean; gi is the random
effect of half-sib family i;Nð0; Is2

gÞ; sm is the fixed effect of locationm;
ðgsÞim is the random effect of interaction between half-sib family i and
locationm, Nð0; Is2

gsÞ; pn is the fixed effect of population n; bnml is
the random effect of replicate l within location m in population
n; Nð0; Is2

bÞ; rnmlj is the random effect of row j within replicate l in
location m of population n, Nð0; Is2

r Þ; cnmlk is the random effect of
column k within replicate l in locationm of population n, Nð0; Is2

c Þ;
eijklmn is the residual effect of half-sib family i in row r and column c of
replicate b in location m of population n, Nð0; Is2

e Þ.
Model 3: Mixed model for individual populations.

yijklm ¼ mþ gi þ sm þ ðgsÞim þ bml þ rmlj þ cmlk þ eijklm (3)

yijklm is the phenotypic value measured on half-sib family i in row j
and column k of replicate l nested in locationm. In the equation, m is
the overall mean; gi is the random effect of half-sib family i,
Nð0; Is2

gÞ; sm is the fixed effect of location m; ðgsÞim is the random
effect of interaction between half-sib family i and location m,
Nð0; Is2

gsÞ; pn is the fixed effect of population n; bml is the random
effect of replicate l within location m, Nð0; Is2

bÞ; rmlj is the random
effect of row j within replicate l in location m; Nð0; Is2

r Þ; cmlk is the
random effect of column k within replicate l in locationm, Nð0; Is2

c Þ;
eijklmn is the residual effect of half-sib family i in row r and column c of
replicate b in location m, Nð0; Is2

e Þ.
The variance components estimated based on the mixed model

analysis were used to calculate repeatability (Model 2) (Falconer 1960)
and narrow sense heritability (Model 3) for each trait. Repeatability was
based on family variance estimated across five populations, whereas
narrow-sense heritability is based on additive genetic variance among
half-sib families within each population. Repeatability and narrow
sense heritability, on a family mean basis, were estimated using the
equation:

R or h2n ¼ s2
g

s2
g þ

s2
gs

s þ s2
e

sb

(4)

Where, R and h2n are repeatability and narrow-sense heritability.
For repeatability, s2

g was the family variance among all the

517 half-sib families. In the estimation of narrow-sense heritabil-
ity, s2

g was the estimated additive genetic variation among half-
sib families within a specific population, s2

gs is the variance associated
with family-by-location interaction and s2

e is the variance of
residuals.

Genotypic and phenotypic correlation
The genotypic correlation among traits was estimated as proposed by
Falconer (1960). Multivariate analysis of variance (MANOVA) was
performed in DeltaGen (Jahufer and Luo 2018), using the multi-
location trait data from half-sib families, to estimate variance and
covariance among traits:

rgðx;yÞ ¼
Covgðx;yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2ðxÞ;s2ðyÞp (5)

Where, Covgðx;yÞ is the genotypic covariance between trait x and y;
s2ðxÞ is the variance associated with trait x, and s2ðyÞ is the vari-
ance associated with trait y. Phenotypic correlation was performed in
DeltaGen (Jahufer and Luo 2018) using the best linear unbiased pre-
dictors (BLUPS) estimated based on Model 2.

Genotyping and genomic heritability
All maternal parents of the 517 half-sib families were genotyped using a
GBS approach described in Faville et al. (2018), following the protocol
proposed by Elshire et al. (2011). Briefly, a reference ryegrass genome
assembly was constructed using scaffolds from a published ryegrass
assembly (Byrne et al. 2015). Scaffolds were aligned to the barley ge-
nome using Lastz version 7.0.1 (Harris 2007) from Geneious 8 (https://
www.geneious.com/, (Kearse et al. 2012)) with default parameters.
Demultiplexing of sequencing reads was performed using the TASSEL
5.0 GBS pipeline (Glaubitz et al. 2014) and initial quality control was
based on read count statistics. The quality GBS tags were aligned to the
reference genome using Bowtie2 (Langdon 2015). Genotype calling was
performed using the TASSEL GBS pipeline to obtain 1,093,464 SNPs,
after filtering for maximum missing SNPs per site (50%), minor allele
frequency (. 0.05) and read depth (. 1) using VCF tools (Danecek
et al. 2011). Genotyped 1,093,464 SNPs were exported and filtered
for Hardy-Weinberg disequilibrium (HWdiseq . -0.05). The
resulting 1,023,011 SNPs, with a mean read depth of 2.98, were
used to compute a genomic relationship matrix (GRM) based on
the kinship using depth adjustment (KGD) protocol proposed de-
scribed by Dodds et al. (2015) and implemented by Faville et al.
(2018). The KGD method enables the unbiased estimation of re-
latedness using low depth sequence data. In the KGD approach, the
data are considered to be a set of allele reads rather than genotypes
per se. In addition, the elements of the GRM are calculated using
only those SNPs which have reads in both individuals. This allows
the GRM to be calculated without needing to impute missing val-
ues. The KGD matrix was used for genomic predictive modeling.
The 1,093,464 genotyped SNPs were also mean imputed using A.mat
function in rrBLUP package (Endelman 2011) and the GRM was
calculated using these imputed SNPs based on method proposed by
Vanraden (2008).

