
Review

Uncovering Enhancer Functions Using the a-Globin
Locus
Douglas Vernimmen*

The Roslin Institute, Developmental Biology Division, University of Edinburgh, Easter Bush, Midlothian, United Kingdom

Abstract: Over the last three decades, studies of the a-
and b-globin genes clusters have led to elucidation of the
general principles of mammalian gene regulation, such as
RNA stability, termination of transcription, and, more
importantly, the identification of remote regulatory
elements. More recently, detailed studies of a-globin
regulation, using both mouse and human loci, allowed
the dissection of the sequential order in which transcrip-
tion factors are recruited to the locus during lineage
specification. These studies demonstrated the importance
of the remote regulatory elements in the recruitment of
RNA polymerase II (PolII) together with their role in the
generation of intrachromosomal loops within the locus
and the removal of polycomb complexes during differ-
entiation. The multiple roles attributed to remote
regulatory elements that have emerged from these
studies will be discussed.

Introduction

Developmentally regulated genes become activated only in the

appropriate lineage, while they remain inactivated (or become

fully repressed) in other lineages. Haematopoiesis offers an

excellent system to study gene regulation because it is very

accessible and produces a palette of a least eight different lineages

in the blood [1]. Also, differentiated cells and their progenitors can

be easily separated and purified using different cell surface markers

[2,3]. The erythroid cell lineage is of particular interest because of

the high expression level of the globin genes, which produce the

major proteins found in red blood cells. Adult haemoglobin (HbA)

is made by the formation of a tetramer containing two a-globin

chains and two b-globin chains. The level of expression of these

proteins needs to be equimolar to ensure the correct formation of

this tetramer; an imbalance would create insoluble homotetra-

mers, the key pathological feature of thalassaemia [4].

The expression of adult a- and b-globin genes requires a panel

of different tissue-specific transcription factors (TFs), including

GATA1, GATA2, nuclear factor-erythroid 2 (NF-E2), stem cell

leukaemia factor (SCL), and Krüppel-like factor 1 (KLF1)

(formerly called Erythroid Krüppel-like factor [EKLF]). These

TFs are expressed at different times during differentiation,

suggesting specific roles for each [5]. For example, GATA2 is

expressed early, in common myeloid progenitors, whereas GATA1

is expressed later, in erythroid progenitors. KLF1 is also expressed

late during erythroid differentiation and therefore is important for

late events in erythropoiesis such as the expression of the a- and b-

globin genes [6,7].

Enhancers were originally defined as sequences that increase the

rate of transcription of a target gene [8–10]. They may lie far away

upstream or downstream from the gene they regulate [10] and

should work in both orientations [11]. These original definitions

were based on reporter assays (i.e., plasmids) in which the distance

separating enhancers and promoters is very small and the

chromatin context is not taken into account. The activity in both

orientations was primarily due to the fact that simple enhancers

were identified as regions formed by a palindromic sequence (e.g.,

binding site of a homodimer [12]). It became more obvious later

that enhancers usually work in groups (i.e., locus control region

(LCR) and super enhancers [13]), each being bound by several

TFs, forming a so-called enhanceosome [14,15]. These enhanceo-

somes are nucleated by pioneer TFs early during differentiation

and subsequently are replaced by other TFs that trigger

transcription by PolII recruitment. More recently, in vivo studies

found that enhancers (remote regulatory elements) can be located

sometimes up to 1 Mb away from the gene they regulate [16–18].

What do these sequences do? How do they function across very

large distances? These have been questions of major interest over

the last two decades. Studies on the a- or b-globin loci have been

pioneers in this field, and many approaches and tools have been

developed to address this.

Overall, three main strategies have been used to understand the

molecular mechanisms involved in the activation of the globin

genes. The first involves biochemistry and molecular biology using

different cell types representing different stages of differentiation

and the analysis of TF complexes, TF binding patterns,

chromosome conformation, and epigenetic changes. The second

involves mouse genetics, and the third strategy involves the study

of patients carrying different types of mutations (in these cases

deletions) associated with the downregulation of expression of

globin genes leading to thalassaemia. This review will be focused

on studies made on both the mouse and the human a-globin loci

and more particularly on the role attributed to the remote

regulatory elements controlling their expression.
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Structure of the a-Globin Locus

Studies of both the mouse and the human a-globin loci offer

complementary advantages. The mouse locus can be manipulated

easily, and the repertoire of cell lines is greater, whereas the

human locus can be studied in samples obtained from patients [4].

