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ABSTRACT

Seven linker histone H1 variants are present
in human somatic cells with distinct prevalence
across cell types. Despite being key structural
components of chromatin, it is not known whether
the different variants have specific roles in the
regulation of nuclear processes or are differentially
distributed throughout the genome. Using
variant-specific antibodies to H1 and hemagglutinin
(HA)-tagged recombinant H1 variants expressed in
breast cancer cells, we have investigated the
distribution of six H1 variants in promoters and
genome-wide. H1 is depleted at promoters
depending on its transcriptional status and differs
between variants. Notably, H1.2 is less abundant
than other variants at the transcription start sites
of inactive genes, and promoters enriched in H1.2
are different from those enriched in other variants
and tend to be repressed. Additionally, H1.2 is
enriched at chromosomal domains characterized
by low guanine-cytosine (GC) content and is
associated with lamina-associated domains.
Meanwhile, other variants are associated with
higher GC content, CpG islands and gene-rich
domains. For instance, H1.0 and H1X are enriched
at gene-rich chromosomes, whereas H1.2 is
depleted. In short, histone H1 is not uniformly
distributed along the genome and there are
differences between variants, H1.2 being the one
showing the most specific pattern and strongest
correlation with low gene expression.

INTRODUCTION

Eukaryotic DNA is packaged into chromatin through its
association with histone proteins. The fundamental repeat
unit of chromatin is the nucleosome, which consists of
146bp of DNA wrapped around an octamer of core
histone proteins H2A, H2B, H3 and H4. Linker histone
HI sits at the base of the nucleosome near the entry and
exit sites and is involved in the folding and stabilization of
the 30-nm chromatin fiber, allowing a higher degree of
DNA compaction (1-4). Histone HI is a family of
lysine-rich proteins that consists of three domains: a
short basic N-terminal tail, a highly conserved central
globular domain and a long positively charged
C-terminal tail. Like in core histones, these tails are
posttranslationally modified, mainly by phosphorylation,
but also by acetylation, methylation, ubiquitination and
formylation (5-10). Due to its role in the formation of
higher-order chromatin structures, H1 has classically
been seen as a structural component related to chromatin
compaction and inaccessibility to transcription factors,
RNA polymerase and chromatin remodeling enzymes
(11,12). However, in recent years, the view that H1 plays
a more dynamic and gene-specific role in regulating gene
expression is gaining strength. Knock-out or knock-down
studies in several organisms have revealed that only a few
genes change in expression on complete depletion of HI,
some being up- and some downregulated (13-22).

Unlike core histones, the H1 histone family is more evo-
lutionary diverse and many organisms have multiple H1
variants or subtypes, making the study of these proteins
more complex. In humans, the histone H1 family includes
11 different H1 variants with 7 somatic subtypes (H1.1 to
H1.5, H1.0 and H1X), three testis-specific variants (HIt,
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HIT2 and HILSI) and one oocyte-specific variant (H100).
Among the somatic histone H1 variants, H1.1 to HI.5 are
expressed in a replication-dependent manner, whereas H1.0
and HI1X are replication-independent. H1.2 to HI1.5 and
HI1X are ubiquitously expressed, HI.1 is restricted to
certain tissues, and H1.0 accumulates in terminally
differentiated cells (23).

Itis still far from clear why there are so many H1 variants
and great efforts have been made recently to elucidate
whether they play specific roles or have redundant
functions. Single or double H1 variant knock-out studies
in mice did not identify any specific phenotype and this was
attributed to the compensatory upregulation of other
subtypes, favoring the view that there is redundancy
between HI variants (18). Despite these observations,
there is growing evidence supporting the view that
histone H1 variants do have specific functions. HI1
subtypes present cell type and tissue-specific expression
patterns and their expression is regulated over the course
of differentiation and development (24-31). Different H1
subtypes have also been differentially related with cancer
processes (32-35). Chromatin binding affinity and
residence time vary between H1 subtypes owing to differ-
ences mainly in the C-t tail, but also in the N-t tail (36-44).
Furthermore, H1 subtypes are differently posttransla-
tionally modified and these modifications modulate their
interaction with different partners. This could explain some
reported specific functions for certain H1 variants (45-57).
Finally, global gene expression analyses in various cell
types reveal that histone H1 variants control the expression
of different subsets of genes, pointing to a specific role of
HI1 variants in gene regulation (58,59).