Genomic heritability (h2g) was calculated using Equation 4, based on
variance components estimated using the mixed model proposed in
Equation 2. In the model, the KGD matrix was fitted as variance-
covariance among genotypes (De Los Campos et al. 2015) and the
genetic variance was calculated as proportion of variance explained
by regressing markers on phenotypes. The model was fitted in
ASreml-R (Butler et al. 2009).

698 | S. K. Arojju et al.

https://www.geneious.com/
https://www.geneious.com/


Genomic prediction modeling
Three whole-genome regression methods, with two different prior
assumptions regarding the distribution of marker effects, were used
for generatingGEBVs.Thefirstmethodwas a univariate linearmixed
model, called GBLUP (Goddard et al. 2011) in whichmarkers effects
were assumed to have equal variance. The linear model can be
expressed follows:

y ¼ bþ Zmþ e (6)

Where y is the vector of BLUP values of the trait, b is the vector of
grand mean, Z is the design matrix associated with random marker
effects m, with m � Nð0; s2

mGÞ, in which G is the additive genetic
relationship matrix, and e � Nð0; s2

e IÞ, in which I is the identity
matrix. The G matrix was calculated based on the method proposed
by Vanraden (2008); Endelman and Jannink (2012) using A.mat
function in rrBLUP package (Endelman 2011).

The second method is a variant of GBLUP method with KGD
matrix as G in the linear mixed model. The GBLUP and KGD-
GBLUP models were fitted using the rrBLUP package (Endelman
2011), implemented through R programming language (R Core
Team 2017). The equations used to calculate the KGD G matrix
are detailed in Dodds et al. (2015).

The third method was BayesCp (Habier et al. 2011), in which
markers effects can depart from normality, that is, large variances are
allowed for markers with larger effects.

The model is expressed as follows:

y ¼ bþ
Xk

k¼1

zkak þ e (7)

Where y is the vector of BLUP values of the trait, b is the vector of
grand mean, k is the number of makers, Zk is the vector of geno-
types at marker k; ak is the additive effect of the marker, and e is the
vector of residual effects with a normal distribution Nð0; s2

e Þ. The
BayesCp model was implemented through R programming using
the BGLR package (Pérez and De Los Campos 2014), with the
number of burn-ins set to 2,000, total number of iterations set to
10,000, and other parameters set to default (Pérez and De Los
Campos 2014).

Thepredictiveabilityof themodelsbasedondata fromthecomposite
trainingpopulationwas assessedby a ten-fold crossvalidationapproach.
For each cross validation, randomized data were divided into ten equal
parts, ofwhich nine parts (training set)were used to train themodel and
to predict GEBVs in the remaining one part of the data (test set).
Randomization of the complete data set was repeated five times and the
mean of the five iterations was reported as the predictive ability of the
model (Faville et al. 2018).

Evaluating predictions in individual populations
As the overall training population is a composite of 517 individuals and
their corresponding half-sib families from five discrete breeding pop-
ulations, the predictive ability of the predictionmodelswas also assessed
within each individual population using KGD-GBLUP. A random 50%
of individuals was selected fromwithin each population (Pop I – PopV;
total = 255 individuals) as a training set in order to represent each
population equally. Using this set of 255 individuals to train the model,
GEBVs were then predicted in the remaining 50% of Pop I and the
mean correlation of 500 iterations was considered as the predictive
ability for this population. This approach was likewise extended to each
of the other four populations.

Optimizing marker density
To evaluate the minimum number of markers needed to achieve
maximum predictive ability for each nutritive trait, a random set of
markers ranging from 1,093,464 (100%, unfiltered) to 1,093 (0.1%)
in 10 steps were obtained from the training population. Using each set
of randomly selected markers, a G matrix was computed based on
the method proposed by Vanraden (2008) using the rrBLUP package
(Endelman 2011). Considering the computational load, KGD method
was not extended to randomly selected markers, to constructGmatrix.
Faville et al. (2018) reported broadly similar predictive ability for DMY
in this training population, when G matrices based on Dodds et al.
(2015) andVanraden (2008) were compared. TheGmatrix was used in
aGBLUPmodel to estimate predictive ability for each randomly chosen
marker set. The predictive ability was assessed via Monte-Carlo cross
validationswith 500 iterations, where 80% of the data were used to train
the model (training set) and 20% to predict the GEBVs (test set).