The a-globin locus of all mammalian species analysed lies within a

region of 135–155 kb of conserved synteny, with the a-like genes

arranged along the chromosome in the order 59-f-a-a-39

(Figure 1) [19]. However, the mouse and human loci also show

some important structural differences. The mouse locus has an

arrangement containing two pseudogenes h (59-f-a1-59h-a2-39h-

39, Figure 1), whereas the human has an arrangement containing

only one pseudogene h, with another pseudogene (aD) that

precedes the adult a genes (59-f-aD-a2-a1-h-39). The aD gene is

expressed in erythroid cells [20]. Also, the human a-like genes are

each covered by a CpG island (Figure 1), which has a strong

influence on their regulation (see below). The erythroid-specific

multispecies conserved sequences (MCS) identified by DNase

hypersensitive sites (DHS) have been numbered MCS-R1 to

MCS-R4 [19] (Figure 1). Three of these elements (MCS-R1,

MCS-R2, and MCS-R3) lie within the body of a housekeeping

gene, NPRL3, and MCS-R4 lies upstream of the promoter of that

gene (Figure 1). However, the mouse locus contains an additional

DHS, located 12 kb upstream of the f gene (HS –12), that appears

to be important during the priming of the locus during

differentiation [5].

The globin gene disorders (haemoglobinopathies), including

thalassaemias, are among the most common human genetic

diseases, with more than 300,000 severely affected individuals

born throughout the world every year [21]. Thalassaemias are

characterized by inherited mutations leading to a reduction of the

synthesis of a- (a-thalassaemia) or b-globin (b-thalassaemia) chains

from one allele. Human genetics is a good approach to identify

functional remote regulatory elements, and original observations

were made in patients with a- and b-thalassaemia [22–24]. In

most cases, a deletion removing a globin gene is the cause of this

down-regulation, but in some rare cases, the genes (including their

promoters) remain intact [25].

In rare cases of a-thalassaemia, further chromosome mapping

in a number of patients led to the identification of other deletions

located far upstream, overlapping the NPRL3 housekeeping gene

[26] and therefore the remote erythroid hypersensitive sites

(Figure 1). By comparing all the different deletions in the NPRL3
gene, it appears that MCS-R1 and MCS-R2 are consistently

removed in all cases, and this led to the characterisation of these

sequences [27,28]. From these observations, different approaches,

such as transient transfections and transgenics, have showed that

MCS-R2 (previously called HS –40) has a much stronger

enhancer activity. Moreover, this element shows a remarkable

Figure 1. The chromosomal organisation of the mouse (top) and human (bottom) a-globin clusters. The embryonic f gene in each locus
is represented in yellow, the pseudogenes in purple, and the foetal/adult a genes in red boxes. The positions of DNase I hypersensitive sites,
discussed in the text, are shown as arrows. The widely expressed gene NPRL3 is transcribed from the opposite strand to that of a-globin and is shown
as an orange box, with exons in black bars. Grey boxes refer to previously defined multispecies conserved elements (MCS), and light-green boxes
indicate CpG islands. Note the lack of CpG islands in the mouse locus. The previously described natural (IJ, MC) and targeted (C40, DMCS-R2)
deletions from the human and targeted deletions from the mouse (DP6, DP6-R3, and SND) a-globin cluster are shown as annotated.
doi:10.1371/journal.pgen.1004668.g001
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conservation throughout evolution. In zebrafish, it already lies in

the intron of the NPRL3 gene and drives the expression of both a-

and b-globin on the same locus through a bidirectional promoter,

securing comparable levels of a- and b-like globin protein [29].

The globin locus in fish has then diverged over time and

segregated into separate a and b loci after the divergence of

amphibians 450 million years ago, leaving the ancestral globin

locus as an a-globin locus [30,31]. Therefore, further efforts were

concentrated on the characterisation of the ancestral MCS-R2

element in detail [28,32–34].

Epigenetic Control of a-globin Gene Expression

The epigenetic programme seems to play a key role in

determining cell fate, including the decision to undergo self-

renewal or commitment. Chromatin immunoprecipitation (ChIP)

followed by high-throughput sequencing (ChIP-Seq) studies have

suggested that the chromatin associated with many genes

controlling lineage fate decisions is uniquely marked in stem cells

[35]. Their histone signature includes modifications associated

with both transcriptional repression (H3K27me3) imposed by the

polycomb group proteins (PcG) and activation (H3K4me3)

