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Abstract: This paper reports the synthesis of branched alkylene guanidines using microfluidic tech-
nologies. We describe the preparation of guanidine derivatives at lower temperatures, and with
significantly less time than that required in the previously applicable method. Furthermore, the use
of microfluidics allows the attainment of high-purity products with a low residual monomer content,
which can expand the range of applications of this class of compounds. For all the samples obtained,
the molecular-weight characteristics are calculated, based on which the optimal condensation condi-
tions are established. Additionally, in this work, the antiviral activity of the alkylene guanidine salt
against the SARS-CoV-2 virus is confirmed.

Keywords: antiseptic; microfluidics; microreactor; polycondensation; antimicrobial resistance;
antiviral activity

1. Introduction

Diseases caused by various infections are considered to be among the most common
pathologies that a person acquires in the modern world. The optimism associated with
the synthesis of a new class of drugs (antibiotics) at the beginning and middle of the 20th
century was extinguished by the development of antimicrobial resistance (AMR) due to the
overuse of these drugs. Annually, at least 50,000 people die from infectious diseases caused
by drug-resistant microorganisms in Europe and the USA, and in developing countries, this
number reaches hundreds of thousands [1]. These infectious diseases include pneumonia,
tuberculosis, human immunodeficiency virus, malaria, oncology, against which antibiotics
play a decisive role, particularly in chemotherapy and surgical procedures in general
(e.g., organ transplantation and caesarean section). The World Health Organization has
adopted the Global Strategy for the Containment of Antimicrobial Resistance, which
includes various approaches aimed at guaranteeing the effectiveness of vital drugs, such
as antibiotics [2]. Without concerted action, many antimicrobial agents (AMAs) can lose
their potency because of the increase in AMR not only in the current generation, but also
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in the future. According to experts [3], in the chemotherapy of infectious diseases, it is
permissible to use several AMAs, e.g., a combination of antibiotics and antiseptics. This is
because the microbial association has different levels of sensitivity, and the combination
of AMAs enables the prevention or retardation of the AMR formation in pathogens and
enhances their inactivating effect based on the synergistic activity of the active substances.
Thus, the principle of combining AMAs targets both indifference (the independence of the
separate effects of two AMAs when combined) and summation (the combined effect of the
two AMAs, equivalent to the sum of their separate effects). However, AMR can also be
acquired against antiseptics, which is expressed as the loss of sensitivity to the minimum
inhibitory concentration and contact time.

At present, arguably no bacteria resistance has been detected for drugs that include
polyguanidines; therefore, such drugs can be recommended for use in medical practice
together with antibiotics [4]. A study showed their effectiveness as sporicidal agents for
combating bacterial spores and nosocomial (nosocomial) infections [5–11]. In addition,
polyguanidines can be included in, for example, dressings for the treatment of chronic
wounds [12]. Quite recently, it was found that low-molecular-weight guanidines (molecular
weight: 800 ± 200 Da), called oligoguanidines, exhibit improved bactericidal, antiviral
and antifungal activities compared to the embodiments of the closest analogue, which are
also associated with their tendency to branch [13]. Furthermore, given the epidemiological
situation caused by the outbreak of COVID-19, it is relevant to assess the effect of active
pharmaceutical ingredients (APIs) on SARS-CoV-2 [14,15]. The use of polyguanidines
and oligoguanidines as APIs is severely limited by the high content of impurities and
the anisotropy of their molecular-weight characteristics, which are associated with their
production. The conventional methods have several disadvantages, among which are
the excessive content of residual monomers in the final product and the anisotropy of
the physicochemical properties of the reaction mass. The heterogeneity of the molecular-
mass characteristics cannot be sufficiently eliminated by mixing; therefore, the effective
polycondensation rate constants can vary significantly depending on the volume of the
reaction mass and time differently when heating is applied. This leads to a deterioration
in the reproducibility of the yield, and the spread of the molecular characteristics and
biological activity of the product over a wide range. In addition, upscaling the process,
including the mixing stage, requires revealing and considering the complex relationships
between the reactor geometry and the mixing device, as well as the intensity of mixing
with the hydrodynamic regime and heat transfer during heating. The development of
new synthesis methods that can eliminate these shortcomings will significantly expand the
range of use of guanidine-type antiseptics.