Data availability
Supplementary material file contains Tables S1 - S11 and Figure S1
generated in the current study to draw conclusions. File S1 contains
genome-wide SNP data, File S2 is the genomic relationship matrix
calculated using the method proposed by VanRaden (2008), File S3 is
the KGD relationship matrix calculated using method proposed by
Dodds et al. (2015) and File S4 contains phenotypic data used for the
analysis. Supplemental material available at figshare: https://doi.org/
10.25387/g3.10074323.

RESULTS

Variance components, repeatability, and
genomic heritability
There was significant (P , 0.05) variance among 517 half-sib families
from five populations for all traits, based on mean performance across
the two locations, Lincoln and Aorangi (Table 1, Table S2, S3 and S4).
There were also significant (P , 0.05) family-by-location interactions
for all the traits, indicating a relative change in ranking among the
517 half-sib families between the two locations. There was a high ge-
notypic correlation (r = 0.93) between R and h2g in the across-location
dataset and these ranged from a low of 0.26 (R) and 0.22 (h2g) for traits N
and P to a high of 0.75 (R) and 0.74 (h2g) for Na (Table 1) across the two
locations. Genotypic correlation between R and h2g was slightly lower in
Aorangi (r = 0.85) compared with Lincoln (r = 0.93). Because of the
high correlation between R and h2g and because h2g captures marker-
based additive variance, from here on results for h2g only are reported
and discussed. Overall, h2g estimated within a location was substantially
higher at the Aorangi site than Lincoln (mean of all traits h2g = 0.62 and
0.43, respectively) (Table S3 and S4), with values from the across-
location analysis (h2g = 0.42) lying between those of Lincoln andAorangi.
Traits with low h2g tended to have relatively large family-by-location
interactions, whereas those with high h2g had a low family-by-location
interactions (Table 1). Variance component analysis within the two
locations (Lincoln and Aorangi) indicated significant (P, 0.05) family
variance for all 18 nutritive traits. Differences in family variance were
observed for the same trait among the five populations in the across
location dataset (Table S5-S9). For example, family variance was non-
significant (P. 0.05) for ADF, NDF and DOMD in Pop I & II, but was
significant for these traits in Pop III – V (Table S5-S9). Similar obser-
vations can be made for all of the analyzed traits, with no population
showing significant (P , 0.05) family variance component for all
18 traits. Among the five populations, Pop I had significant family
variance for only 42% of traits (8 traits out of 19) while for Pop V that
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number was 84%, with the remaining populations intermediate to these
at 58–68% (Table S5-S9).

Correlation among traits
Genotypic and phenotypic correlation coefficients for all nutritive
quality traits are shown in Tables 2 and S10, respectively. Strong, pos-
itive genotypic correlation was observed between fiber measures ADF
andNDF and these in turnwere negatively correlated with energy traits
including ME, DOMD and WSC (Tables 2 and Table S10). A positive
genotypic correlation was estimated for both LMW WSC and total
WSC with DOMD, however, a weak positive correlation was found
between HMWWSC and DOMD. A strong negative genotypic corre-
lation was observed for both ADF and NDF with both LMWWSC and
total WSC. A moderate genotypic correlation was observed between
fiber traits (ADF and NDF) and minerals traits including K, Mg and
Mn (positive), P and Ca (negative).

Genotyping-by-sequencing
The results of GBS were described in detail by Faville et al. (2018).
Population structure was analyzed using multi-dimensional scaling
based on genomic relationship matrix (see Figure 1 in Faville et al.
(2018)), revealing structure describing the five individual populations
used in the training set and, with two exceptions, no structure within
each population. The exceptions were the presence of eight apparently
outlying individuals associated with Pop V and six with Pop II; these
were confirmed as being true to their respective populations (Faville
et al. 2018) and so retained for genomic prediction analyses. The per-
centage of missing SNPs in each population were between 22–24%,
with no particular population skewed toward higher missing rate.
The missing SNPs were further investigated to see if they were popu-
lation specific and found that it was not the case in the current study.

Predictive ability for nutritive traits
Predictive ability for all nutritive traits was evaluated using GBLUP,
KGD-GBLUP and BayesCp genomic prediction models, and the re-
sults are summarized in Figure 1 as the Pearson correlation coefficient
between observed (adjustedmeans) and predicted values. There were no

significant differences (P . 0.05) in terms of predictive ability between
GBLUP, KGD-GBLUP and BayesCp across all nutritive traits (Figure 1).
Although slight differences can be noted from the Figure 1, no single
statistical approach consistently gave higher predictive ability for all
nutritive traits. Because the results from the three models were largely
indistinguishable, from here on results from KGD-GBLUP only are
reported and discussed. Using the adjusted phenotypic trait means
(BLUPs) estimated across both locations, predictive ability for all traits
was positive and was strongly correlated with h2g (r = 0.65). The highest
predictive ability observed was for Na and S (both r = 0.45), followed by
CFAT (0.38) (Figure 1). The lowest predictive ability was noted for
P (0.16), followed by DOMD with a value of 0.22 (Figure 1). The slope
of the regression model (bias) for all nutritive traits was around 1,
meaning unbiased estimates were obtained by regressing GEBVs on
adjusted means (BLUPs) (Table S11).