mediated by the trithorax group proteins (TrxG) [36]. The

‘‘permissive’’ chromatin state of these genes in stem cells is called

bivalent and is supposed to be resolved during differentiation, as

genes become fully activated or repressed [37–39]. The recruit-

ment of complexes such as PcG and TrxG involves the presence of

a CpG island at the target promoter of a developmentally

regulated gene, and proteins with a CXXC domain binding to the

DNA [40–44]. The maintenance and propagation of an epigenetic

mark, such as H3K27me3 by polycomb repressive complex 2

(PRC2), is well documented and involves a ‘‘reader’’ protein

(EDD), which recognises a modified histone, and a ‘‘writer’’

protein (histone methyltransferase Ezh2), which modifies the

histones nearby [45]. The removal of such a mark by an ‘‘eraser’’

protein (histone demethylases JMJD3 and UTX) would prevent

the maintenance and propagation from occurring. The human a-

globin genes are associated with a CpG island, whereas in rodents

(e.g., mouse and rat) this CpG island has been lost during

evolution (Figure 1) [43]. Therefore, the presence of a CpG island

on the human locus has an important implication in the epigenetic

regulation of that locus (see below).

In mouse embryonic stem (ES) cells, the analysis of the mouse a-

globin locus initially suggested it to be unmarked by any histone

modifications such as H4ac or H3K4me2 [5]. More recent

genome-wide studies (ChIP Seq) have shown that in ES cells,

remote regulatory elements of a small number of developmentally

regulated genes are already marked by H3K4me1, and in the

mouse a-globin locus, a deposition of H3K4me1 has been found

just next to MCS-R1 (HS –31) in ES cells [46], suggesting a

possible priming around that region.

In human ES cells and in nonerythroid cells, the CpG island is

associated with PRC2 recruitment and its associated signature

(H3K27me3), whereas these are not found in the rodent a-globin

genes [47]. In human ES cells, the a-globin CpG islands are also

covered by H3K4me3. However, the domains of H3K27me3 and

H3K4me3 do not entirely overlap, and the ratio observed

progressively changes during differentiation [48], suggesting that

the progressive increase of H3K4me3 could be due to an

expression of the gene at irrelevant stages rather than a signature

of priming, as suggested by previous studies [36,49]. Therefore,

single-cell mRNA expression in human ES cells was measured and

revealed that although full length a-globin mRNA was detected in

a small number of Oct4 positive cells, this number increased

during differentiation. This suggested that some bivalent domains

might be the consequence of a subpopulation phenomenon rather

than true priming in all cells [48]. PcG complexes remain until the

last stages of differentiation [48].

Locus Priming during Differentiation

Developmentally regulated genes are progressively primed

during the differentiation programme, a process that involves the

sequential recruitment of stage-specific TFs associated with histone

modifications. The study of a-globin was initiated using the mouse

locus and a panel of different cell lines and primary cells that

represent the different stages of erythroid differentiation (Figure 2)

[5]. As a source of multipotent cells, mouse ES cells have been

used, and so far no TFs have been found bound within the mouse

a-globin MCS-Rs. This contrasts with other single-locus studies

such as the mouse b-globin locus [50] and the l5-VpreB1 locus

[51] showing priming at enhancers (including PolII recruitment) in

ES cells, long before transcription occurs (differentiated erythroid

and B cells, respectively).

As a source of common myeloid progenitor cells (CMP), factor

dependent cell Patterson (FDCP)–mix cells have been used [52].

These are able to produce both megakaryocytic and erythroid

lineages. In these cells, the mouse a-globin locus is primed at

MCS-R2 and HS –12 by GATA2 (Figure 2B) [5]. During

differentiation, GATA2 regulates the expression of GATA1 with

a negative feedback loop, which shuts down GATA2 expression in

proerythroblasts [53]. As a source of proerythroblasts, the MEL

(mouse erythroleukemia) cell line has been used. This cell line was

originally transformed by the Friend virus [54] and is a very useful

model to study the last stages of erythroid differentiation since, like

most blood cell lines, it can be induced towards terminal

differentiation after exposure to certain chemicals. Under treat-

ment with inducing agents, such as dimethyl sulphoxide (DMSO)

