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a b s t r a c t 

Ionic models with two state variables are routinely used in patient specific electro-physiology simulations 

due to the small number of parameters to be constrained and their computational tractability. Among 

these models, the Mitchell and Schaeffer (MS) action potential model is often used in ventricle electro- 

physiology due to its ability to reproduce the shape of the action potential and its restitution properties. 

However, for some choices of parameters characterising this ionic model, unwanted pacemaker behaviour 

is present. The absence of any a priori criterion to exclude unstable parameter combinations affects pa- 

rameter fitting algorithms, as unphysiological solutions can only be discarded a posteriori. In this paper 

we propose an adaptation of the MS model that does not exhibit pacemaker behaviour for any combi- 

nation of the parameters. The robustness to pacemaker behaviour makes this model suitable for inverse 

problem applications. 

© 2016 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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1. Introduction 

Cardiac ionic models are mathematical models describing the

electrical response of a cardiac myocyte following an applied

electrical stimulus. 

When an electrical stimulus is applied to a cardiac myocyte, an

action potential is generated by the flux of ionic species across the

cell membrane. Complex mathematical models [2,15,24] describe

the ionic current generated by each ionic species. Though physio-

logically accurate, these models are expensive to solve numerically

due to their large number of state variables and their non-linear

formulation; moreover, when personalising such models, an ad-

ditional challenge arises from the large number of parameters to

constrain. 

In contrast, phenomenological ionic models aim to describe the

collective effects of the ionic currents by a smaller number of state

variables (usually 2–3) and parameters, and are obtained either by

simplifying a complex ionic model [7,16] , or by trying to reproduce

the shape of the action potential [1,8] . In the field of personalised

models, particular emphasis has been given to the models with

two state variables, due to their numerical tractability and the

reduced number of parameters to be constrained [4,10,20,23,27] . 
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Among the available two state-variable ionic models, the one

ntroduced by Mitchell and Schaeffer (MS) [16] is often employed

n ventricular electro-physiology inverse problems [4,21,23] . This

odel is capable of reproducing the shape of the action poten-

ial and the restitution properties of the action potential duration

APD), [12,14] . The MS model is characterised by 5 parameters. It is

btained by simplifying the model proposed by Fenton and Karma,

7] (3 state variables, 13 parameters), which in turn is obtained

y simplifying the more complex Luo Rudy I [15] biophysical ionic

odel (8 state variables, 63 parameters). 

For some choices of the parameters, the MS model suffers

rom the so called “pacemaker cell behaviour”. That is, the trans-

embrane potential cyclically depolarises and repolarises in the

bsence of any applied external stimulus, as depicted in Fig. 1 A.

n Fig. 1 B (blue line) the solution of the MS model under pace-

aker behaviour is depicted in the phase space. From an analysis

f the MS model equations, it is possible to analytically define

he relation between the gate variable and the trans-membrane

otential delimiting the values of the state variables producing a

epolarisation. This curve is called a nullcline, and it is split into

 left branch, ( v −m 

) and a right branch, ( v + m 

) depicted in Fig. 1 B.

nce activated when the system moves towards the initial (at

est) condition, if the phase portrait crosses the nullcline branch

 

−
m 

, the system “falls” into a condition where a depolarisation

ccurs, and a new action potential will be produced even though

o external stimuli were applied. The sets of parameters that yield
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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Fig. 1. (A) State variable for MS model affected by pacemaker behaviour. (B) Nullclines (green: left branch, v −m ; red: right branch, v + m ) and phase portrait for MS model 

affected by pacemaker behaviour. Parameter values are reported in the Table 2 of example 2. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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acemaker cell behaviour do not delimit a closed region of the pa-

ameter space. This phenomenon has been observed and reported

oth in 0D and tissue models, [5,22] . However, to the best of our

nowledge there are no criteria for determining a priori which

ombination of parameters will produce pacemaker activity. 

For patient specific modelling, this unwanted behaviour repre-

ents a problem for parameter estimation, since it necessitates a

tability test for each estimated parameter set, [5] . 