Predictive abilityofmodelsbasedonphenotypicmeans fromLincoln
only (location-specificpredictiveability)wasnegative to lowandshowed
a very high correlation with h2g (r = 0.93) (Table S3). The highest pre-
dictive ability was obtained for Na (0.35), similar to the across locations
analysis, and the lowest predictive ability was for ADF with a negative
accuracy of -0.06. Predictive ability of models using phenotypic data
from Aorangi were generally higher than both the Lincoln and across-
location models (Table S4) and the correlation between h2g and pre-
dictive ability was 0.67. In this dataset the highest predictive ability was
for HMW WSC (0.56) and lowest predictive ability was for Ca (0.16)
(Table S3).

In terms of different trait categories, for the measures of fiber
content, ADF and NDF, predictive ability of the across-location
models was moderate, at 0.24 and 0.36 respectively. There was a
strong effect of location on these traits, with moderate predictive
ability at Aorangi (ADF = 0.29 and NDF = 0.35) whereas at Lincoln,
the predictive abilitywas almost zero forNDF (0.02) andnegative for
ADF (-0.06) (Table S3 and S4).

The traits DOMD, CFAT, WSC (LMW, HMW and total) and ME
were grouped as energy traits in this study. Predictive ability for energy
traits in the across location analysis was generally low tomoderate, with
CFAT (0.38) and LMWWSC (0.34) the highest, andDOMD (0.22) and

n■ Table 2 Genotypic correlations among a range of nutritive quality traits measured from 517 half-sib families, estimated using data from
across two locations (Lincoln and Aorangi)
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HMWWSC (0.23) low (Figure 1). As with the fiber traits, the ranking
of predictive ability for CFAT varied by environment and was highest
in Lincoln and in across-location analysis, whereas predictive ability
for CFAT ranked fourth highest in Aorangi. By contrast, the predic-
tive ability estimated for DOMDwas ranked similarly (fifth highest) for
Lincoln and Aorangi.

Thepredictiveabilityof genomicpredictionmodels formineral traits
assessed in this studywas generally high, withMg,Na and S consistently
ranked highest in terms of predictive ability within the two locations
(LincolnandAorangi) and inacross-locationanalysis.The lowesth2gwas
observed for P, which was reflected in the predictive ability of predic-
tion models for Lincoln and across-location analysis. Models for tetany
ratio ([K/(Ca+Mg)]), a predictor of hypomagnesaemia risk in livestock,
had a predictive ability of 0.34 across locations, 0.29 at Lincoln and 0.18
at Aorangi.

The measures CP andN are both indicative of protein content, with
crude protein a derivate of measured N, obtained bymultiplying N by a
conversion factor of 6.25 (Waghorn 2007), hence predictive ability
estimated within and across locations was highly similar for both the
traits. Predictive ability for these traits was low to moderate, at 0.28
(CP) and 0.26 (N) in the across location analysis, 0.14 for both traits at
Lincoln and 0.20 and 0.21 for CP and N at Aorangi.

Genotyping efficiency impacts the design and overall cost of imple-
menting GS in a breeding program. For all nutritive traits, a steady
decline in predictive abilitywas observed from100%(1,093,464) to 0.5%
(5,467) markers and a rapid decrease in predictive ability was noted
from 0.5 to 0.1% (1,093) (Figure 2 and Table S11). Overall, reducing the
marker number to 5% (54,673) of the total available SNPs had minimal
impact on overall predictive ability (Figure 2 and Table S11). Further
reductions inmarker number resulted in losses in predictive ability, the
extent of which varied by trait (Table S11). For example, with 10,934
markers (1% of the total dataset) the predictive ability for LMWWSC,
HMWWSC and total WSC decreased by 3%, 7% and 4%, respectively

compared to the total dataset (100%) (Figure 2). At 1,093 markers
(0.1%) the predictive ability for these traits declined further although
the absolute values were still positive, at 0.31 for LMW WSC, 0.18 for
HMWWSC and 0.26 for total WSC (Figure 2). The decay in predictive
ability was typically highest for those traits which had low h2g and low
predictive ability under the full SNP dataset. For example, between the
highest and lowest marker number datasets there was a 36% decrease in
predictive ability for P (h2g = 0.22), while for S (h2g = 0.53) there was a
14% decrease in predictive ability (Table S11).

