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Abstract

Post-synaptic potential (PSP) variability is typically attributed to mechanisms inside synapses, yet recent advances in
experimental methods and biophysical understanding have led us to reconsider the role of axons as highly reliable
transmission channels. We show that in many thin axons of our brain, the action potential (AP) waveform and thus the Ca++

signal controlling vesicle release at synapses will be significantly affected by the inherent variability of ion channel gating.
We investigate how and to what extent fluctuations in the AP waveform explain observed PSP variability. Using both
biophysical theory and stochastic simulations of central and peripheral nervous system axons from vertebrates and
invertebrates, we show that channel noise in thin axons (,1 mm diameter) causes random fluctuations in AP waveforms. AP
height and width, both experimentally characterised parameters of post-synaptic response amplitude, vary e.g. by up to
20 mV and 0.5 ms while a single AP propagates in C-fibre axons. We show how AP height and width variabilities increase
with a L power-law as diameter decreases and translate these fluctuations into post-synaptic response variability using
biophysical data and models of synaptic transmission. We find for example that for mammalian unmyelinated axons with
0.2 mm diameter (matching cerebellar parallel fibres) axonal noise alone can explain half of the PSP variability in cerebellar
synapses. We conclude that axonal variability may have considerable impact on synaptic response variability. Thus, in many
experimental frameworks investigating synaptic transmission through paired-cell recordings or extracellular stimulation of
presynaptic neurons, causes of variability may have been confounded. We thereby show how bottom-up aggregation of
molecular noise sources contributes to our understanding of variability observed at higher levels of biological organisation.
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Introduction

The great majority of axons use action potentials (APs) to

transmit information reliably to synapses. Once the AP arrives at

the synapse the characteristics of its waveform are fundamental in

determining the strength and reliability of information transmis-

sion, as was extensively shown in the central and peripheral

nervous system of both vertebrates and invertebrates [1–14].

Although the nervous system exhibits stochastic variability (noise)

at all levels (see [15] for a review), it is generally assumed that little

random variability affects the AP waveform as it travels from the

soma along the axon to the synapse. However, recent under-

standing of biophysics and experimental methods prompt us to

reconsider this common assumption.

The AP is mediated by voltage-gated ion channels, which

control the flow of ionic currents through the membrane.

Thermodynamic fluctuations in voltage-gated ion channels result

in probabilistic gating, producing random electrical currents called

channel noise [16]. In thin axons, the behaviour of individual ion

channels can have significant effects on the membrane potential

dynamics due to the higher input resistance of those axons [17–

19]. Fewer channels sustain AP conduction and fluctuations in

individual ion channels have a larger impact on the membrane

potential in thinner axons. Faisal et al. [20] have shown that

channel noise sets a lower limit to reliable axonal communication

at 0.08–0.1 mm diameter, a general limit matched by anatomical

data across species. Above this limit, in axons of 0.1–0.5 mm

diameter, channel noise causes variability in the rising phase of the

AP and the resting input resistance of axons. Therefore APs are

jittered, shifted, added and deleted in a history-dependent way

along the axon [18]. Thus, noise in axons affects the timing of APs

and therefore reduces the information capacity of the neural code.

Here, we are going to investigate how noise in axons affects the

waveform of APs, and produces random variability in the

responses of synapses, with implications for information transmis-

sion and learning.

Attempts at investigating the impact of axonal noise on the

synapse have so far been limited to rather large diameter axons ($

1 mm diameter) [21,22]. However, many unmyelinated axons are

very thin (0.1–0.3 mm diameter [23]). Examples include cerebellar

parallel fibres (average diameter 0.2 mm [24]), C-fibres implicated

in sensory and pain transmission (diameter range 0.1–0.2 mm [25])

and cortical pyramidal cell axon collaterals (average diameter

0.3 mm [26], making up most of the local cortical connectivity

[26]). The variability of the AP waveform in all these axons is

unknown. Basic biophysical considerations suggest that axonal

noise sources are bound to introduce fluctuations [20,27] in the

shape of the travelling AP waveform in thin axons with immediate

consequences for synaptic transmission and reliability [28].

Intracellular recordings from such thin axons are difficult to

obtain. Extracellular stimulation offers only limited signal resolu-

tion and stimulus control, and tiny intracellular volumes limit the

application of imaging methods to quantify AP waveforms

accurately. This motivated the study presented here which uses
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biophysically detailed stochastic simulations of travelling APs in

thin axons and basic biophysical theory. Our goal is to investigate

the mechanisms behind the observed synaptic variability; specif-

ically how much variability can be explained by channel noise in

axons. We quantify waveform fluctuations of single propagating

APs in terms of standard synaptic efficacy measures, namely AP

width and height. We explain how channel noise causes AP

waveform fluctuations and show that these fluctuations scale with

axon diameter according to an inverse power law, i.e. the finer an

axon the bigger the impact. We then investigate the AP waveform

fluctuations for propagating spike trains and predict the post-

synaptic response variability axonal noise would cause in two

ways: 1. by using models of synaptic dynamics and vesicle release

and 2. by using direct experimental data linking AP waveform to

post-synaptic response. Thus, we will be able to estimate the

influence of axonal channel noise on synaptic variability.

Results

Action potential waveform variability
We find that single APs propagating in central and peripheral

nervous systems (CNS and PNS), mammalian and invertebrate

axons of up to 1 mm diameter display large random variability in

their waveform as they propagate. We visualize this by measuring

the AP waveform (membrane potential versus time) at various

positions along the axon (Figure 1.A,B) and then align the

waveforms at the instant of half-peak crossing (Figure 1.D). As a

control, we simulated a deterministic axon, i.e. one that had the

same set of biophysical parameters and received the same stimuli

but where we modelled the ion channels using deterministic

kinetics instead of the corresponding stochastic kinetics [19,29].

APs in all our deterministic simulations, starting from the same

initial condition and receiving the same trigger input, exhibit no

waveform variability across repeated trials. Since the stochastic

kinetics of ion channels are the only source of variability given that

all other parameters and stimuli are controlled by our simulation,

the variability of the travelling AP waveform observed must be due

to channel noise and thus entirely random in nature. Crucially, the

AP waveform is not only variable across repeated trials with

identical stimulus, but also varies as the same AP propagates along

the axon.