Particularly affected by this phenomenon are the sequential

ata assimilation techniques [3,9,11] : since the values of the

arameters are sequentially updated to minimise the discrepancy

etween the output of the model and the measurements of the

ystem under study, if a combination of parameters yielding

acemaker behaviour is produced, the algorithm adopted could

ecome unstable and diverge. 

To overcome these limitations, in this paper we derive and in-

roduce a two state-variable ionic model that describes the action

otential phases by 5 parameters, has the same benefits as the MS

odel, and is robust to pacemaker behaviour. These characteristics

ake it suitable for generating personalised electrophysiology

odels for clinical applications, in particular when a sequential

ata assimilation technique is employed. This paper is organised as

ollows: in Section 2 we introduce the mathematical formulation

f the new ionic model; in Section 3 we prove the absence of

acemaker behaviour in the phase plane; in Section 4 we derive

n asymptotic derivation of the restitution curves and compare

t to the one described in [16] for the standard MS model; and

n Section 5 we compare the solutions and the restitution prop-

rties of the new model with the MS model for some numerical

xamples. 

. The modified Mitchell–Schaeffer ionic model 

The standard MS ionic model [16] describes the ionic currents

hat flow across the cell membrane with a gated-inward ionic

urrent, representing the current produced by the flux of the

odium ions, and an ungated outward ionic current, representing

he current produced by the flux of the potassium ions. The two

tate variables characterising the MS model represent the electric

otential of the cell membrane and the gate dynamics of the

odium ion channels. The model can be written in the generalised

orm proposed by [6] : 

∂v m 

∂t 
= h 

( v m 

+ a ) ( v m 

+ a − λ) ( 1 − v m 

) 

τin 

− v m 

τout 
+ J stim 

(1) 

b  
∂h 

∂t 
= 

{
1 −h 
τopen 

v m 

≤ v gate 

− h 
τclose 

v m 

> v gate 

(2) 

here J stim 

is an externally applied electrical stimulus, v m 

is

he trans-membrane potential, h is the gate variable of the

nward current, v gate is the activation threshold potential and

in , τ out , τ open , τ close are the 4 time constants affecting the 4 char-

cteristic phases of the trans-membrane potential. The standard

S model described in [16] is obtained by imposing a = λ = 0 ; the

arameters a and λ were introduced by [6] and used to control

he excitability of the system. 

The modified Mitchell–Schaeffer (mMS) ionic model presented

n this paper is obtained by first replacing a = 0 and λ = v gate in

1) : consequently, if v m 

< v gate , then ∂ v m 

/ ∂ t < 0 and the system

aturally evolves towards the rest condition instead of producing

n action potential, in contrast to the original MS model where

here is a range of values v −m 

(h ) ≤ v m 

< v gate yielding ∂ v m 

/ ∂ t > 0. 

The effect of the potassium ion current is negligible when v m 

v gate and the cell is returning to a quiescent state. It is possible

o introduce gating effects to the outward ionic current with the

omplement of the gate variable, (1 −h ), adopting an expression

imilar to the one introduced in [25] . This leads to the following

ystem of ODEs: 

∂v m 

∂t 
= h 

v m 

( v m 

− v gate ) ( 1 − v m 

) 

τin 

− ( 1 − h ) 
v m 

τout 
+ J stim 

(3) 

∂h 

∂t 
= 

{
1 −h 
τopen 

v m 

≤ v gate 

− h 
τclose 

v m 

> v gate 

(4) 

emark. The robustness to pacemaker behaviour is obtained by

odifying the cubic polynomial on the right hand side of Eq. (1) .

he addition of gating on the outward current has three advan-

ages: first, when h = 1 the threshold value of the transmembrane

oltage above which an action potential is triggered is equal to

 gate ; second, for h = 1 the transmembrane potential at the end

f the upstroke will be v m 

= 1 ; third, as will be discussed in

ection 4 , the analytical solution of the mMS model coincides to

he analytical solution of the MS model for the same set of ionic

arameters for a particular choice of v gate . 

. Robustness to pacemaker behaviour 

The study of the robustness of the mMS model to pacemaker

ehaviour consists in determining if the condition ∂ v m 

/ ∂ t > 0
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Table 1 

Parameter set ranges and step adopted for testing the robust- 

ness to pacemaker behaviour of the mMS model. For the same 

set of parameters the behaviour of MS was also evaluated. 