or hexa-methylene bis-acetamide (HMBA), MEL cells turn a red

colour because of haemoglobinisation. At the proerythroblast stage

(uninduced MEL), most remote regulatory elements are formed

(HS –12, MCS-R1, MCS-R2, and MCS-R4) with the recruitment

of key erythroid TFs, including GATA1, NF-E2 (dimer p45 and

p18), and the SCL pentameric complex (Figure 2C) [5]. The

promoter also becomes accessible and bound by GATA1, 89-kDa

zinc finger protein (ZBP-89), and nuclear factor Y (NFY) (CAAT-

box-binding protein). The human a-globin promoter does not

contain an evolutionarily conserved GATA site and does not bind

ZBP-89, but NFY binding is common in both species [7]. NFY has

a histone-like structure [55] and therefore could be involved in

chromatin opening by nucleosome replacement [56]. In erythro-

blasts (induced MEL), more changes occur, with the appearance of

MCS-R3 (HS –21), together with recruitment of KLF1 (Fig-

ure 2D) and the preinitiation complex (PIC) at both enhancers

and promoters in the human and the mouse a-globin loci

(Figure 2E) [7]. At that final stage, other Sp/X-Kruppel-like

transcription factors (Sp/X-KLFs) are also recruited to the a-

globin promoters [57,7]. Interestingly, a looped structure that

bridges the remote regulatory elements to the promoter was also

detected by chromosome conformation capture analysis using

quantitative Taqman technology (q3C) at that particular stage of

differentiation (Figure 2F) [7], where high level of a-globin

expression occurs. NPRL3 gene expression is also up-regulated

in human [58] and mouse [59] erythroid cells and associated with

bidirectional intergenic transcripts at these elements (enhancer

RNA [eRNA]) [59]. The more recent advances of ChIP-Seq

technologies allowed other groups to find the same phenomenon

with peaks of PolII in intergenic regions [60–62] associated with
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H3K4me1, a key feature of enhancers [63]. Note that the

characterization of the human a-globin locus in progenitor cells

has not been characterized to the same depth as in differentiated

cells because the repertoire of progenitor cells is less accessible.

Indeed, progenitor cells can be obtained from bone marrow

samples from individuals undergoing total hip replacement for

osteoarthritis [48] or after mobilisation for bone marrow

transplant, but the amount of cells collected is still very limited.

Role(s) of the Remote Regulatory Sequences

The natural deletions observed in patients were an essential tool

in the analysis of the role of these remote regulatory elements. Due

to the nature of the disease (anaemia), it was however difficult to

perform a number of experiments on primary cells because of the

large amount of material required and also because this material is

only available for a limited time. For this reason, interspecific

hybrids were produced by the fusion of a human immortalised B

cell (Epstein-Barr virus [EBV] infected) with the mouse MEL cell

line described earlier [24,28,64,65].

Therefore, interspecific hybrids, derived from normal individ-

uals or those with previously characterised natural mutations of

the a-globin cluster, were analysed to determine if the PIC was

recruited independently both at the promoter and at the remote

regulatory elements. Two types of mutation were analysed: one in

which the remote upstream elements had been fully (IJ) deleted

but the a promoters remained intact [27,66] and another in which

all a-like genes were deleted (MC) but the upstream elements were

Figure 2. Model showing sequential order of TF binding on the mouse a-globin locus during erythropoiesis. The locus has been
analysed in pluripotent cells (A), myeloid progenitors (B), committed erythroid progenitors (C), and in differentiating erythroid cells (D, E, F). Note that
D, E, and F do not represent different steps during activation but simply separate illustrations representing the formation of MCS-R3 and recruitment
of KLF1 (D), the recruitment of PolII at the enhancers independently of the promoter (E), and a multilooped structure involving enhancers and
promoters (F). Note that the human a-globin locus has been mainly characterised in human ES cells and primary erythroid cells. It is still not known if
MCS-R2 is also primed in human progenitor cells (i.e., myeloid progenitors) as it is for the mouse locus. Studies have shown that the TF binding
pattern is essentially the same with two main key differences: GATA1 does not bind the human promoter in erythroid cells, and the gene is repressed
by PcG complexes in human ES cells. PcG complexes are removed late during erythropoiesis. For the sake of clarity, the locus has been represented as
a double helix of DNA rather than by a 10 nm chromatin fibre.
doi:10.1371/journal.pgen.1004668.g002
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still present (Figure 1). From these studies, two important

principles in the hierarchy governing the process of transcription

activation have been uncovered. First, the presence of the remote

enhancers is required for the recruitment of the PolII at the

promoter. Secondly, the presence of the promoter is not required

for PolII recruitment at the enhancers [7]. In other words, the

recruitment of PolII at the enhancers occurs independently of

the promoter. In a similar way, preventing PolII recruitment at the

mouse b-globin promoter does not affect its binding at the

upstream LCR [67]. This important feature was validated later on

a study on the Arc locus [61] where, in the Arc gene knockout

neurons, PolII remains bound at the Arc enhancer at levels

equivalent to those observed in wild-type neurons. In the former

study, eRNA synthesis is abolished in the absence of the gene,

suggesting that, like mRNA synthesis, eRNA synthesis may require

an interaction of the enhancer with a promoter [61]. However,

another study on the human growth hormone (hGH-N) locus

showed that this is not always the case [68].