Comparing the variability of the AP waveform in axons with

identical biophysical parameters and ion channels but varying

axon diameter from 0.1 mm to 1 mm, shows that the waveform

fluctuations become larger as the axon becomes thinner. This is

true for both models of squid giant axons, rat hippocampal

interneuron and C-fibre axons. The general structure of the

variability profile remains preserved across diameters. The width

of the propagating AP varies as it travels down a thin axon in the

order of a tenth of a millisecond (Figure 2.A,C,E,G). Similarly, AP

height varies in the order of 1 to 10 millivolts (Figure 2.B,D,F,H).

The variability is more pronounced the thinner the axon is

(Figure 3.A,B). The variations between proximal and distal AP

shape are, as expected uncorrelated (R2,,0.2 across all

diameters and axons for both AP heights and AP widths). This

implies that both AP width and height become decorrelated with

themselves (autocorrelation decreases) and between each other

(cross-correlation decreases) the further the AP propagates down

an axon (Supplementary Figure S1).

Deterministic transformation of the propagating AP

waveform. The AP waveform changes in a deterministic way

after AP initiation [30] (Figure 3.C,D). The AP upstroke becomes

steeper as the AP travels away from the AP initiation site and

approaches its steady-state shape after several length constants

(after about 1 mm in a 0.2 mm diameter axon). The change in the

average AP waveform of the stochastic simulation matches the

AP waveform change of the corresponding deterministic simu-

lated axon [31]. This is because close to the proximal stimulation

site, the AP shape is determined by the stimulus driving a fully

resting axon, and the response speed is limited by the resting

membrane’s time constant. However, once the AP propagates the

depolarisation is driven by the APs own axial current, which acts

over the broad region (about one length constant l~
ffiffiffiffiffiffiffi
dRm

4Ri

q
,

which is a property of the passive axonal membrane and

represents how well a subthreshold potential spreads along the

axon) of the rising phase of the AP (see also [18]). Na+

conductance increases across this region due to the opening of

voltage-gated channels in response to the rising phase of the AP.

Therefore, the rise time of the travelling AP is faster than the rise

time of the AP at the stimulus initiation site. The effect is more

pronounced the thicker the axon is, because the larger cross-

sectional area lowers the axial resistance in proportion to the

axonal cross-section area (which is quadratic in the diameter).

The deterministic transformation of the AP waveform is

predictable, reproducible and needs not cause loss of information

about the generating stimulus.

Stochastic variation of the propagating AP

waveform. Axonal channel noise introduces non-deterministic,

random variability in the propagating AP waveform. This

stochastic component of waveform change has similar size as the

deterministic component at the largest diameter but unlike the

deterministic effect, its amplitude increases as diameter decreases

(Figure 3.E). The stochastic effect is non-predictable and cannot be

compensated for at the synapses. We find AP waveform

fluctuations, quantified here in standard deviations around the

mean waveform are up to 3 times larger in amplitude than resting

membrane potential fluctuations caused by channel noise

(Figure 3.E, between the highest variability point at approx.

3 ms and the variability at t = 0, before the onset of the AP). Thus,

in thin axons, the AP mechanism itself enhances waveform

variability due to channel noise.

This random variability of the AP waveform does not only result

from AP initiation variability, but is also actively generated as the

AP propagates along thin axons. The amplitude of waveform

fluctuations (as defined by the standard deviation of the membrane

potential at each point in time, see Figure 4.B) increases over-

Author Summary

The fundamental signal of the nervous system is the action
potential: an electrical spike propagated along neurons
and transmitted between them via synapses. Once
triggered, action potentials are generally assumed to be
robust to noise, and the variability observed at all levels of
the nervous system is primarily attributed to synapses.
However, this view is based on data from classically
studied axons, which are very large compared to the
average diameter of axons in the mammalian nervous
system, and even larger when compared to the thinnest
axons. As the effects of thermodynamic noise affecting the
proteins responsible for the initiation and propagation of
action potentials are much bigger in thin axons, the
assumption does not necessarily hold for very thin axons.
We show that the action potentials waveform in thin axons
is subject to random variability. Fluctuations in this
waveform result in fluctuations in synaptic ionic currents,
and account for a significant portion of the variability
observed at the synapse.
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proportionally as axon diameter decreases below 1 mm

(Figure 4.C–F). Plotting the relative variability as the coefficient

of variation (CV, defined as the ratio of the standard deviation

over the mean) of AP width or height, over axon diameter reveals

a common power-law relationship of d{3
4 [18]. The power law

holds for the height of APs and their widths (Figure 5), as well as

the fluctuations in the overall shape of APs (Figure 4). These

relationships can be understood by analysing how the AP

mechanism and the ion channel’s stochastic nature produce the

observed AP waveform variability and have been derived by Faisal

et al. [18]. As they show, the ratio of membrane fluctuations over

total number of channels is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{p)=(pd3=2)

p
, where p is the open

channel probability. Therefore the relative effects of channel

fluctuations grows as d{3
4.

Figure 1. Definitions and methods. (A) We record membrane potential and ionic currents at regularly placed points along the axon, and compare
the (B) shape of the AP waveforms (black) and the resting membrane potential (dashed red). (C) Action potential features are determined individually
for each AP. The amplitude of the AP is defined as the maximum membrane potential. The width is the delay between the crossings of the mid-
height level. (D) AP shape fluctuations. Due to channel noise, APs triggered in an identical fashion will have different shapes across trials. Here APs in
a 0.2 mm diameter axon from 5 trials out of 250 are superimposed. The point at which the membrane potential crossed the half-height line is used to
align APs.
doi:10.1371/journal.pcbi.1003615.g001
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Figure 2. Random variability of AP waveform in thin axons (d = 0.2 mm) of four different types. Subfigures display data for N.200 single
APs triggered by identical stimuli and initial conditions (thick circle, 16SD; dotted circle 36SD). (A) Distribution of AP width and (B) AP height for rat
hippocampal interneuron model axon. (C) Distribution of AP width and (D) AP height for C-fibre axons. (E) Distribution of AP width and (F) AP height
for squid giant axons with Patlak channels. (G) Distribution of AP width and (H) AP height in squid giant axons.
doi:10.1371/journal.pcbi.1003615.g002
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Figure 3. Random variability of AP waveform in thin squid giant axon type axons of 3 diameters. The subfigures display data for N.200
single APs triggered by identical stimuli and initial conditions in thin squid giant axon model. (A) Distribution of AP width and (B) AP height (red
circle, 16SD; dotted circle 36SD). (C) Mean waveform of the AP at the proximal site. (D) Pairwise difference between an AP’s shape at the proximal
and the distal location. The average difference is plotted in thick black, while the light grey shaded area represents the 36SD range. Grey lines
represent sample traces plotted individually. (E) Fluctuations around the mean pairwise difference. The average difference is plotted in thick black (0
by definition), while the light grey shaded area represents the 36SD range. Grey lines represent sample traces plotted individually.
doi:10.1371/journal.pcbi.1003615.g003