τ in [ms] τ out [ms] τ open [ms] τ close [ms] 

min 0.05 0 .5 60 60 

max 0.5 10 220 220 

step 0.05 0 .5 10 10 
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could occur without an external stimulus being applied. In the

phase plane, the nullclines of Eq. (1) for the MS model and

Eq. (3) for the mMS model define the boundary between the

region where the depolarisation occurs and the region where

the system naturally evolves towards the rest condition; when h

recovers towards its rest state h = 1 , if the phase portrait crosses

the nullcline branch v −m 

, as depicted in Fig. 1 B, then the system

depolarises again and a new action potential is produced without

an external stimulus having been applied. 

The robustness of the mMS model to pacemaker behaviour

is shown by proving that its phase portrait cannot intersect the

nullcline branch v −m 

unless an external stimulus is applied. To this

aim, we first derive the nullcline of Eq. (3) , we then determine

the three characteristic points corresponding to the minimum and

maximum potentials delimiting the region where depolarisation

occurs, and the point where the v −m 

and v + m 

branches merge; we

also compare these points with the corresponding points from the

original MS model. Once the nullcline and characteristic points are

known, we show that the phase portrait of mMS cannot cross the

nullcline branch v −m 

during the recovery of h . 

3.1. Nullclines 

Denoting the minimum value of h on the nullclines in the MS

model by 

h 

MS 
min = 

4 τin 

τout 
(5)

the nullclines of MS are defined in [16] as follows: 

v m 

= 0 

v ±m 

( h ) = 

1 

2 

( 

1 ±
√ 

1 − h 

MS 
min 

h 

) 

(6)

denoting by 

h 

mMS 
min = 

(
1 + 

τout 

4 τin 

(1 − v gate ) 
2 
)−1 

(7)

the minimum value of h on the nullcline of the mMS model, the

nullclines of the new mMS model described in Eq. (3) are defined

as follows: 

v m 

= 0 

v ±m 

( h ) = 

1 

2 

( 

1 + v gate ± (1 − v gate ) 

√ 

1 − 1 − h 

h 

h 

mMS 
min 

1 − h 

mMS 
min 

) 

(8)

Eqs. (6) for MS and (8) for mMS define two regions in the phase

plane: the first one defined by the interval v −m 

(h ) < v m 

< v + m 

(h )

where ∂ v m 

/ ∂ t > 0; the second one defined by v m 

< v −m 

(h ) and

v m 

> v + m 

(h ) where ∂ v m 

/ ∂ t < 0. Fig. 2 A depicts the nullclines of

MS ( ) and mMS ( ). In the same figure, the black dashed

line represents the threshold potential v gate where h switches

between closing and opening (recovery); the region v m 

< v gate 

of the phase plane is critical in the study of the robustness to

pacemaker behaviour. 

The following 4 characteristic points are defined for Eqs. (6) and

(8) and are depicted in Fig. 2 : 

• Point 0 : rest (initial) state. In both models, this point ( •) is

characterised by (v m 

= 0 , h = 1) in the phase plane. This point

does not belong to nullclines (6) and (8) . 
• Point 1 : end of depolarisation from a rest state, (v + m 

(1) , h = 1) .

This point characterises the value of v m 

at the end of the

depolarisation upstroke and it is equal to (1, 1) for mMS ( )

and to ( 1 2 + 

1 
2 

√ 

1 − h MS 
min 

, 1) ( ) for MS. 
• Point 2 : merging point of the v −m 

and v + m 

branches. This point

defines the minimum value of h on the nullcline: it approx-

imates the state point where the phase portrait “falls off the

nullcline”, and is equal to ( 
1+ v gate 

2 , h mMS 
min 

) ( ) for mMS and to

( 1 2 , h 
MS 
min 

) ( ) for MS. 

• Point 3 : minimum potential on branch v −m 

(v −m 

(1) , h = 1) . This

point represents the minimum value an external stimulus has

to rise v m 

, to produce an action potential when the system

is fully recovered. It is equal to ( v gate , 1) ( ) for mMS and to

( 1 2 − 1 
2 

√ 

1 − h MS 
min 

, 1) ( ) for MS. 