A rapidly developing area in the field of chemical synthesis is microfluidics: an
interdisciplinary field of research that studies methods for monitoring and controlling fluid
flows on a micron scale, i.e., in a microreactor [16]. The use of microreactors allows us
to solve the anisotropy problem, since the gradients of temperature and concentration
of the reagents and products in the direction perpendicular to their flow are negligible
because of the small diameter of the microreactor; additionally, at a low linear velocity,
these gradients are insignificant in the direction of flow. The literature does not contain data
on the microfluidic synthesis of alkylene guanidines or related compounds, which indicates
that any research in this area would be innovative and pioneering, giving scientists room
to focus on reducing the economic costs of the process. It was found that polycondensation
with the formation of branched alkylene guanidine can be effectively conducted at a low
optimum temperature [17,18]. Thus, during preliminary tests, it was found that the supply
of reagents or their mixtures to the microreactor in the form of concentrated aqueous
solutions allows the polycondensation process to be conducted stably, i.e., with a small
number of technological failures [19]. Taking into account a need for the synthesis of
new antimicrobial agents on one hand, and the development of a promising method for
producing them on the other, the aim of this work was to develop a microreactor method
for producing branched oligoguanidines with a narrow molecular-weight distribution. The
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molecular-weight characteristics, which were used to determine the optimal condensation
conditions (time, temperature, and the ratio of the initial reagents), were calculated using
the 13C-NMR Spectroscopy. Based on the obtained data, the parameters of the microfluidic
synthesis process were optimized. Additionally, in this work, the antiviral activity of the
alkylene guanidine salt synthesized by the microfluidic method against the SARS-CoV-2
virus was investigated.

2. Materials and Methods
2.1. Preparation of the Reaction Mixture and Microreactor Synthesis

Aqueous solutions with different component ratios were prepared using guanidine
hydrochloride (GH) (Sigma-Aldrich, Saint Louis, MO, USA) and hexamethylenediamine
(HMDA) (Acros Organics, Geel, Belgium) under physicochemical conditions, according to
Table 1.

Table 1. Parameters of the microreactor synthesis.

Batch GH/HMDA Ratio, L Temperature, ◦C Residence Time, h

1 1/0.5 150 2

2 1/0.5 160 2

3 1/0.5 150 3

4 1/0.5 160 3

5 1/1 160 2

6 1/1 160 3

To supply the reaction mixture to the microreactor module with the possibility of
separate temperature control, a high-precision medium-pressure syringe pump module
with a capillary diameter of 1/8 inch (Qmix Pro Ext company of Wingflow AG, Frick AG,
Switzerland) with check valves was used to generate continuous flows (neMESYS MPM,
Qmix Pro Ext company of Wingflow AG, Frick AG, Switzerland), as shown in Figure 1.
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Figure 1. This is a figure. Schemes follow the same formatting. 1—GH and HMDA aqueous solution;
2—medium-pressure syringe pump module; 3—PC; 4—microreactor; 5—cyclone; 6—flask-receiver
of ammonia; 7—rotary evaporator.

The temperature and flow rate were controlled using a PC with the QmixElements
software preinstalled (Qmix Pro Ext company of Wingflow AG). A gas separator (cyclone)
(Wingflow, AG, Frick, Switzerland) was used to remove ammonia. After synthesis in
the microreactor, the mixture containing the target product was evaporated on an RV
10 rotary evaporator (IKA, Staufen, Germany). The purification of the starting monomers
and low-molecular-weight fraction was carried out by reprecipitation in a water–acetone
mixture according to the following procedure: a 10% intermediate product obtained by
the microreactor method was prepared in a round-bottom flask. Thereafter, acetone was
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added to the prepared solution in the amount necessary to cloud the solution, followed by
separation. The mixture was kept until a distinguishable interface appeared, after which the
upper transparent layer was decanted, and the contents of the lower layer were evaporated.

A typical nuclear magnetic resonance (NMR) spectrum of OHMG–HC is shown in
Figure 2.
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Figure 2. Typical 13C-NMR spectrum of OHMG-HC.

The 13C-NMR spectra of the samples (D2O, 300 MHz) were recorded using a DPX
NMR spectrometer (Bruker, DPX, Karlsruhe, Germany). Chemical shifts were reported in
units of δ (ppm) relative to tetramethylsilane. The number of branches per molecule (z) was
calculated based on the integral signal intensities of the ‘unbranched’ and ‘branched’ units
and the end fragments of GH and HMDA, and it is expressed as follows in Equation (1):

z =
2− 2b

a+1
2b
d + 3b + b

a+1 − 1
(1)

where coefficients a, b and d are expressed in terms of the integral signal intensities of
SII, SIII, SIV, SII′ , SIII′ , SIV′ and SIV”, corresponding to the carbon atoms, as follows in
Equations (2)–(4):

a =
SIII′
SIV′

(2)

b =
SIII′ + SIV′

SIII
(3)

d =
S′′IV
SIV

(4)

The number average molecular weight (Mn) of the sample was calculated based on the
number of ‘unbranched’ and ‘branched’ units, end fragments of GH and HMDA, and their
molecular weights (141, 182, 100 and 58, respectively), and it is represented by Equation (5).