Figure 4. Travelling APs’ waveform fluctuations scale with axonal diameter with an inverse power low. (A) Typical shape of an action
potential in the squid giant axon. (B) The variability in the waveform at each moment in time (N = 250). We define the variability as 36SD of the
membrane potential at each point in time. (C) Log-log plot of 36SD of fluctuations in AP shape over diameter for the rat hippocampal interneuron.
(D) Log-log plot of 36SD of fluctuations in AP shape over diameter for a C-fibre axon. (E) Log-log plot of 36SD of fluctuations in AP shape over
diameter for a squid giant axon (Patlak channels). (F) Log-log plot of 36SD of fluctuations in AP shape over diameter for a squid giant axon.
doi:10.1371/journal.pcbi.1003615.g004
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Underlying mechanisms of waveform variability
To measure how channel noise affects the propagating waveform,

one has to track the relevant quantities at corresponding points of

the moving AP. To this end, the time series recorded at closely

spaced axonal positions (here, corresponding to a cylindrical

membrane compartment of the axon model) are superimposed

after having been aligned at the instant when the membrane

potential crosses its half AP peak value. Thus, the individual

quantities and their variability at corresponding points of the

travelling AP are displayed at corresponding points (Figure 6).

The variability of the waveform has a characteristic structure

that is conserved across different axons types and diameters as it is

caused by the basic mechanism of the AP itself. The first

maximum in waveform variability is reached in the late rising

phase of the AP (between half peak and peak depolarisation, see

Figure 4.A,B). The location of this peak is not an artefact of our

aligning of APs (at 50% AP height, c.f. alignment at 20% AP

height in Supplementary Figure S2). This first peak is due to

fluctuations in the number of opening Na+ channels and Na+

current (red curves in Figure 6.B,C), as the first peak of Na+

Figure 5. Variability of the AP width and height scales with axon diameter. The power-law relationship is valid at both proximal (left-
pointed triangle) and distal (right-pointed triangle) points in all four types of axons. (A) Log-log plot of CV of AP height over diameter for a rat
hippocampal interneuron. (B) Log-log plot of CV of AP width over diameter for a rat hippocampal interneuron. (C) Log-log plot of CV of AP height
over diameter for a c-fibre axon. (D) Log-log plot of CV of AP width over diameter for a c-fibre axon. (E) Log-log plot of CV of AP height over diameter
for a squid giant axon with Patlak channels. (F) Log-log plot of CV of AP width over diameter for a squid giant axon with Patlak channels. (G) Log-log
plot of CV of AP height over diameter for a squid giant axon. (H) Log-log plot of CV of AP width over diameter for a squid giant axon.
doi:10.1371/journal.pcbi.1003615.g005
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Figure 6. Ion channel and current fluctuations underlie waveform variability. Ion channel and current fluctuations in an AP travelling along
0.2 mm diameter axons. All traces are aligned at the instant when the rising AP crosses half-peak. Data from the squid giant axon model is on the left,
while the right plots show data from the rat hippocampal interneuron model. Shaded areas in A–D are the 36SD envelope around the mean curve
(dark curve). Light curves in A–D represent a sample of individual traces. (A) Membrane potential waveforms (B) Number of open Na+ (red) and K+

(blue) channels (C) Current flowing through Na+ (red) and K+ (blue) channels (D) Net membrane current (sum of Na+, K+ and leak) (E) SD of Na+ (red),
K+ (blue) and net membrane (green) currents.
doi:10.1371/journal.pcbi.1003615.g006
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current variability is reached at half-peak membrane depolarisa-

tion (Figure 6.C, shortly after 0 ms). The variability of the

depolarising Na+ current accounts for the variations in AP height

because the number of Na+ open channels and their inactivation

prior to reaching Na+ reversal potential (the upper limit to AP

peak) determine how much driving current is depolarising the

membrane capacitance. K+ channels begin to open later, and thus

Na+ channels carry most of the net membrane current in this

initial phase of the AP and are responsible for the initial variability

(Standard deviation (SD) profile of Na+ current, red curve, and K+

current, blue curve, with net membrane current, green curve, in

Figure 6.E).

The second, broad peak in waveform variability is reached in

the repolarizing phase (Figure 6.A and Figure 4.A,B beginning at

1 ms and increasing up to 2.5 ms). As the rate of repolarization

(here, ,50 mV/ms) is much slower than that of depolarization

(here, .200 mV/ms), variability in the height of the AP waveform

translates into much larger changes of AP width. Note, AP width is

measured between the up and down crossings of any given

membrane potential level, here chosen to be half-peak depolar-

ization. Thus, AP width variability is mainly generated in the

repolarizing phase of the AP and caused by a long period of large

fluctuations in net membrane current (Figure 6.D, between 0.75

and 2.25 ms). Variability is generated initially by K+ current noise

and then by Na+ current noise (Na+, red, and K+, blue, in

Figure 6.B,C). After K+ channels begin to open in the early

repolarizing phase, K+ current fluctuations peak as K+ channel

opening probabilities increase and the variance of the number of

open channels becomes larger. The increase in variance can be

understood, if one considers that a population of N ion channels

with open probability p follows a binomial distribution for the

number of open channels. The variance in the number of open

channels is given by Np(1{p) and thus has a maximum as the

open probability p approaches 0.5 from all channels closed (p~0)

or all channels open (p~1). By the time the maximum K+ channel

open probability is reached (which is not necessarily p~1 for

many voltage-gated ion channels), electro-motive forces are lower

than near AP peak and, membrane potential fluctuations due to

K+ currents have consequently lower amplitudes. An equally large

and broad maximum in the fluctuations is due to Na+ channel

inactivation in the late repolarizing phase for analogous reasons,

following a similar binomial argument, when Na+ electro-motive

forces are large.