The use of interspecific hybrids is a useful way to study

enhancer functions; however, they are very difficult to maintain,

mainly because they tend to lose the human chromosome 16 and

they are still also very difficult to induce into erythroblasts. More

recently, another mouse model was generated in which the whole

region of conserved synteny (87 kb of mouse genomic DNA) was

replaced by the human orthologous region (117 kb of human

genomic DNA) [69]. Therefore, a humanized mouse was

produced, which offers the advantage to avoid the issues generated

by the use of conventional transgenics [69,70]. Although the

spatiotemporal expression of the human a-globin was correct, the

level seemed to be suboptimal at about 50% of what was expected.

However, in this model, the pattern of TF binding (including

PolII) and the looped structure seem to be identical to that in

human primary erythroblasts [71,72]. This new model was

therefore the best one to use so far to investigate the role of

MCS-R2. A deletion of about 1.1 kb covering MCS-R2 was made

in heterozygous mice (one humanised chromosome and one

normal mouse chromosome). In this situation, the level of a-globin

expression reached only ,2% compared to the normal humanised

chromosome [69,71]. These data recapitulated well the previous

data obtained with other models, including a hybrid clone bearing

the same deletion (Figure 1, C40 hybrid [27]).

The changes of TF binding and chromosomal looping were

then analysed in normal humanised mice and compared to

humanized mice without MCS-R2 (DMCS-R2) [73]. In the

DMCS-R2 mutant, the absence of a-globin expression is

associated with a lack of PolII binding together with an impaired

looping formation. The occupancy of PolII from the start to the

end of the gene is about 6%–3% of normal, matching the amount

of mRNA expressed, and therefore ruled out any role of MCS-R2

in PolII elongation. A role in PolII elongation was originally

suggested for the LCR of the b-globin locus [74]. In this study, a

targeted deletion of the human LCR in transgenic mice reduces

PIC recruitment of about 50% to normal but with a more

dramatic effect on Ser5 phosphorylation of PolII (Ser-5P) and

transcriptional elongation, suggesting a role for the b-globin LCR

in both PolII recruitment (partially) and elongation. Similar

observations were made later with the mouse b-globin locus, in

which a targeted deletion of the mouse LCR reduces global PolII

recruitment at the promoter to 30% of normal with a redistribu-

tion of Ser-2P along the gene [75]. Recently, the Furlong group

showed that in Drosophila enhancers would loop towards a target

promoter to recruit PolII but paused in the majority of cases.

Releasing of PolII pausing would then occur by subsequent

recruitment of additional TFs or additional enhancers [76]. Note

that in the studies of the a-globin locus, kinases regulating PolII

such as cdk7 (TFIIH), cdk-8 (mediator), and cdk9 (elongation

factor p-TEFb) are all recruited at the same time on the promoter

when looping and transcription occur [7]. On the mouse b-globin

locus, cdk9 and PolII Ser-2P binding is observed at both the LCR

and the promoter when the gene is active [75]. Although the

binding of cdk9 to the LCR precedes its binding to the promoter,

the deletion of the LCR does not affect cdk9 binding at the

promoter. This study would suggest that the b-globin LCR may

not control elongation by delivery of cdk9 but would involve other

complexes such as DRB sensitivity inducing factor (DSIF) and

facilitates chromatin transcription (FACT) [77]. Another study on

the Myb locus in erythroid cells [78] together with a genome-wide

study in human B lymphoblast cells (MM1.S) [79] suggested an

important role of cdk9 bound to enhancers. Other genome-wide

studies detected one (Ser-5P) [60] or both (Ser-2P and Ser-5P) [80]

phosphorylated forms of PolII at active enhancers, supporting the

idea that enhancers would deliver an activated PolII at the target

promoters. A general role of remote enhancers in PolII delivery to

a target promoter has been also described in other loci such as the

human growth hormone (hGH) locus [81,82], the human serpin

cluster [83], and the mouse T cell receptor beta (TCRb) locus

[84].