Mn =
z
d
∗ 141 + z ∗ 182 +

2 + z
a + 1

∗ 100 + a ∗ 2 + z
a + 1

∗ 58 (5)

2.2. ESI-TOF MS Analysis

ESI-TOF mass spectrum was acquired using a micrOTOF-Q II (Bruker Daltonics,
Bremen, Germany) mass spectrometer equipped with electrospray ionization. A sample
solution was prepared using CH3CN as solvent. Ions were generated by electrospray
ionization below 120 ◦C. The results were analyzed with Compass Data Analysis 4.0
SP 5 software.
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2.3. High-Performance Liquid Chromatography Analysis

For the determination of the HMDA and GH contents in the substance, high-performance
liquid chromatography (HPLC, Thermo Fisher Scientific, San Jose, CA, USA) was employed.
The gradient method was used for both analyses.

HMDA was determined using the Luna C18(2) 250 × 4.6 mm (5 µm) column (Phe-
nomenex, Inc., Torrance, CA, USA) at 30 ◦C and 264 nm. Mobile phase A is comprised
of MilliQ water; mobile phase B is comprised of acetonitrile (HPLC grade). The gradient
program is presented in Table 2.

Table 2. Gradient Program for the HPLC analysis of HMDA.

Time, min Phase A,% Phase B,%

0 60 40

1 60 40

10 10 90

16 10 90

17 60 40

20 60 40

For GH determination, the Luna C18(2) 150 × 4.6 mm (5 µm) column (Phenomenex)
was used. The analysis was carried out at 25 ◦C and 205 nm. Mobile phase A is comprised of
0.087% sodium 1-pentanesulfonate in 1% aqueous solution of orthophosphoric acid; mobile
phase B is comprised of acetonitrile (HPLC grade). The gradient program is presented in
Table 3.

Table 3. Gradient Program for the HPLC Analysis of GH.

Time, min Phase A,% Phase B,%

0 100 0

3 100 0

4 10 90

15 10 90

16 100 0

30 100 0

2.4. Investigation of the Antiviral Activity of the Drug Against SARS-CoV-2

In the experiments, we used Vero (green monkey kidney) cell line (RCB 10-87, WHO,
Switzerland). Cells were maintained in 2×EMEM medium (Eagle Minimum Essential
Medium with doubled amino acids and vitamins), supplemented with 5% fetal bovine
serum (FBS) (Gibco, Thermo Fisher Scientific, Inc., Waltham, MA, USA), streptomycin
(0.1 mg/mL), and penicillin (100 units/mL) (PanEco, Moscow, Russia).

SARS-CoV-2 strain PIK35 (GISAID ID EPI_ISL_428852) was isolated from a nasopha-
ryngeal swab of a COVID-19 patient [20]. The virus was passaged 5 times in Vero cells and
stored as an infected cells suspension at −80 ◦C.

The antiviral activity was assessed in titer reduction assay, i.e., the inhibitory effect
was estimated as compound concentration decreasing viral titer by 50%.

Vero cells were seeded in 96-well plates (approximately 105 cells per well) and in-
cubated at 37 ◦C in a CO2 incubator for 3 days until a full monolayer was formed. A
compound was added to the virus suspension (1000 TCID50) in four concentrations, start-
ing from 5.6 mM. The resulting mixtures were incubated for 1 h at room temperature,
then the remaining infectious virus was quantified via titration in Vero cells by its ability
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to cause cytopathic effect (CPE). The virus titers were calculated according to the Karber
method [21]. The antiviral effect was determined by the decrease in the titer of the virus
in the samples with the compound in comparison with the negative control (cell culture
medium) samples. The EC50 was calculated using the approximation method.

3. Results
3.1. Analysis of the Spectra

The results of the 13C-NMR spectroscopy analysis enabled the identification of the
characteristic functional groups, as shown in Figure 3.
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Figure 3. 13C-NMR spectra of the obtained samples.

The authenticity of the synthesized compounds was confirmed by comparing the
signals in a typical NMR spectrum with those in the spectra of the obtained samples
(Table 4), based on which the spectrum of sample 6 was chosen as the most consistent.

From the obtained spectra of each of the samples, Mn and z were calculated (Table 5),
and the residual impurities were analyzed. Based on the analysis, we established that
the Mn increases and the z value decreases as the amount of the initial HMDA content
decreases, which was confirmed by the results of syntheses 1–4. In syntheses 5 and 6, on
the contrary, a strictly opposite picture was observed. The purest product was obtained
by the synthesis of series 5 and 6, with a reagent ratio of GH/HMDA = 1/1. The spectral
convergence of sample 6 confirmed that it contained the lowest number of impurities.
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Table 4. The correlation of the signals of a typical NMR spectrum and the spectrum of Sample 6.