The training population used in this study is a composite of five
different breeding populations, with differing genetic relationships
(see Figure 1 in Faville et al. (2018)). The predictive ability of a model
constructed based on a composite training set, for each of the individual
populations is therefore an important consideration. Cross-validations
were conducted within the individual populations using the protocol
reported by Faville et al. (2018). Predictive ability varied among the
populations (Figure 3). For example, predictive ability for ADF
ranged from 0.13 to 0.24 among the five populations (Figure 3).
The majority of predictions were positive across all populations,
with the exception of K for Pop I, and only LMW WSC and P in
Pop II had notably poor predictive ability (Figure 3). No population
was superior for genomic prediction of all nutritive traits. However,
Pop V returned the highest predictive ability overall (mean predictive
ability of Pop V = 0.29, compared with 0.30 in the training set, TP),
followed by Pop III, Pop I, Pop IV, and Pop II (Figure 3).

DISCUSSION
Nutritive quality traits in forages are important for animal productivity
and formaintaining livestock health and are therefore important targets
for genetic improvement in perennial ryegrass. Nutritive traits can be
expensive to measure and are labor-intensive, hindering the improve-
ment of these traits by conventional breeding methods. Genomic
selection (GS), the use of genome-wide molecular markers for the

Figure 1 Predictive ability (Pearson correlation coefficient between observed and predicted values) for nutritive traits and their associated
standard deviation, assessed using three genomic prediction models (BayesCp, KGD-GBLUP and GBLUP), based on adjusted means (BLUP’s)
measured among five populations across two locations.
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prediction of breeding values in selection candidates, is well suited for
traits that are costly and difficult to phenotype (Heffner et al. 2009;
Jannink et al. 2010) and therefore represents a promising approach for
enabling cost-effective improvement of nutritive traits in forages. In
this study we demonstrate that GS is a strong prospect for improvement
of nutritive quality traits as assessed by cross-validation predictive
abilities estimated for 18 nutritive traits in a multi-population training
set. Furthermore, the extensive phenotypic dataset, collected from two
contrasting environments, has enabled the contribution of family, lo-
cation, and family-by-location variance components to be estimated
across a large range of nutritive traits.

Several methods for GS have been proposed for both plant and
animal breeding, including GBLUP, Bayesian alphabets (BayesA,
BayesB and BayesCp), Ridge Regression (RR) BLUP, Random Forest,
Support VectorMachine and deep learning throughMultilayer Percep-
tron’s and Convolutional Neural Networks (De Los Campos et al. 2013;
Crossa et al. 2017). Both simulations and empirical data suggests that
linear models are superior in terms of predicting GEBVs at higher
accuracy (Daetwyler et al. 2010; De Los Campos et al. 2013; Byrne
et al. 2017; Bellot et al. 2018; Faville et al. 2018). In this study, we
compared three linear models characterized by two different assump-
tions with respect to the distribution of variance for marker effects. In
GBLUP and KGD-GBLUP all marker effects are shrunk equally, as-
suming the predicted trait is controlled by many markers with small

effect (Goddard et al. 2011), whereas BayesCp assumes that the trait is a
mixture of distributions with large and small effect markers (Habier
et al. 2011). Even with different prior assumptions, Figure 1 illustrates
the similarity in predictive ability among the three methods for all
nutritive traits, with only minor differences (Figure 1). Through simu-
lation and empirical data, De Los Campos et al. (2013) pointed out that
the superiority of Bayesian variable selection models can be illustrated
when applied to a trait with large effect quantitative trait loci (QTL).
The lack of improvement in predictive ability under the BayesCp
model observed here may reflect a complex genetic architecture for
the nutritive traits studied, which are likely controlled by many genes
with small effects. For instance, QTL studies in perennial ryegrass
reported 25 loci for WSC (Cogan et al. 2005; Turner et al. 2006;
Shinozuka et al. 2012; Gallagher et al. 2015), however genetic variation
explained by the multiple QTL was no more than 20%, suggesting that
genetic control of WSC may tend toward an infinitesimal model.

The success of GS primarily depends on the predictive ability of the
genomic prediction model, which is influenced by h2n, training popu-
lation size, linkage disequilibrium (LD), genetic diversity within the
training population and relatedness between training and test set
(Daetwyler et al. 2013; Crossa et al. 2017; Arojju et al. 2018). Traits
with low h2n need a larger training population to achieve the same level
of predictive ability as a trait with higher h2n. Results from our study
indicate that predictive ability estimated by cross-validation and h2n will