In the phase plane, the phase portrait is defined as the curve

escribed by the values ( v m 

( t ), h ( t )) which constitute the solution

f the ionic model. The phase portraits of MS ( ) and mMS ( ) are

epicted in the right panel of Fig. 2 for a non-pacemaker solution;

he phase portrait for a pacemaker solution for the MS model is

epicted in Fig. 2 B. 

.2. Robustness 

The nullcline and characteristic points were defined above.

rom these points we show that the phase portrait of mMS can-

ot cross the nullcline branch v −m 

during the recovery of h unless

n external stimulus is applied. To simplify the notation, we denote

he value of the trans-membrane potential of Point 2 in mMS by 

v ∗m 

= v m 

(
h 

mMS 
min 

)
= 

1 + v gate 

2 

We then split the phase portrait into two parts: the repolar-

sation, defined by the interval v gate ≤ v m 

≤ v ∗m 

for mMS and the

nterval v gate ≤ v m 

≤ 1/2 for MS, and the recovery, when h returns

o its initial value, defined by v m 

< v gate . 

For both models, during the repolarisation v m 

approaches v gate 

t a rate proportional to 1/ τ out . Since v m 

≥ v gate , h decreases at

 rate proportional to 1/ τ close and the phase portrait moves away

rom the nullcline branch v −m 

, lying in the region of the phase

lane where no depolarisation can occur. 

When v m 

< v gate , h recovers at a rate proportional to 1/ τ open ,

hile the time derivative of v m 

is still negative, as depicted in

ig. 2 B. The system moves towards Point 0. Since v −m 

(h = 1) = v gate 

n mMS, the phase portrait will never cross the nullcline branch

 

−
m 

, independently of the value of τ open . Unless an external

timulus is applied, the system evolves towards Point 0, and no

acemaker behaviour will occur. In contrast, the MS model can

ross the nullcline branch v −m 

if τ open is small enough, since there

s a non-empty region where v −m 

(1) < v m 

≤ v gate . 

We tested the robustness of the MS and the mMS models to

acemaker behaviour on a regular grid set of 57,800 parameters

hosen with the range and the spacing reported in Table 1 . The

et of parameters characterised by h MS 
min 

≥ 1 were excluded since

his choice does not produce an action potential. The statistics of

he pacemaker behaviour was thus evaluated on a total of 52598

amples. For both models, an external stimulus was applied at
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Fig. 2. Nullclines (A) and phase portrait (B) of the mMS ( ) and MS ( ) models. The black dashed line represents v m = v gate ; the points ( ) and ( ) represent 

the points 1,2 and 3 for the mMS and MS models, respectively. The zeroth point ( •) represents the rest (initial) state and coincides for both models. The values of the 

parameters were taken from [16] . 
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s  
 = 0 ms and the numerical solution was evaluated over 1200 ms;

arameter sets presenting more than one depolarisation were

onsidered pacemaker. For 3042 combinations ( � 6% of the cases)

S displayed pacemaker behaviour, while the mMS was robust in

ll of the 52,598 tests. 

. Asymptotic derivation of the restitution curve 

Following the same procedure adopted in [16] , it is possible to

erive an explicit leading order asymptotic approximation for the

PD restitution curve of mMS, based on the assumption 

in � τout � τopen , τclose (9) 

From assumption (9) it follows that the time constants of

q. (3) are infinitesimal if compared to the time constants of

q. (4) and thus the duration of the depolarisation and repolar-

sation phases can be neglected when compared to the APD and

ecovery durations. 

.1. Single stimulus: maximum APD (APD max ) 

In this paper we adopt the same definition introduced in

16] for APD as the elapsed time during which v m 

≥ v gate . 

Due to the separation of the time scale introduced by assump-

ion (9) and considering a cell membrane initially in the rest state

 h = 1 , v m 

= 0 ), then the action potential generated by an exter-

ally applied stimulus is decomposed into the following 4 phases: 

1. Depolarisation: when the external stimulus is applied with

sufficient duration T stim 

and intensity such that v m 

( T stim 

) >

v gate , the fast inward current dominates and the potential

rises quickly to ( h = 1 , v m 

= 1 ) on the right nullcline with a

characteristic time proportional to τ in . 