In the DMCS-R2 mutant, the PolII occupancy at the other

remaining enhancers is also affected but not as much as at the

promoter. In fact, the MCS-R1 element, located upstream of the

deletion, is less affected (,20% of normal PolII occupancy) than

the other regions downstream (MCS-R3, MCS-R4, and the

promoter). The same trend is observed with other components of

the PIC and other TFs such as KLF1 (Figure 3) [73]. Strikingly,

this same observation was previously made with the C40 hybrid,

albeit with a less dramatic reduction of TF binding (general

transcription factors [GTFs] are unchanged at MCS-R1, and PolII

occupancy level at the promoter is of about 20% compared to

normal; [7], see discussion below). This reduction of TF

occupancy across the locus suggests that the activating signal is

propagating from the upstream elements towards the downstream

promoter. The nature of this signal polarity is not yet understood

and still has to be tested experimentally. Note, a polarity has been

shown with the b-globin LCR locus, which works in an

orientation-dependent manner [85]. Although this could also

suggest a form of facilitated tracking, involving a unidirectional

(multi)looped structure progressing towards the downstream

promoters [86–89], there was no evidence of TF binding in the

intervening DNA regions. Keeping this idea in mind, MCS-R2

was reinserted in an ectopic site in the region of conserved synteny,

just downstream from the a-globin genes (Figure 4) [71]. In this

new mutant (39 MCS-R2), transcription is reactivated to about

,50%, and more importantly, the looped structure is reestab-

lished. This would argue against a facilitated-tracking model since,

in this situation, the other remote elements (MCS-R1, MCS-R3,

and MCS-R4) interact again with MCS-R2 and the a-globin

genes, both located on the other side of the loop (Figure 4).

The analysis of MCS-R2 was completed by investigating its

potential role in the deposition and/or removal of histone

modifications, which are associated with activation and repression.

Since the literature has reported about 150 possible histone

modifications [90], this a-globin study concentrated on the main

modifications associated with activation (H3 and H4 acetylation,

H2B ubiquitination, H3K79me3, H3K4me3, and H3K36me3)

and repression (H3K27me3). Repression associated with poly-

comb repressive complex 1 (PRC1) was not investigated because of

the poor efficiency of the antibodies against PRC1 proteins and

their associated modification (H2Aub). In agreement with the very

PLOS Genetics | www.plosgenetics.org 5 October 2014 | Volume 10 | Issue 10 | e1004668



low expression of the gene without MCS-R2, modifications such as

H2Bub and H3K79me3 do not occur. Histone 3 mono- and di-

methyl K79 are less affected by the deletion and are also found at

the other remote regulatory sequences, whereas H3K79me3 was

exclusively found at the body of the gene. Surprisingly, all

modifications generated by the TrxG pathway (H3K4me1,

H3K4me2 and H3K4me3) occur normally in the absence of

MCS-R2. Histone 3 tri-methyl K4 is, however, suboptimal at the

Figure 3. Differential occupancy of TFs in the absence of the enhancer (MCS-R2) in mouse primary erythroblasts. The percentages of
occupancy in the mutant human allele (DMCS-R2) was calculated by comparison with the normal human allele ( = 100%) after normalising the ChIP
efficiency to an endogenous control (mouse a-globin allele). This graph shows a reduction of TFs occupancy (59R39) with the distance along the
locus, with the lowest occupancy observed at the gene (Pr/Ex1 – Ex2 – Ex3). Figure adapted from Vernimmen et al., 2011; Genes and Development
[73].
doi:10.1371/journal.pgen.1004668.g003

Figure 4. Communications between enhancers influences transcription. Intrachromosomal interactions involving human remote regulatory
sequences and the human a-globin genes in normal, DMCS-R2, and 39MCS-R2 humanised alleles in mouse primary erythroblasts.
doi:10.1371/journal.pgen.1004668.g004
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body of the gene, and H3K4me1 is not only detected at the other

MCS-R but is also significantly enriched at the body of the gene. It

is worth noting that these are both common features observed in

ES cells [48].

It was originally thought that the generation of H3K4me3 in

DMCS-R2 mutant is due to the presence of the CpG island, since

it was previously reported that the a-globin genes were already

covered by this activating mark in human ES cells [47]. Moreover,

the work from Adrian Bird’s group has shown that a CXXC

domain protein, cfp1 (also called CpG binding protein [CGBP]) is

involved in the deposition of H3K4me3 at the CpG island of

target genes regardless of their transcription status [44]. CGBP is

part of a TrxG complex (human Set1) and therefore would

generate H3K4me3 at any CpG island. In ChIP analysis, CGBP is

only detected at the a-globin CpG island in the presence of MCS-

R2 [73], suggesting another mechanism for H3K4me3 deposition

in DMCS-R2 mutant. It was also reported that the binding of

CGBP could be mutually exclusive with other proteins binding to

CpG islands such as PcG [44]. Indeed, in the absence of MCS-R2,

PRC2 (including histone deacetylase 1 [HDAC1]) recruitment

continues at the a-globin CpG island throughout the whole

process of erythroid differentiation, whereas this complex is

removed in the presence of MCS-R2 enhancer (Figure 5).