Thus, AP height variability (Figure 5.A,C,E,G) is mainly caused

by the fluctuating number of open and inactivating Na+ channels

during the upstroke of the AP. AP width variability

(Figure 5.B,D,F,H) is predominantly caused by the noisy

repolarizing phase of the AP, where both K+ and Na+ channels

contribute to large fluctuations in the rate of repolarization.

Having described how channel noise affects a single AP’s

waveform, the question arises whether AP waveforms are more

variable in spike trains, as APs may influence each other.

Waveform variability in spike trains
Using a naturalistic white noise current stimulus protocol [32]

(1 kHz cut-off frequency, see methods), we elicited spike trains for

a period of 10 minutes in a 0.2 mm diameter axon (average

cerebellar parallel fibre diameter) using the rat hippocampal

interneuron model. Note that interspike intervals and AP

triggering currents therefore varied as successive APs were

triggered (f = 40.8 Hz642.8 Hz, mean 6 SD). At the axon’s

distal end (measured at approx. 95% of the axon’s total length to

exclude boundary effects) waveforms showed considerable varia-

tion in the AP shape (Figure 7.A).

Plotting pairs of an AP’s width measured at the mid and distal

position revealed an uncorrelated structure (correlation coefficients

0.04 and 0.03 for AP width and height), as in the case of single

APs. AP widths measured at half-peak had a coefficient of

variation (CV = SD/average) of 6% (0.7 ms60.04 ms) and AP

amplitude (resting potential to peak) had a CV of 3%

(93.7 mV62.5 mV). AP waveform variability in spike trains was

larger than in the case of individual spikes propagating. The

standard deviation of change in AP height after propagating for

1 mm in the axon was 3.5 mV (0.05 ms for the width, N = 2000),

compared to 1.6 mV (0.04 ms for the width, N = 250) for the

single spike protocol. The profile of waveform variability

(Figure 7.A) peaks close to AP threshold and, at a higher level,

in the late repolarising phase. Random waveform variability has

matching profiles in the spike train and the single AP protocol as it

is caused in both cases by the AP mechanism itself.

This illustrates that AP waveform variability is a constantly

acting random process, occurring independent of AP initiation or

stimulus. Stochastic waveform variability is non-existent in

identical simulations where we replace stochastic ion channel

models by the equivalent deterministic Hodgkin-Huxley type

conductance models. Thus, all axonal variability observed here

must result from the effects of the only source of noise modelled –

channel noise in Na+ and K+ channels. We have previously shown

that the memory of voltage-gated ion channels causes an increased

effect on membrane potential noise, affecting the speed of

propagation [18]. The same mechanism is also acting on the

waveform.

We have thus quantified the impact of axonal channel noise on

AP waveform variability and explained the biophysical mecha-

nisms acting in thin axons. This previously overlooked effect will

only become relevant at the neural circuit and behavioural level if

it can influence synaptic transmission. Therefore, we modelled

next the synaptic transmission process from arrival of the AP to the

post-synaptic response.

Variability in synaptic transmission
Synaptic transmission follows a general sequence of events

leading to a post-synaptic response. An AP propagates down the

axon and causes the opening of voltage-gated Ca++ channels

resulting in the influx of Ca++ at the pre-synaptic terminal. Ca++-

sensitive proteins trigger the fusion of vesicles, which release

neurotransmitters into the synaptic cleft. These transmitters diffuse

and trigger the opening of ion channels in the post-synaptic cell,

producing a voltage response. Thus, AP waveform variability

could perturb post-synaptic responses [33].

We estimate the synaptic impact of waveform variability for

spike trains propagating down a 0.2 mm diameter axon using two

distinct approaches: first, we model the individual stages of

synaptic transmission in a synapse driven by our thin axons using

biophysical models. Second, we use experimental data relating AP

width and height to post-synaptic response amplitude to estimate

directly how the variability of the AP would transform into

response variability.

Synaptic variability from signal transduction

model. There are few quantitative models of the pre-synaptic

mechanisms that link AP arrival to vesicle release. We use one of

the most biophysically and quantitatively detailed available

models, that of the Calyx-of-Held synapse (reviewed in [34]).

The Calyx-of-Held is a very large synapse driven by a reliable,

thick axon terminal (1.5–2 mm average diameter [35]). Thus, care

has to be taken when extrapolating results from this synapse to

small synapses innervated by thin axons. However, due to the

rapid Ca++ dynamics, the Ca++ concentration closely follows the

Axonal Noise as a Source of Synaptic Variability
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Ca++ current and the impact of synapse size is therefore small (see

Discussion for details).

Our simulations show that both Ca++ peak current and total

Ca++ influx are subject to considerable variability with a CV of 3%

and 9% respectively (Figure 7.B). The total inflow of Ca++ into the

synapse and the associated increase in intracellular Ca++

concentration are subject to significant variability (Figure 7.C).

Waveform variability in the repolarizing AP phase - varying AP

width - leads to a considerable spread in the total influx of Ca++.