Figure 2 Random subsets of markers ranging from
0.1% (1,093) to 100% (1,093,464) of the marker set,
used in GBLUP model to estimate predictive ability for
HMW WSC, LMW WSC and Total WSC.
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not be a limiting factor for implementing GS for nutritive traits in
perennial ryegrass, as predictive ability and various measures of heri-
tability (R, h2g and h2n) were moderate to high for most traits (Table 1,
Table S3-S9 and Figure 1). A strong positive correlation was observed
between predictive ability and h2g for traits at the individual locations
(Aorangi and Lincoln) and in the across-location analysis, confirming
previous findings (Crossa et al. 2017) and suggesting that genomic
prediction can be more accurate for highly heritable traits. A positive
correlation between predictive ability and heritability was also previ-
ously observed for nutritive traits in switchgrass (Fiedler et al. 2018)
and alfalfa (Jia et al. 2018), as well as for crown rust and heading date in
perennial ryegrass (Arojju et al. 2018) and for fruit quality traits in
apple (Muranty et al. 2015).

For most traits, h2g at Aorangi was consistently higher compared to
Lincoln, and consequently higher predictive abilities were observed.
This difference between locations was due to a combination of the
family variance component estimated at Aorangi being higher and
estimates of trait-associated experimental error being higher at Lincoln
(Table S3 and S4).While it is not possible to conclusively determine the
basis of this disparity in experimental error, it may be explained by
greater within-environment variability at Lincoln, due to factors such as
climatic variations over the sampling period (Figure S1) soil heteroge-
neity or operator-to-operator variations. The predictive ability for a
given trait also varied among each of the individual populations. For
some traits, a positive correlationwas observed between family variance
and predictive ability but for the majority of traits there is no such
relationship (Figure 3 and Table S5 - S9). Another factor that may have
affected prediction outcomes was the experimental design. While every
practical effort was made to control for diurnal variation in levels of
measured constituents, the relatively wide daily sampling window
(4.5 hr) used will affected the accurate estimation of breeding values
(BLUP’s). The application of a two-phase design (Smith et al. 2006)
accommodating both field and laboratory sources of variation in the

experiment, may also have been beneficial in terms of the accuracy of
the estimated breeding values and should be considered for future
studies of this nature. Finally, another contributing factor could be
the inability of themarker dataset to capture differences in allelic effects
between the populations. A recent study has shown that across cattle
breeds (Holstein and Jersey) genomic predictive ability can be im-
proved, using a pre-selected marker set based on GWAS performed
on combined breeds using whole-genome sequencing data (Raymond
et al. 2018). This approach could be extended to improve across pop-
ulation prediction ability in perennial ryegrass. Finally, in the current
study, a two-stage GS approach was undertaken, whereby in stage one
adjusted means (BLUPs) were calculated from field trial data and, in
stage two, these BLUPs were used as a dependent variable in the model
to predict GEBVs based on markers. The two-stage GS approach is a
commonly-used procedure, in part because it is a computationally
-efficient method for analyzing large datasets from multi-environment
trials (Piepho et al. 2012). This approach has consequently been widely
used across many plant species for GS application (Lipka et al. 2014;
Annicchiarico et al. 2015; Fernandes et al. 2018; Sun et al. 2019).
However, the double shrinkage imposed by the two-stage GS system
is considered a major limitation, whichmay lead to less reliable GEBVs
if not de-regressed (Ostersen et al. 2011). As opposed to two-stage, in a
single-stage GS method the adjusted means are shrunk only once and
this is hence considered the ‘gold standard’ approach (Schulz-Streeck
et al. 2013). Implementing single-stage GS has its own limitations, as it
cannot be adopted for models beyond general and generalized linear
mixed models, and these models are computationally demanding with
increased complexity of the dataset. In two-stage GS, to overcome the
limitation of double shrinkage, Garrick et al. (2009) used de-regressed
BLUPs in the genomic prediction model. However, Sun et al. (2017);
Sun et al. (2019) suggested that, when lines are balanced across repli-
cates in each environment (which was the case in our study), differen-
tial shrinkage of BLUPs will not be an issue, when used as a dependent

Figure 3 Predictive ability for 18 nutritive traits in each individual population (Pop I – Pop V) and in complete training population (TP). For each
population, predictive ability was estimated based on genomic prediction model built using complete training population (TP). Predictive ability is
the mean of 500 iterations and error bars represents the standard deviation.

Volume 10 February 2020 | Genomic Selection for Nutritive Traits | 703



variable in genomic prediction models. The use of single-stage ap-
proaches should be considered for future application of GS in ryegrass,
with trials carefully designed to accommodate this.