Atom Designation δ (Standard), ppm δ (Sample 6), ppm

IV′ 157.11 158.25

IV 156.08 157.01

IV” 154.61 155.96

III 41.72 41.45

III′ 40.10 39.81

II 28.56 28.14

II′ 27.60 27.28

I 26.09 25.81

Table 5. Molecular-mass characteristics of the Samples and the impurity content.

Batch Mn Z GH, wt% HMDA, wt%

1 307 0.04 0.121 0.032

2 426 0.14 0.137 0.048

3 1498 0.79 0.529 0.084

4 1421 0.85 0.523 0.082

5 782 1.38 0.324 0.058

6 867 1.41 0.339 0.062

3.2. Optimisation of Parameters

Here, the goal is to define the parameter values that give the desired characteristics
of the resulting oligomer (Mn = 800, and z = 0.4). Firstly, the comparison results of
batches 1 with 2 and 3 with 4 show that their temperature dependence is weak; thus, it is
sufficient to consider only batches 2, 4, 5 and 6 with a temperature of 160 ◦C. Secondly, the
approximations of Mn and z, as functions of L and h, were obtained, using dependences
with the simplest necessary nonlinearity in the following form (6) and (7):

Mn (L, h) = m1 + m2h + m3L + m4hL (6)

z (L, h) = c1 + c2h + c3L + c4hL (7)

Coefficients Mi and Ci are obtained from linear algebraic systems (8):

Mn (Lj, hj) = Mnj, z (Lj, hj) = zj, (8)

j = 2, 4, 5, 6 is the batch number.
The determinant of both systems is the same and equals 1, which implies the existence

of a unique solution, Mi and Ci (Table 6). The corresponding approximations are shown in
Figure 4.

Table 6. Approximation of coefficients Mi and Ci.

I 1 2 3

Mi 3083 −936 −2471

Ci 4 −0.7 −2.7
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Finally, using the obtained approximations, the optimal values of L = 2 (i.e., 1/0.5)
and h = 2.4 (i.e., 2 h 24 min), at T = 160 ◦C, were calculated to obtain the required oligomer
characteristics (Mn = 800, and z = 0.4).

3.3. Verification

To verify the prediction made using approximations and optimizations, a new series
of experiments were conducted for L = 1/0.5, h = 2 h 24 min, and T = 160 ◦C. The obtained
results match the requirements with good precision (Table 7 and Figures 5 and 6).

Table 7. Molecular-mass characteristics of the Samples and the impurity content for the defined
optimal parameters (l = 1/0.5, h = 2 h 24 min and t = 160 ◦C).

Batch Mn Z GH, wt% HMDA, wt%

1 786 0.38 0.231 0.012

2 814 0.37 0.233 0.013

3 802 0.38 0.232 0.011

4 793 0.38 0.231 0.011
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3.4. Verification of the Antiviral Activity

OHMG-HC activity was assessed in vitro by its ability to decrease SARS-CoV-2 infec-
tivity, i.e., its ability to infect cells. Due to high toxicity of the compound, titer decreasing
assay was chosen as a method of choice. The assay was calibrated using N-hydroxycytidine
(NHC), an established inhibitor of SARS-CoV-2 reproduction [22,23]. OHMG-HC decreased
the SARS-CoV-2 titers in a dose-dependent manner, i.e., the inhibition efficiency increased
with the drug concentration. The 50% effective concentration (EC50) values are presented in
Table 8. OHMG-HC showed comparatively higher activity against SARS-CoV-2 than NHC.
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Table 8. Antiviral activity of the GH/HMDA in Vero cells against SARS-CoV-2.

Compound ED50, µM
(Mean ± SD)

OHMG-HC 60 ± 22

NHC 438 ± 10

4. Discussion

Based on the results of this work, we can conclude that the principles of microfluidics
can be successfully applied to guanidine-type antiseptic production. The advantages of
flow systems can solve the problems associated with the anisotropy of the molecular-mass
characteristics of the obtained substance and reduce the economic costs of its production,
as evidenced by the low synthesis temperature and reduced time.

Compared to traditional synthesis, where the process proceeds at temperatures up to
200 ◦C for up to 7.5 h, the flow-through technology facilitates efficient polycondensation at
160 ◦C for 3 h, which reduces the economic costs of obtaining the product.

Another important advantage of the proposed technology is the low number of
impurities contained in the final compound, as well as the corresponding content of
chlorides in the final product; in this regard, the quality of the substance increases.

Additionally, a study on the antiviral activity of OHMG–HC showed that it works against
the SARS-CoV-2 virus, which is important considering the current epidemiological situation.

All the above may serve as a basis for expanding the applicability of branched oli-
goguanidines in widespread medical practice.
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