This translates into considerable variability in vesicle release rate

and the total duration of release (Figure 7.D), which mainly results

from the second, broad variability peak of the (repolarising) AP

Figure 7. Variability in synaptic processes due to fluctuation in AP waveforms. For all subfigures, the mean waveform is plotted in black,
SD in red, and 1%–99% quantiles in light blue. (A) Waveforms of 2000 consecutive APs arriving at the terminal end of an axon of 0.2 mm diameter rat
hippocampal interneuron model axon. (B) Ca++ current resulting from the integration of the above AP waveforms into a model of a pre-synaptic Ca++

channel (see text for details). The current is scaled because we are only interested in its waveform. (C) Intracellular Ca++ concentration for a large CNS
synapse obtained by scaling the Ca++ current waveform, and lengthening it. (D) Time course of vesicle release rates computed for a model of a Calyx-
of-Held type synapse (see text for details).
doi:10.1371/journal.pcbi.1003615.g007

Axonal Noise as a Source of Synaptic Variability
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waveform (see above). The variability in the release time course is

due to variations in the AP width, and not to variability in release

probabilities [36]. Integrating the instant vesicle release rates of

our model yields the total amount of vesicles released for a given

AP waveform (Figure 8.B). The variability of the total number of

released vesicles is considerable as the CV is about 26% (mean 471

and SD 121). Excitatory post-synaptic current (EPSC) variability

can be directly estimated from vesicle release because experimen-

tal data has shown that under conditions of normal release

probability, released quanta linearly summed to EPSCs [37,38].

This would suggest an EPSC variability of approx. 25% based on

the Calyx-of-Held model if this synapse was innervated by an axon

Figure 8. Calculated distribution of synaptic response variability. (A) Distribution of peak vesicle release rate in a large CNS synapse resulting
from variability in (N = 2000) AP waveforms (see text for details). (B) Distribution of the total number of released vesicles in a model of Calyx-of-Held
type synapse for (N = 2000) AP waveforms.
doi:10.1371/journal.pcbi.1003615.g008

Table 1. Computed signal variability in the successive stages of synaptic transmission for a Calyx-of-Held type synapse (Coefficient
of Variation, CV = SD/MEAN) driven by a 0.2 axon.

Stage Signal CV

Axon AP width 6%

Pre-synaptic Ca++ peak current 3%

Pre-synaptic Ca++ influx 9%

Synapse Peak [Ca++] 3%

Synapse Vesicle release rate 10%

Synapse Vesicles released 26%

Post-synaptic EPSC amplitude <25%

doi:10.1371/journal.pcbi.1003615.t001
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as thin as cerebellar parallel fibres (0.2 mm diameter). We

summarise the impact of AP waveform noise on successive stages

of synaptic transmission for the Calyx-type synapse model in

Table 1.

Synaptic variability using direct estimation. To obtain a

second, independent estimate of the impact of axonal waveform

variability on synaptic variability we looked at experimental data

from much smaller synapses. We used published patch-clamp data

that directly links AP width to EPSC amplitude in Granule-to-

Purkinje Cell synapses. Sabatini et al. [11] report a pronounced

power-law relationship between AP width and EPSC amplitude

for this synapse. We can use this relationship to translate waveform

variability directly into synaptic response variability by combining

our results on AP width variability and Sabatini et al.’s Figure 11.

Our thin axon APs showed a CV of 6% for AP width, which

translates for the Granule-Purkinje Cell synapse to a CV of

approx. 25% for the expected EPSC amplitude. Similarly, the

computed total Ca++ current CV would translate into an EPSC

amplitude CV of approx. 25%.

Thus, the predicted synaptic variability from axonal noise from

both our synaptic signal transduction model of the (much larger)

Calyx-type synapse and the much smaller cerebellar synapse

would translate AP waveform fluctuation in thin axons into a CV

of 25–30% for their post-synaptic responses. Note, this amount of

variability results from axonal noise alone, as we have not

accounted for stochastic processes inside the synapse, such as

stochastic Ca++ channels, the vesicle release signalling cascade,

neurotransmitter diffusion or post-synaptic receptors.

Discussion

Axons are often thought of as fast, reliable transmission channels

for electrical impulses. This is mainly because our understanding of

axons and action potentials comes from studies of large axons,

where noise sources have little impact. However in the many thin (,

1 mm diameter) axons in our body, e.g. the dense wiring of cortex or

the hundreds of kilometres of C-fibres in our PNS, axonal noise will

have significant impact as dictated by basic biophysics [15(re-

view),18,20]. This theoretical work and recent advances in

experimental methods have prompted us to reconsider these

assumptions [27,39,40], and linked to the potential role of the axon

as an information processing unit in its own right (reviewed in

[41,42]). Axonal information processing is closely related to the

question of how APs are translated at the synapse. Do synapses

consider incoming APs as unitary events, or do they use information

contained in the waveform (regardless of its origin) to modulate the

release of neurotransmitters? Can different synapses sitting on the

same axon transmit information differentially? Does the size of

axons influence the variability of downstream post synaptic

potentials (PSPs)? Understanding these questions has important

consequences for the computational capacity of neural circuits, the

rate of information transmission between neurons and thus the

metabolic efficiency of neurons [43]. We show here that the answer

to this question is likely to depend on the diameter, i.e. the anatomy,

of axons and is crucial to understand the design constraints of

densely wired neural circuits.

Action potential waveform variability in thin axons
The AP that drives the synapse has to travel along an axon, yet

the impact of axonal noise sources on the AP waveform in thin

axons was, complete propagation failures set aside [44], not

considered in previous studies. Thus, synaptic response reliability

and variability [45–48] have been in general attributed to

mechanisms inside the synapse alone [44]. The results presented

here show that in thin unmyelinated axons below 1 mm diameter,

commonly found in the CNS and PNS, the travelling waveform of

an AP undergoes considerable random variability. This random

variability is caused by axonal Na+ and K+ channel noise, which

continuously acts during propagation and thus accumulates with

distance [18]. The variability of AP width and amplitude, key

parameters linked to synaptic efficacy, dramatically increased (the

CV increasing by a factor of approx. 4, see Figure 5) as diameter

decreased from 1 mm to 0.2 mm. We predict this change by

deriving a scaling relationship which is the direct result of the

geometry and general biophysics of axons and thus independent of

specific channel kinetics or other biophysical parameters [20].

Invariably, channel noise is bound to increase as diameter

decreases to the point that it affects the waveform of the AP.

Therefore, we can observe the effects of this variability in CNS

and PNS axons, in both vertebrates and invertebrates.