In contrast to switchgrass (Fiedler et al. 2018) and alfalfa (Jia et al.
2018), prior to this study genomic predictive ability for nutritive traits
has been evaluated in perennial ryegrass for only a limited set of traits.
Fè et al. (2016) reported high predictive abilities of 0.68 for NDF and
0.45 for fructan in a large training set of 1918 F2 families, evaluated at
multiple environments. In another study, Grinberg et al. (2016) report-
ed similarly high predictive abilities forWSC (0.59), DMD (0.41) andN
(0.31) from prediction models applied in F14 generation families after
training using a set of 364 families from earlier generations, phenotyped
at a single location. Predictive ability for nutritive traits in the present
study were overall lower compared to those reported by Fè et al. (2016)
and Grinberg et al. (2016) with predictive abilities of 0.35, 0.29 and 0.22
for NDF, total WSC andHMWWSC (fructan), respectively. The lower
predictive ability was likely affected by the smaller training population
used in this study compared to Fè et al. (2016), as well as its composite
nature. Overall, the values in the current study, based on a relatively
small, composite training set were sufficiently high to support predic-
tion of GEBVs and implementation of GS to accelerate genetic gain for
nutritive traits across environments in perennial ryegrass.

Determining the magnitude and genetic basis of G x E interactions
for a trait is important, as it can assist in making appropriate breeding
design decisions for the development of cultivars that are adapted to a
broad range of target environments. In the current study family-by-
location interactions were significant for all nutritive quality traits. The
majority of traits displayed a family-by-location interaction that was
small in comparison to family variance, when nutritive traits were
evaluated at two distinct locations (Table 1). This was reflected in the
ratios of sg to sgs, which was. 1 for 60% of the traits, indicating that
the family variance was predominant. However, the ratio for CFAT,
total WSC, LMW WSC, HMW WSC, P and N were , 1, indicating a
greater influence of family-by-location interactions. The identification
of high G x E interactions for WSC contrasts with results reported by
Easton et al. (2009) and are at variance with propositions by Casler and
Vogel (1999) and Jafari (2012), that G x E for WSC is minimal to
negligible. Our results are based on relatively large populations of
half-sib families, compared to previous studies and may therefore be
a more accurate reflection of the influence of family-by-location inter-
actions on these traits, particularly in New Zealand environments.
However, it should be noted that the family-by-location interactions
estimated here were based on only two locations, and a more robust
estimation would be derived if based on a larger number of locations,
representing the full target population of environments. The presence
of G x E interactions may negatively influence ability to improve these
traits for broad adaptation and represents a challenge during selections
(Holland et al. 2003).

Where family-by-location interaction effects are large and signifi-
cant, genetic improvement for a trait may only be achieved through
selection based on multi-year, multi-environment evaluation. Consid-
ering the relatively high costs associated with phenotyping of nutritive
quality traits, this approach might not always be feasible, and decisions
will be based on available resources. Genomic selection, however,
represents a promising approach to more directly tackle family-by-
location interactions. Models such as marker-by-environment interac-
tions proposed by Lopez-Cruz et al. (2015) and further developed by
Crossa et al. (2016), can be used to identify genomic regions that are
stable across environments and other regions that are associated with
specific environments that contribute to G x E interactions. These
marker effects can be fixed in GS models to assist the selection of stable

genotypes. However, these models were primarily developed for wheat,
and a detailed investigation is needed to assess models perform in
outcrossing species such as perennial ryegrass.

Traitswithhighfamily-by-location interactionsdisplayedboth lower
h2g and comparatively low predictive abilities (Table 1, Table S1-S2 and
Figure 1). For such traits multi-trait genomic prediction models (Jia
and Jannink 2012) may be one way of improving predictive ability and
thereby genetic gain. The concept of multi-trait genomic prediction
approaches is to improve the predictive ability of a primary target trait
(which may be difficult and expensive to phenotype) by utilizing the
genetic correlation with a secondary trait which is highly heritable and
significantly less expensive to phenotype. Heritability and genotypic
correlation data generated in the current study may assist in designing
multi-trait prediction models for key nutritive traits. For example, a
negative genetic correlation was observed between fiber and WSC
traits, as reported previously in Italian ryegrass (Wang et al. 2015),
and a positive genetic correlation was observed between DOMD and
WSC traits as described previously by Humphreys (1989b); Jafari et al.
(2003b) (Table 4). These secondary traits (ADF, NDF and DOMD) are
measured routinely and relatively inexpensively by NIRS and may
therefore be useful in multi-trait genomic prediction models to more
accurately predict WSC traits that are most accurately measured using
more expensive wet chemistry methodologies.