2. APD: when the cell membrane is fully depolarised and the

gate progressively closes, the inward and the outward ionic

currents balance each other. The system evolves following the

right nullcline on a time scale proportional to τ close . 

3. Repolarisation: when (h, v m 

) ∼ ( h mMS 
min 

, v ∗m 

) , the solution

falls off the nullcline, the outward current dominates, and the

potential drops toward v m 

= 0 on a time scale proportional to

τ out . 

4. Recovery: when v m 

= v gate , the gate variable slowly re-opens

and recovers with a characteristic time scale of τ open . Since

the fast outward current, with characteristic time scale of

τ in , dominates, the potential drops to v m 

= 0 rapidly, due to
assumption (9) . d  
The durations of the depolarisation and repolarisation are

egligible if compared to the APD and recovery duration: thus, at

eading order, APD can be approximated as the time elapsed to

volve from h = 1 to h = h mMS 
min 

, obtained from (4) as follows: 

PD max = τclose ln 

(
1 

h 

mMS 
min 

)
(10) 

.2. Multiple stimuli: restitution curve 

In this section we derive a leading order approximation of the

PD when two (or more) stimuli are applied. The first stimulus is

pplied at t = 0 ms to a fully recovered tissue; the second stimulus

s applied at time t = S ms , to a system not fully recovered. 

Denoting by APD 1 the APD following the first stimulus and by

I = S-APD 1 the diastolic interval (DI), that is the time elapsed

etween the end of the APD and the second pacing stimulus, from

q. (4) there follows 

 (S) = 1 − (1 − h 

mMS 
min ) e 

− DI 
τopen (11)

ue to assumption (9) , the depolarisation duration is negligible if

ompared to APD and recovery duration; thus, from (4) and the

nitial condition (11) , the following relation between APD and DI,

alled restitution, holds: 

PD n+1 = τclose ln 

( 

1 − (1 − h 

mMS 
min 

) e 
− DI n 

τopen 

h 

mMS 
min 

) 

(12) 

In Fig. 3 A the analytical APD restitutions are depicted for mMS

 ) and MS ( ) and v gate = 0 . 13 . In the same figure dashed

ines depict the APD restitution computed by numerically solving

S and mMS. In Fig. 3 B, the same restitutions are plotted for

 gate = v ∗gate = 1 −
√ 

1 − h MS 
min 

: this value is evaluated by imposing

 

mMS 
min 

= h MS 
min 

and produces identical analytical restitution curves

or both models. This choice of the activation threshold also

roduced similar computed restitution curves for the two models

dashed lines, Fig. 3 B). 

The restitution curves were computed by applying an s 1 _ s 2 
rotocol [17] . Briefly, the model is repetitively stimulated with an

nter-pacing interval s 1 until a steady state is achieved, (in the

resent paper, s 1 = 10 0 0 ms , applied 10 0 times to achieve a limit

ycle), and then a single stimulus is applied at an interval s 2 <

 1 and the system is left to evolve. This procedure is applied for

ifferent values of s and the APD is measured after the premature
2 
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Fig. 3. Analytic APD restitution curves for mMS ( ) and MS ( ) models. Evaluated APD restitution curves for mMS ( ) and MS ( ) models. The values of the 

ionic parameters were taken from [16] , and are τin = 0 . 3 , τout = 6 , τopen = 120 , τclose = 150 . (A) v gate = 0 . 13 ; (B) v gate = v ∗gate . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Parameter values used for testing pacemaker stability. 

v gate τ in [ms] τ out [ms] τ open [ms] τ close [ms] 

0.13 0.1 9.0 100 120 
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stimulus is applied. In the present paper, the values of the prema-

ture stimulus s 2 < s 1 were chosen with the following sequence: 

s 0 1 = 900 ms 

s i+1 
1 = 0 . 98 s i 1 s i+1 

1 ≥ 200 ms 

Remark. Expressions (10) and (12) are formally equivalent to

those obtained in [16] for MS and differ only in the expression

of Point 2 defined in Section 3.1 . While in the MS model this

point is defined by (5) and does not depend on v gate , in the mMS

model this point is defined by expression (7) which introduces a

dependence on v gate in expressions (10) and (12) . 