The range of the waveform fluctuations is about 4 to 6 times the

SD, thus we found that AP widths vary by 0.1–1 ms in axons

between 0.2 and 1 mm diameter. AP width fluctuations result

mainly from K+ channel noise and inactivating Na+ channels

during the repolarising phase of the AP. While Na+ channel noise

principally effects AP propagation speed and thus spike timing

reliability [18], K+ channel noise has more impact on waveform

variability (Although variability in Na+ and K+ channels partially

compensate each other [20]). This fits well with genetic knock-out

studies where one type of K+ channels was removed from the

central nervous system, and which showed increased temporal

response jitter [49].

Activity-dependent modulation mechanisms specific to the pre-

synaptic terminal are well-known and provide neurons with means

for positive or negative feedback regulation of pre-synaptic Ca++

influx through regulation of the AP width at the synapse [50–53].

One example of such modulatory mechanism, the broadening of

APs during spike trains due to slow deactivation of A-type K+

channels in mossy fibres has been observed at the level of the

synapse [54], and postulated in the axon [41]. This mechanism

can be disrupted by random opening of Na+ channels in the

repolarising phase (which broadens the AP) or random opening of

K+ channels (which shortens the AP), independently of the spiking

history.

Synaptic variability from noisy action potentials
In general, the observable variability in synaptic responses could

be due to two sources: (1) noise and/or (2) very complex

mechanisms that appear random. We can distinguish to which

extent these two sources of variability are present at the cellular

level, by aggregating the effect of random variability generated by

identified molecular stochastic processes (such as thermodynamic

fluctuations in molecular conformations, reviewed in [15]).

Here, we considered axonal noise as a source of synaptic

variability due to channel noise in axons. We modelled a Calyx-of-

Held synapse and used data on the Cerebellar Granule-to-

Purkinje synapse to estimate the effects of AP waveform noise on

synaptic responses in the absence of detailed models for small

synapses. Quantitative measurements and models of the mecha-

nistic level of synaptic transmission are limited in small synapses by

the technical difficulties to record from thin axon terminals (,

1 mm diameter [27]) and the need to look at very short range

connections (,500 mm). Therefore, we ignored pre- and post-

synaptic activity dependent effects – which may reduce the effects

of waveform variability – and used simplified synaptic transmission

models.

Care has to be taken when extrapolating results from these

synapses to small CNS synapses [55,56], and extrapolating from

Axonal Noise as a Source of Synaptic Variability
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any type of synapse to another – even synapses from the same

parent axon – may be difficult when details are considered [57].

Bearing that in mind, individual active zones in the Calyx are

known to be ultra-structurally similar to those found in small,

bouton-like CNS synapses [58–60] and the Calyx’s functional

organization corresponds to a parallel arrangement of several

hundred conventional active zones in a single – bouton-like –

terminal [61].

Mapping our AP waveform variability data for parallel-fibre like

axons onto the empirical relationship between AP width and

EPSC amplitude [11] showed a CV of approx. 30% for EPSC

amplitude. Other synapses also display this common power-law

relationship between AP width and synaptic response, suggesting

that axonally induced random variability of the waveform would

scale accordingly [5,6,11]. The detailed allosteric model of vesicle

release rate for Calyx-type synaptic transmission produced

comparable amplification of the AP waveform noise (CV increased

from 6% to 25%).

Empirical synaptic response CV is typically between 20 and

60%. In all cases modelled here the extrapolated post-synaptic

variability is considerable (CV 10 to 30%) and suggests that the

observed synaptic variability could be partially explained by

axonal noise. Axonal variability will show more impact in synapses

placed 1 mm and more down the axon; yet, due to the technical

difficulties of finding cell pairs at these distances, their variability is

little studied.

The Hodgkin-Huxley axon model and related deterministic

axon models allow information about the stimulus to be retained

in the AP waveform, e.g. stimulus strength is correlated with AP

height [62]. It has been shown in vitro that APs triggered and

measured at the soma of the same cell can indeed encode

information about the stimulus [63,64]. Changes in the width of

APs, whether due to a depolarized soma [65] or application of

glutamate [27], have been shown to influence post-synaptic

potentials (PSPs). Moradmand et al. [31] studied the deterministic

transformation of propagating AP waveforms in a paired-pulse

framework and showed that the second AP waveform in the pair

becomes increasingly stereotyped due to refractory interaction

with the first AP. Thus, even in bursts, only the first spike would be

the likely candidate to carry stimulus information in the waveform

over long distances. Kole et al. [40] have shown that changes in

the waveform of APs operated at the AIS are conserved along the

axonal arbour for relatively large diameter axons. Here, we show

that for both single APs and spike trains, channel noise

decorrelates the waveform (within the limits of the AP’s

regenerative dynamics) as the AP propagates even over short

distances of less than 0.5 mm. Thus, any en-passant synapses

along the path of an AP will be driven by randomly differing

Figure 9. Allosteric model for the instantaneous rate of vesicle release in a Calyx of Held. This model is used to estimate the vesicle
release rate as a function of local transient Ca++ concentration. Transition rates between states depend on Ca++ local concentration in the vicinity of
the vesicles. The release probability is higher the more Ca++ ions are bound to the vesicle, according to a factor f = 31.3. The base rate constant I+ is set
to 261024 s21.
doi:10.1371/journal.pcbi.1003615.g009

Table 2. Simulation parameters. SGA stands for squid giant axon. RHI stands for rat hippocampal interneuron.

Parameters SGA-HH SGA-Patlak RHI C-fibre

Membrane capacitance [mF cm22] 1 1 1 0.81

Axial resistance [V cm] 35.4 35.4 70 70

Leak conductance [mS cm22] 0.3 0.3 0.1 0.14

Na+ single channel conductance [pS] 20 20 15 20

Na+ channel density per mm2 60 60 23 62.5

K+ single channel conductance [pS] 20 20 14 17

K+ channel density per mm2 18 18 6 10

Leak rev. pot. [mV] 254.4 254.4 265 261.14

Na+ rev. pot. [mV] 50 50 55 79.6

K+ rev. pot. [mV] 277 277 290 285

Temperature [C] 6.3 6.3 35 24

doi:10.1371/journal.pcbi.1003615.t002
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waveforms and produce different responses (even if the synapses

were identical [66]).