Importantly, the removal of PRC2 and H3K27me3 was associated

with the recruitment of the H3K27me3 demethylase JMJD3 at the

CpG island [73].

Conclusions

Using a-globin as a model, the study of enhancer biology was

made possible by using cell lines and primary cells that faithfully

represent the different stages of erythropoiesis. The sequential

order of TF binding, with the appearance of DHSs, is followed by

the recruitment of PolII at both enhancers and promoter at the last

stages of erythropoiesis, when globin expression occurs. This

contrasts with studies on the mouse b-globin and the l5-VpreB1

loci in which PolII is also recruited late at the promoter but is

detected very early at the remote regulatory elements [50,51].

Using human genetics, it has been possible to show that the

recruitment of PolII at the remote enhancers occurs independently

of the promoter. The general idea that enhancers act as docking

sites for the recruitment of the general transcription machinery

(components of the PIC and not just PolII) has been suggested in a

few studies [60,91,92].

Once the PIC is recruited to the enhancer, this transcription

machinery would be then somehow transferred to the downstream

promoter by a looping mechanism. Note that although the

duplicated a-globin genes in most species have similar or identical

Figure 5. Multiple roles of enhancers. Enhancers (E) work in groups. They recruit PIC and TFs and interact with each other (1), which is associated
with increased PolII concentration and production of eRNA. Enhancers subsequently deliver the PIC to a target promoter (P) through a looped
structure (2). They control transcription elongation of some genes (e.g., by delivering an important kinase such as cdk9) by increasing the
phosphorylation of PolII (3). They remove PcG repressive complexes from CpG islands of developmentally regulated genes through a histone
demethylase (e.g., JMJD3) removing H3K27me3 (4).
doi:10.1371/journal.pgen.1004668.g005
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promoters, the gene closest to the upstream elements is usually

expressed at the higher level (reviewed in [93]). When more than

two genes are present, the additional genes lying downstream

appear to be expressed at even further decreased levels [94] and

thus suggest the possibility of a local tracking process involved.

However, this would be unlikely since the terminator element of

the first gene should block this tracking [81], and the second gene

(in the mouse) is flanked by CTCF [95], which should also block

such a tracking mechanism [87]. By using both samples from

patients and humanised mice bearing a deletion covering the

major remote element (MCS-R2), it has been possible to show that

the enhancer is required for the recruitment of the PIC and key

TFs at the promoter. How the PIC is recruited to enhancers is still

not known. An in vitro study on the b-globin locus suggested that

TFs bound to enhancers are able to recruit directly the PIC [96],

but in vivo studies on the same locus suggest that the b-globin

LCR facilitates the localisation of the locus in active transcription

sites termed transcription factories [77]. Both the a- and b-globin

loci are associated with active transcription sites in the nucleus of

living cells [97], but it is still left to debate if these transcription

factories are simply reflecting focal accumulations of PolII on

transcribing genes or preassembled organising structures to which

genes move (reviewed in [98]).

Developmentally regulated genes are controlled by several

enhancers, recently termed super enhancers [99], and q3C

analysis showed that a-globin enhancers also communicate with

each other (Figure 2E and Figure 4) [71]. These enhancers are

primed at different times during differentiation, and this might

create a sort of directionality of the signal. Interestingly, the

deletion of MCS-R2 creates a reduction of TF binding

downstream, across the locus (Figure 3) [73]. This could be the

result of an impaired multilooped structure involving all the

enhancers and the two a-globin promoters together. What ties the

loop on the a-globin locus still has to be determined. Many

proteins involved in the interactions between enhancers and

promoters have been described (reviewed in [100]), and the role of

each on the a-globin locus still has to be investigated.

CpG islands were originally found in housekeeping genes and

are involved in keeping the chromatin open and therefore allowing

basic transcription to occur [101]. However, we now know that

CpG islands are also found in the promoters of developmentally

regulated genes, which are not always active. For this group of

CpG island promoters, PcG act to block the promoter accessibility

in inappropriate lineages or at other stages during the differen-

tiation programme. Nevertheless, it is not clear why developmen-

tally regulated genes should have CpG islands in the first instance.