Since the APD is defined as the elapsed time during which

v m 

≥ v gate , expressions (10) and (12) are able to account for this

dependency. As a demonstration, if v gate = 1 . 0 is chosen, one

expects no APD will be generated, independently of the choice of

the other 4 ionic parameters. The analytic restitution expression

of the MS model still will furnish a non-zero APD in this case. In

contrast, from expressions (10) and (11) the restitution equation

for the mMS model predicts an APD of 0 ms. 

5. Numerical examples 

To compare the functional characteristics of the MS and mMS

models we compare model simulations for a stable action po-

tential, an action potential affected by pacemaker behaviour, a

dynamic restitution protocol and pacemaker behaviour in a tissue

simulation. 

Time discretisation was performed by a backward Euler method

and non-linearities were treated by Newton iterations. 

A time step dt = 0 . 005 ms was chosen; to test the accuracy of

the chosen time step we evaluated the numerical solution for the

set of parameters reported in [16] with a time step dt = 0 . 005 ms

and a time step dt = 0 . 0 0 05 ms . The maximum and the L 2 dif-

ferences between the solutions were equal to 0.004 and 0.005

respectively, (i.e., � 0.5% of the maximum value of v m 

). The exter-

nally applied stimulus is characterised by an intensity of 1 . 0 ms −1 

and a duration of 0.4 ms. 

In Section 5.1 we deal with the ionic parameters taken from

[16] that do not provide any pacemaker activity for MS. 

In Section 5.2 we adopt the parameters reported in Table 2

that yield pacemaker behaviour for the MS model. We will show

that while the MS model will furnish a pacemaker solution, the

mMS model will be robust to this behaviour. 
In Section 5.3 we evaluate the dynamic restitution curves for

oth models with the parameter set defined in [16] and we show

hat the differences between the two models in the dynamic APD

estitutions are small. 

In Section 5.4 we consider a homogeneous tissue slab char-

cterised by the parameters reported in Table 3 , stimulated by a

ross-field protocol. This set of parameters did not produce any

acemaker behaviour for the MS model in a single cell, nor in a

D tissue string for the same parameter set and model conditions,

ut did show pacemaker behaviour in two dimensions. We show

hat the mMS model is robust to pacemaker behaviour under

hese conditions. 

.1. Example 1: pacemaker free MS 

In the first example the MS and the mMS models were solved

ith the parameter set taken from [16] . This choice yields a

acemaker free MS model. Three stimuli were applied at an

nter-pacing interval T = 700 ms . For both models the trans-

embrane potential ( Fig. 4 A) and the gate variable ( Fig. 4 B)

unctions of time are depicted. 

The dynamics of the gate variable h do not significantly differ

etween the two models, while the trans-membrane potential v m 

btained by solving the mMS model only differs in the maximum

alue reached at the end of the depolarisation. 

In Fig. 5 the trans-membrane potential v m 

and the gate variable

 are plotted when a value of v gate = v ∗gate is chosen. This choice

f v gate yields the same analytical restitution curves for the mMS

nd the MS models. 

.2. Example 2: MS with pacemaker activity 

In the second example we characterise both models with the

arameter set summarised in Table 2 . This choice leads to a

acemaker solution in the MS model. The system is paced once at

 = 0 and the solution is evaluated until t = 1200 ms . The results

re plotted in Fig. 6 ; while the mMS model presents only one
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Table 3 

Parameter values used for testing pacemaker stability. 

v gate τ in [ms] τ out [ms] τ open [ms] τ close [ms] conductivity [cm 

2 /s] 

0.13 0.15 6.5 90 85 1.75 

Fig. 4. (A) Trans-membrane potential ( v m ) for mMS ( ) and MS ( ) models. Circles ( ) represent the values ( v + m (1) ) characterising Point 1 for mMS and MS, 

respectively. (B) Gate variable for mMS ( ) and MS ( ) models. Parameter values were taken from [16] , and are τin = 0 . 3 , τout = 6 , τopen = 120 , τclose = 150 , v gate = 0 . 13 . 