Synapses innervated by thin axons may have developed

mechanisms to circumvent the problem of axonal variability. A

simple solution would be to treat an incoming noisy AP waveform

as a unitary event. Taking this view, small synapses on thin axons

should treat APs as unitary signals and adjust their transduction

mechanisms accordingly to be robust to axonal noise effects. This

is, in addition to spontaneous APs, another way in which noise

constraints affect neural coding [67].

Both axonal and synaptic noise will affect post-synaptic response

amplitude variability and vesicle release probability. The above

results suggest that the amount of random variability depends on

axonal and synaptic morphology. Impedance matching and

volume conservation in densely packed CNS tissues suggest that

the diameter of axons should be closely related to the size of the

synapse (If the synapse was much larger, the impedence mismatch

would cause a drop in the membrane potential, preventing

incoming APs from triggering vesicle release.) Although there

exists little data relating axon length and diameter to synaptic

morphology and function, one can see that the input resistance of

synapses is proportional to their surface area. Similarly, the

voltage-sensitivity to an incoming AP increases with the inverse of

the squared synaptic diameter. Thus, a smaller synaptic geometry

supra-linearly amplifies variations in Ca++ current and influx, and

due to the smaller volume, variations in Ca++ concentration as

well. Thus, if the properties and kinetics of signal transduction

were invariant to synaptic size, an increase in synaptic response

variability due to noise in pre-synaptic signal transduction would

be expected for smaller synapses. Variability in the waveform of

action potentials is known to also affect synaptic latency [68].

However, a careful investigation of this phenomenon requires

stochastic simulations of both Ca++ channels and the 5-state vesicle

release model.

Axons play an important active role for information processing

that may be comparable to that of dendritic computation [41].

However, axonal variability has traditionally not been considered as

a source of neuronal variability [69] because the AP mechanism was

considered highly reliable by extrapolating from classic studies in

large (3 orders of magnitude larger diameters) fibres such as squid

giant axons [70]. Yet, in densely connected central neural circuits

the APs become sensitive to channel noise [18]. The effects of

channel noise will inescapably increase non-linearly as diameter

decreases due to the very nature of the AP mechanism [20]. Axonal

channel noise will affect the reliability (,0.1 mm diameter) and

cause considerable variability to both timing (,0.5 mm diameter)

[18] and, as shown here, the shape of the AP in axons below 1 mm

diameter. Thin unmyelinated axons typically innervate large

numbers of small CNS synapses [71] and are associated with, and

required for, the high level and density of circuit miniaturisation

encountered in the cortex and the cerebellum [20,72].

In sensory and motor nervous systems, reliability is typically

achieved by averaging over many release sites and high release

rates. The corresponding large synapses are associated with large

axons. However, in the cerebral cortex, hippocampus and

cerebellum the dense connectivity within a restricted space limits

the diameter of axons, the number of redundant axonal

connections and the size of the synaptic contact areas. This makes

synaptic transmission prone to the effects of axonal channel noise

in thin axons innervating small synapses. The results presented

here prompt careful experimental consideration, because paired-

cell measurements and optical methods do not offer the control

and resolution necessary to determine the source of PSP

variability. More generally, we show how molecular noise sources

can explain observed variability at higher levels of biological

organisation.

Methods

Simulations were based on biophysical data and reproduced

physiological data such as the amplitude and width of APs (but see

[73], for possible shortcomings and other models). Computations

were carried out using the Modigliani stochastic simulator [74],

available from http://www.modigliani.co.uk, on a Linux PC using

an Intel core i7 processor with the binomial algorithm [19].

Simulations were carried out using Markov models of squid giant

axon channels (Na+ channel expressed by gene GFLN1, K+

channel expressed by gene SqKv1.1) as several independently

constructed kinetic models exist for these channels. We used the

original models given by Hodgkin 18 and Huxley [75] as well as a

more recent model with delayed opening [76] with little difference

in results. These ion channel models captured the corresponding

ion channel kinetics from patch-clamp experiments. To account

for differences between the squid giant axon and mammalian axon

[77,78], we confirmed the results using models of rat hippocampal

interneurons with Markov models of rodent ion channels [79]

shown to have little overlap between Na+ and K+ currents [78],

and a model of rodent C-fibre axons (Nav1.8) [80]. We chose to

simulate all model axons at the temperature at which their channel

kinetics were experimentally recorded. The parameters for each

model are summarised in Table 2.

Stimulus protocols
We used two sets of simulation protocols. In the first protocol,

0.1 mm, 0.2 mm, 0.3 mm, 0.5 mm diameter (1 cm long) and 1 mm

diameter (2 cm long) axons were stimulated in a single spike per

trial framework (N = 250 trials per diameter) to allow for fast

parameter exploration. In the second protocol, we simulated

10 minutes long spike trains. To this end, a 0.2 mm diameter

(2 mm long) axon was stimulated with a zero-mean white noise

current (SD = 0.01 nA, 1 kHz corner frequency) injected at the

proximal end. Membrane properties were set to Ra = 70 Vcm,

Rm = 20000 Vcm2, typical for cortical cells [81]. All axons had a

resting potential of 265 mV. After visual inspection of the data,

we used a threshold discriminator detecting AP height and aligned

their waveforms at the rising half-peak potential crossing time. We

measured voltage-traces of the AP waveforms at regular intervals

(typical distance 10% of total axon length, see Figure 1.A) between

5% and 95% of the axon’s length (0% being the axon’s proximal

end) to avoid measuring stimulus artefacts or boundary effects and

to measure the evolution of the AP shape along the axon. The

height and width of APs were defined according to Figure 1.C.