In stem cells, the level of H3K4me3 observed at the human a-

globin gene is indeed associated with full-length transcripts, albeit

at a very low level [48]. The mouse a globin seems to be perfectly

regulated in the absence of a CpG island. Although the level of

full-length transcripts increases together with H3K4me3 during

differentiation, H3K27me3 and PcG complexes seem to remain

until the last stage of differentiation. The humanised mouse model

made it possible to show that the removal of this repressive mark

was dependent on the MCS-R2 enhancer, together with the

recruitment of demetylase JMJD3 [73]. Of interest, another

mutant with MCS-R2 deletion (C40 hybrid) did not show any

persistence of PcG at the a-globin gene (unpublished data). This

deletion, however, was made in a hybrid cell line [27],

corresponding to the proerythroblast stage, which was described

earlier (Figure 1). Thus, depending on the timing when the

deletion was made (ES cells, i.e., prior to development versus

proerythroblats, i.e., after differentiation), different results can be

found [102]. Interestingly, the level of transcription in the absence

of MCS-R2 was similar, and therefore the increased level of

transcription might not be the cause of PcG eviction. Also, the fact

that PcG eviction is associated with the recruitment of a

H3K27me3 demethylase suggests that it is more likely to be an

active process [73]. It is therefore possible that enhancers could

also recruit enzymes that remove histone modifications generated

by PcG complexes at the target promoter after chromosomal

looping, as it was suggested for the PIC. JMJD3 enrichment is not

detected at MCS-R2 in humanized mouse erythroid cells by

ChIP-qPCR, although this is at a much lower resolution [73].

However, ChIP-Seq studies showed enrichment of JMJD3 at both

genes and distal intergenic regions [103,104]. The role of remote

enhancers in the eviction of repressive PRC2 and PRC1 is also

supported by other recent studies [105–107].

This all together led to the conclusion that MCS-R2 has

multiple roles, and these may be applicable to any other enhancer:

recruitment of PolII and key TFs at the promoter, formation of a

looped structure involving several remote regulatory elements, and

the removal of repressive complexes such as PcG (Figure 5). It thus

seems that enhancers have evolved with the overall complexity of

mammalian transcription regulation by developing multiple roles

required for optimal gene expression. These different roles might

be allocated to different enhancers controlling the same gene;

some might be important for initiation of gene expression, others

for its maintenance. How to disentangle these roles remains a

challenge, since most of the time many events occur at the same

time during differentiation. Alternative models allowing short

kinetics (e.g., lipopolysaccharide (LPS)-activated macrophages

[108]) might be more suitable for the study of gene activation

when applicable. Indeed, the latest reflects gene activation in a

given cell type that is under a physiologic change, whereas globin

genes activation occurs with a change of cell identity during

differentiation.

Future Directions

Over the last five years, high-throughput sequencing technology

has been used to characterise human genetic diseases using

materials from patients but also has provided a very broad picture

of the chromatin landscape in many cell types. However,

functional analyses are still required to provide mechanistic

insights about enhancer functions. Over the last 30 years, single-

locus dissection such as what has been achieved at the a- and b-

globin loci remains a good example of where human genetics and

genetic engineering in the mouse can provide important answers

on how mammalian genes are regulated during differentiation and

development. This is also applicable to other loci. For example,

studies on patients with preaxial polydactyly led to the identifica-

tion of the regulatory element controlling the expression of sonic

hedgehog (SHH) in the posterior part of the limb [109].

Identifying individuals with a-thalassaemia by regular screenings

allowed the mapping of all the known mutations, but sometimes

new rare variants can be found, and these can provide new

mechanisms underlying human genetic disease [21]. Human

genetics, although powerful, still adds a layer of complexity when

genetic variability between individuals has to be taken into

account. Recently, a few rare cases of patients homozygous for

MCS-R2 deletion have been described [110,111]. Surprisingly,

these patients present a phenotype less severe than expected, even

with a broader deletion removing the other remote regulatory

elements on one chromosome [110]. This demonstrates that the

other regulatory elements must have a role but also suggests that,

when deleted, ‘‘orphan’’ enhancers might relay for a-globin

expression as recently suggested for other genes (enhancer
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adoption [112]). It is worth noting that in humans another

enhancer-like element has been found outside the region of

conserved synteny, 400 kb downstream from the a-globin locus

[58]. This element lies inside the intron of another host gene called

NME4, which is up-regulated in erythroid cells through an

alternative start site, as is the case for the upstream NPRL3 gene

[58,113]. Would this element take an important role when the

others are missing? This is a difficult question to address, since this

gene lies on another chromosome in the mouse and therefore no

suitable model to test this hypothesis is currently available.
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