Fig. 5. (A) Trans-membrane potential ( v m ) for mMS ( ) and MS ( ) models. Circles ( ) represent values ( v + m (1) ) characterising Point 1 for mMS and MS, respectively. 

(B) Gate variable for mMS ( ) and MS ( ) models. Values for the ionic parameters were taken from [16] , and are τin = 0 . 3 , τout = 6 , τopen = 120 , τclose = 150 , while 

v gate = v ∗gate . 

Fig. 6. (A) Trans-membrane potential ( v m ) for mMS ( ) and MS ( ) models. (B) Gate variable ( h ) for mMS ( ) and MS ( ) models. Parameter values are 

reported in Table 2 . 
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Fig. 7. Phase portrait ( ) and nullclines ( ) for the modified MS model (A) and the standard MS model (B). Black dashed line ( v m = v gate ) represents the threshold 

where h switches to recovering. Parameter values reported in Table 2 were taken. 
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action potential, the MS cyclically depolarises (with 4 activations

during the simulation period). 

In Fig. 7 the nullclines and the phase portrait are depicted for

both models. The mMS model ( Fig. 7 A) recovers without crossing

the left nullcline, since the recovery of h is far from the nullcline.

The MS model ( Fig. 7 B) crosses the left nullcline during recovery

and thus re-depolarises entering into a periodic limit cycle. 

5.3. Example 3: dynamic restitution curves 

Dynamic restitution curves are used to characterise the value

of the APD when the tissue is periodically paced with a pacing

period S . As discussed in [16] , at larger values of S , each stimulus

produces an action potential, yielding a 1:1 correspondence be-

tween S and APD, called 1:1 behaviour. As S decreases, this 1:1

behaviour eventually becomes unstable; as a result, two possible

behaviours can be presented: 

• A 2:1 behaviour: only every other stimulus produces an action

potential; 
• A 2:2 behaviour (alternans): each stimulus will produce an

action potential, but the APD periodically alternates between

short and long. 

For both models, dynamic restitution curves were numerically

evaluated. For each pacing period S , the system was periodically

paced by applying 104 external stimuli and the APD was computed

for each of the last 4 applied stimuli. When the APD values of the

last 4 stimuli all coincide, the behaviour was considered of type

1:1. If the APD presented two different alternating values and all

of the 4 stimuli produced an action potential the behaviour was

considered of type 2:2 (alternans). Lastly, if the APD presented

only one value and the 4 stimuli produced only two activations,

the behaviour was considered to be of type 2:1. The examples

tested did not present any type 2:1 behaviour. 

Dynamic restitutions were evaluated for the parameters of

Table 2 and for v gate = v ∗gate as defined in Section 4.2 . The pacing

interval S was decremented from 700 ms to 300 ms with a step

of 100 ms and then from 280 ms with a step of 2 ms to the first

value that did not produce APD. For v gate = 0 . 13 no APD were

produced for S = 256 ms for the mMS model and S = 266 ms for

the MS model; the dynamic restitution of the MS model bifurcates

at S = 278 ms with two APD values differing by 10 ms, while the

mMS model bifurcates at 270 ms with two APD values differing

by 230 ms. For v gate = v ∗gate no APD was produced for S = 266 ms

for the mMS model and S = 268 ms for the MS model, while

bifurcations occurred at S = 280 ms with two APD values differing

by 10 ms in the MS model, and at S = 278 ms with two APD
alues differing by 240 ms in the MS model. The pacing periods

here either APD bifurcates or no APD was produced differ by

 ms between both models, a difference comparable with the step

sed to decrement S . 

In Fig. 8 A the dynamic restitution of the MS model is depicted,

hile in Fig. 8 B the same curve is depicted for the mMS model. In

ig. 8 C and D the dynamic restitutions are depicted for the mMS

nd the MS models respectively. The two different APD values

re depicted with a blue circle and a red triangle (second stimu-

us). When the circles and triangles are no longer superimposed,

ifurcation occurs. 