Modelling synaptic transmission
We estimated the impact of action potential waveform

variability on synaptic transmission using two approaches. First,

synaptic transmission was modelled using data and deterministic

models from the Calyx of Held synapse (reviewed in [34]). We

drive the Calyx- of-Held synapse with noisy spike train waveforms

directly (voltage clamping the synapse) to circumvent any potential

issues of impedance mismatch. We then compute Ca++ currents

evoked by the AP waveform by integrating the dynamics of a

Hodgkin-Huxley type conductance-based Ca++ channel model of

Calyx synapses [82]. We describe the Ca++ channel behaviour

using a conductance-based Hodgkin-Huxley type model with two

identical gating particles (denoted m) with channel opening

probability pCazz~m2. The corresponding rate functions are

am(V )~1:78e
Vmz80

23:3 and bm(V )~0:14e
{Vmz80

15 , with dynamics
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Lm
Lt

~am(Vm)(1{m)zbm(Vm)m [83]. Here we modelled the

voltage-gated Ca++ channel deterministically, and calculated the

waveform of the incoming Ca++ current using a reversal potential

of ECazz~64:3mV . This Ca++ current model simplifies the

heterogeneity in both the biophysical and the pharmacological

properties of Ca++ currents found in Calyx-type synapses [84,85],

but was shown to capture sufficient detail for quantitative

modelling of synaptic transmission [82].

The transient ½Cazz�i encountered by vesicles in the proximity

of Ca++ channels is shown to follow a time course similar to that of

the Ca++ current [86,87], i.e. the Ca++ concentration rapidly

declines due to effects such as buffering [88]. We use the dynamics

of Ca++ channels and modify them slightly so that the rise time is

conserved, but the width at half-height becomes approx. 100 ms

longer [86]. We then scaled the resulting waveform to have a peak

of approx. 12 mm. This value was chosen based on an

approximate reading of figure 6.B in [89]. The resting ½Cazz�i
was 50 nm. Finally, we modelled the impact of ½Cazz�i on

transmitter release using an allosteric ‘‘5 state’’ model [90], which

allows us to derive the instantaneous vesicle release rate (Figure 9).

Synaptic transmission dependence on the AP waveform was

also modelled using experimental data for the much smaller rodent

cerebellar Granule cell-to-Purkinje cell synapse. In this synapse the

width of the pre-synaptic AP waveform, pre-synaptic Ca++ entry

and the resulting post-synaptic currents were directly measured

[11]. To obtain an estimate of how AP waveform variability would

affect this synapse, we passed the simulated APs’ widths through

the experimentally characterised relationship between postsynap-

tic response and AP width. We then computed the variability of

the post-synaptic response over all APs.

Supporting Information

Figure S1 Correlation coefficient of waveform variability as a

function of distance. Correlation coefficient of the difference

between individual AP waveforms and the mean AP waveform

recorded as a function of distance between record locations for 0.2,

0.5 and 1 micron diameter axons.

(TIF)

Figure S2 Peak of variability in waveforms of APs aligned at

20% of the AP peak. The peak of AP waveform variability is in the

same position than in Figure 4, where APs were aligned at 50% of

AP peak. This figure is produced in the same fashion as subpanels

A and B from Figure 4, but AP waveforms have been aligned at

20% of the AP amplitude. (A) Typical shape of an action potential

in the squid giant axon. (B) The variability in the waveform at each

moment in time (N = 250). We define the variability as 36SD of

the membrane potential at each point in time.

(TIF)

Material S1 Modigliani configuration files for simulating the

squid giant axon. All data required for other axons can be found in

the methods sections, and related papers cited in that section.

(ZIP)
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33. Cowan WM, Südhof TC, Stevens CF, editors(2001) Synapses. Baltimore: Johns

Hopkins Univ. Press.
34. Schneggenburger R, Forsythe IDI (2006) The calyx of Held. Cell Tissue Res

326: 311–337. doi:10.1007/s00441-006-0272-7.

35. Rodrı́guez-Contreras A, de Lange RPJ, Lucassen PJ, Borst JGG (2006)
Branching of calyceal afferents during postnatal development in the rat auditory

brainstem. J Comp Neurol 496: 214–228. doi:10.1002/cne.20918.
36. Felmy F, Neher E, Schneggenburger R (2003) The timing of phasic transmitter

release is Ca2+-dependent and lacks a direct influence of presynaptic membrane
potential. Proc Natl Acad Sci U S A 100: 15200–15205. doi:10.1073/

pnas.2433276100.

37. Meyer AC, Neher E, Schneggenburger R (2001) Estimation of quantal size and
number of functional active zones at the calyx of held synapse by nonstationary

EPSC variance analysis. J Neurosci 21: 7889–7900.
38. Scheuss V, Schneggenburger R, Neher E (2002) Separation of presynaptic and

postsynaptic contributions to depression by covariance analysis of successive

EPSCs at the calyx of held synapse. J Neurosci 22: 728–739.
39. Debanne D, Guerineau NC, Gahwiler BH, Thompson SM (1997) Action-

potential propagation gated by an axonal Ia-like K+ conductance in
hippocampus. Nature 389: 286–289.

40. Kole MHP, Letzkus JJ, Stuart GJ (2007) Axon initial segment Kv1 channels
control axonal action potential waveform and synaptic efficacy. Neuron 55: 633–

647. doi:10.1016/j.neuron.2007.07.031.

41. Debanne D (2004) Information processing in the axon. Nat Rev Neurosci 5:
304–316.

42. Sasaki T (2013) The axon as a unique computational unit in neurons. Neurosci
Res 75: 83–88. doi:10.1016/j.neures.2012.12.004.

43. Sengupta B, Faisal AA, Laughlin SB, Niven JE (2013) The effect of cell size and

channel density on neuronal information encoding and energy efficiency. J Cereb
Blood Flow Metab 33: 1–9. doi:10.1038/jcbfm.2013.103.

44. Allen C, Stevens CCF (1994) An evaluation of causes for unreliability of synaptic
transmission. Proc Natl Acad Sci U S A 91: 10380–10383.

45. Fatt P, Katz B (1950) Membrane potentials at the motor end-plate. J Physiol
111: 46p–7p.

46. Katz B, Miledi R (1970) Membrane noise produced by acetylcholine. Nature

226: 962–963. doi:10.1038/226962a0.
47. Simmons PJ, Steveninck R de R van (2005) Reliability of Signal Transfer at a

Tonically Transmitting, Graded Potential Synapse of the Locust Ocellar
Pathway. J Neurosci 25: 7529–7537. doi:10.1523/JNEUROSCI.1119-05.2005.
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