Mineral composition of forages is of interest from a perspective of
livestockhealthand, aswithnutritive traitsoverall, therehasbeen little or
no emphasis on selection for mineral composition in forage breeding
programs (Masters et al. 2019). Significant family variation was ob-
served for all minerals in this study, with relatively low influence of
family-by-location interactions, moderate to high heritability and ge-
nomic predictionmodels with predictive abilities high in comparison to
the other nutritive quality traits assessed (Figure 1). This indicates that
selective breeding for levels of micro- and macro-minerals is feasible
and that genomic selection represents a strong option for pursuing
improvement in these traits. In general, ryegrass cultivars that grow
well under low soil P will compete less for P in the sward, increasing P
availability for uptake to support legume growth (Easton et al. 1997;
McDowell et al. 2011). For instance, Crush et al. (2006), reported that in
a mixed sward of ryegrass and clover (18% clover content), net annual
flux of P into ryegrass was 4.7 times higher compared to clover. A small
improvement in ryegrass phosphate use efficiency (PUE), can signifi-
cantly change these proportions andmay have large environmental and
economic benefits (Crush et al. 2018a). In the current dataset predictive
ability for P was very low (0.13), underpinned by a significant family-
by-location interaction component to total phenotypic variation. This
indicates that breeding for this P levels in perennial ryegrass foliage
needs to be designed to account for family-by-location interaction
effects. Alternatively, moderate to high genetic correlation with high
h2g traits, such as Mg (genotypic correlation -0.62), might support an
indirect multi-trait genomic selection strategy, as discussed earlier.

Hypomagnesaemia or grass tetany is a metabolic disorder in rumi-
nants, causedby inadequate supplyofCaandMg.This is oftendescribed
in terms of a tetany index ([K/Ca+Mg]), for which values exceeding 2.2
(Kemp and T Hart 1957) are associated with increased risk of the
disorder. We observed a moderate predictive ability for the ratio and
the magnitude of family-by-location interaction was low compared to
family variation, suggesting that tetany ratio could be used successfully
as a selection criterion for developing cultivars with reduced potential for
the incidence of hypomagnesaemia. This is in contrast to the results of
Smith et al. (1999), who reported large G x E variance for the tetany ratio
evaluated at two locations in Australian environments and suggested the
use Mg alone as a selection criteria to improve tetany ratio. Results from
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the current study showed a high predictive ability for Mg, making GS a
viable strategy for this trait. Although, increasingMg concentration alone
may be sufficient to decrease the incidence of hypomagnesaemia, the
presence of a positive correlation between Mg and K observed in the
current study (Table 2) and reported by Smith et al. (1999), suggests that
selections based on Mg concentration alone should be monitored and
might not always give the expected outcome.

Using approximately 50k random markers the predictive ability of
genomicpredictionmodels for all nutritive traitswas similar tousing the
full dataset of ca. 1M markers (Figure 2 and Table S11). Previously,
Faville et al. (2018) showed that reducing SNP number, by filtering out
sites based on different missing data thresholds (1%, 10% and 50%), did
not significantly affect genomic predictive ability for the traits herbage
accumulation or days-to-heading in this training set. Similarly, filtering
GBS data based on a read depth threshold (.7) did not improve pre-
dictive ability for those traits. To investigate the minimum number of
SNP markers needed to achieve maximum predictive ability within the
current dataset, without introducing bias in terms of data missing-ness,
random marker sets with varying numbers of SNPs were used to build
genomic prediction models for all nutritive traits, using the across
locations dataset. Below the 50k marker number there was a decrease
in predictive ability, and this was particularly evident for traits with low
h2g . Considering the low levels of LD (r2 decaying to 0.25 after 366-1750
base pairs (Faville et al. 2018)) observed in the component populations
of the training set, the major proportion of predictive ability is likely a
result of capturing relationship among individuals, rather than histor-
ical LD with QTL. In perennial ryegrass, to capture genetic variance
associated with all causative QTL a very large number of markers and a
large training population are needed, due to rapid decay of LD as a
result of a very large past effective population size (Ne) (Hayes et al.
2013; Fiedler et al. 2018). Predictive ability based on relatedness be-
tween training and selection population can deteriorate after a few
selection cycles (Habier et al. 2007), and to maintain adequate pre-
dictive ability, either the training population should be very large and
highly diverse or some form of relatedness should exit between training
and selection population (Hayes et al. 2013; Norman et al. 2018).

In conclusion, family variation and family-by-location interactions
were significant for all nutritive quality traits evaluated in two distinct
New Zealand environments. The predictive ability of genomic predic-
tion models reported in this study for most of the traits would be
sufficient to implement GS for nutritive traits in perennial ryegrass.
Although a major proportion of this predictive ability is the result of
capturing relatedness among individuals, maintaining relatedness be-
tween training and selection population would be an option to imple-
mentGS in perennial ryegrass. Predictive ability formost of the nutritive
traitswas retained evenwith as few as 50,000markers.Anext stepwould
be to simulate a cost-benefit analysis to study the implications of
manipulating marker number for cost-effective GS. For traits with
low G x E interactions, single-trait genomic prediction models can be
considered and for traits with large G x E, and consequently lower
heritability,multi-trait approachesmay be useful to explore as amethod
for obtaining high levels of prediction accuracy. This appears to be
particularly important for WSC, which is considered to be one of the
primary constituents of nutritive value for forages.
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