.4. Example 4: 2D model with a cross-field stimulus 

In this example we consider an homogeneous isotropic tis-

ue slab measuring 5 cm × 5 cm; the tissue electrophysiology is

escribed by the mono-domain model [13] and solved with the

ARP [18,26] finite element code. The equations were discre-

ised in space with a triangular mesh with a characteristic size

 = 189 μm and in time with a time step of 0.1 ms. The model

as simulated for t = 3500 ms . 

The tissue electrophysiology was characterised by the param-

ters reported in Table 3 . These parameters did not generate any

acemaker activity in simulations of an isolated single cell or in a

D domain. 

The tissue was stimulated by the cross field stimulation

rotocol, [19] . Briefly, an external stimulus was applied to two

rthogonal regions at two different stimulation times to trigger

 spiral activation pattern. In this work the first stimulus s 1 was

pplied at t = 0 ms on the left edge of the slab between x = 0

nd x = 0.2 cm, and s 2 was applied at t = 290 ms on the bottom

dge of the slab between y = 0 and y = 0.25 cm. For both stimuli,

 current intensity of J stim 

= 2 . 0 ms −1 with a duration of T stim 

=
.6 ms were employed. 

The transmembrane potentials of the mMS (top row) and the

S (bottom row) models are depicted in Fig. 9 for t = 290 ms ( s 2 
s applied), t = 390 ms (a spiral wave is generated, no pacemaker

ctivity is present), t = 420 ms (pacemaker behaviour appears in

he MS model) and t = 620 ms (presence of pacemaker behaviour

n the MS model). A video of the whole simulation can be found

n the online supplement. 

The mMS model generated a spiral re-entry wave that broke

p at t = 2080 ms and terminated at t = 2470 ms , whereas the MS

odel showed a pacemaker behaviour, initiated by a pacemaker

eat at t = 420 ms ( Fig. 9 , third column) and which persisted over

he entire simulation period. 
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Fig. 8. (A) Dynamic APD restitution for MS model, v gate = 0 . 13 . (B) Dynamic APD restitution for the mMS model, v gate = 0 . 13 . For two subsequent pacings, APD value are 

depicted as ( ) and ( ). When circles and triangles are no longer superimposed, bifurcation occurs. (C) Dynamic APD restitution for MS model, v gate = v ∗gate . (D) Dynamic 

APD restitution for the mMS model, v gate = v ∗gate . (For interpretation of the references to colour in the text, the reader is referred to the web version of this article.) 

Fig. 9. Trans-membrane potential followed by a cross-field stimulus for the mMS 

(top) and the MS (bottom) models at times t = 290, 390, 420 and 620 ms. 
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. Discussion and conclusions 

In this paper we introduced a novel two state-variable ionic

odel, obtained by modifying the standard Mitchell–Schaeffer

MS) ionic model. The new model has the same benefits as the

tandard MS model and is proven to be robust to pacemaker

ehaviour. Previously the MS model had been adapted to intro-

uce pacemaker behaviour [6] . The nonlinear term characterising

he inward ionic current was modified by introducing two new

arameters. In this paper, we presented a model that is robust to
acemaker behaviour by modifying the inward current in a similar

anner. Unlike [6] , in this paper we also gated the outward

urrent. This yields three advantages: first, the threshold value

f the transmembrane voltage above which an action potential is

riggered corresponds to v gate ; second, at the end of the depolar-

sation, v m 

= 1 ; third, the analytical solution of the mMS model

oincides with the analytical solution of the MS model for the

ame set of ionic parameters and v gate = v ∗gate . 

We then introduced an asymptotic derivation of the restitution

urves, obtaining a relation formally equivalent to that obtained

n [16] . We also showed, through numerical examples, that there

re only small differences in the action potential introduced

y the modified MS (mMS) equations compared to the original

S model when the same set of parameters are adopted. We

lso compared the APD dynamic restitution curves obtained by

umerically solving both models; we showed that the mMS is

ble to reproduce the APD alternans and that these occur under

 similar pacing regime in both models. Last, we demonstrated

he robustness of the new model even when incorporated into

 mono-domain tissue simulation, confirming its applicability in

issue scale patient-specific modelling. 
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