To fully understand the function of histone H1 and its
variants, several groups have explored the genomic
distribution of HI1 in vivo. Initial biochemical and
microscopy-based approaches suggested a nonuniform
distribution of H1 in the cell nucleus and found differences
between variants (44,60,61). However, due to the lack of
specific ChIP-grade antibodies for most of the HI1
variants, it has been challenging to identify the precise
mapping of HI variants in the genome. Genome-wide
studies with histone H1 started with ChIP-chip experi-
ments in MCF?7 cells using an antibody for total H1 (62)
and continued using DamID technique for the unique
Drosophila histone H1 (63). Recently, some groups
succeeded in obtaining the first genome maps for HI
variants. The genome-wide distribution of human HI.5
in IMR90 fibroblasts reveals that there are zones of
enrichment in genic and intergenic regions of
differentiated human cells, but not in embryonic stem
cells, associated with gene repression and chromatin com-
paction (64). Furthermore, analysis of tagged Hlc and
HI1d variants in knock-in mouse embryonic stem cells
(ESCs) by ChIP-seq shows depletion of these variants
from guanine—cytosine (GC)- and gene-rich regions and
active promoters, and positive and negative correlations
with H3K9me3 and H3K4me3, respectively, as well as an
overrepresentation in major satellites (65). Finally, using
DamlID technology, the genomic mapping of human H1.1
to HI1.5 variants was also achieved in IMR90 cells (66).
While H1.2 to HI1.5 showed, in general, similar
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distributions and were depleted from CpG-dense and
regulatory regions, HI1.1 showed a district profile,
pointing to a specific role of this variant in chromatin
function.

In this study, we investigated the distribution of the
different HI somatic variants in breast cancer cells by
chromatin immunoprecipitation (ChIP) combined with
quantitative polymerase chain reaction (qPCR), tiling
promoter arrays and high-resolution sequencing. We
combined the use of specific antibodies for some
variants and hemagglutinin (HA)-tagged recombinant
H1 wvariants expressed in cell lines to study the
genome-wide distribution of H1.0, H1.2 to HI.5 and
also H1X, a more recently identified and distantly
related H1 variant. H1.1 was omitted from our analysis,
it being the only somatic HI variant not present in many
cell types, including the cells used here. We also compared
H1 distribution with the nucleosome distribution in our
T47D human breast cancer cell lines, by H3 immunopre-
cipitation. Our data support the view that all HI variants
occur across the genome, but also uncover specific features
for HI1.2, both at promoters and genome-wide.
Interestingly, HI1.2 enrichment correlates the most
closely with gene repression, structural domains of chro-
matin such as lamina-associated domains (LADs) and
regions of low GC content. Overall, the distribution of
H1.2 along chromosomes differs from that of other
variants including H1.0 and H1X, the two variants most
structurally distant within the somatic H1 family. This
work represents a comprehensive attempt to investigate
for the first time the occurrence and relevance of the dif-
ferent histone H1 variants in the genome of human cancer
cells, and provides valuable data to clarify our under-
standing of the functionalities and heterogeneity of H1.

MATERIALS AND METHODS
Cell lines and culturing conditions

Breast cancer T47D-MTVL cells (carrying one stably
integrated copy of luciferase reporter gene driven by the
MMTV promoter), or derivative cells stably expressing
HA-tagged H1 variants (H1-HA), were grown at 37°C
with 5% CO, in RPMI 1640 medium, supplemented
with 10% FBS, 2mM L-glutamine, 100 U/ml penicillin
and 100 ug/ml streptomycin, as described previously
(59). HeLa cell line was grown at 37°C with 5% CO; in
Dulbecco’s modified Eagle’s medium GlutaMax medium
containing 10% fetal bovine serum (FBS) and 1% peni-
cillin/streptomycin. MCF7 cell line was grown at 37°C
with 5% CO, in Minimum Essential Medium (MEM)
medium containing 10% FBS, 1% penicillin/strepto-
mycin, 1% nonessential amino acids, 1% sodium
pyruvate and 1% glutamine.

For Phorbol myristate acetate (PMA) experiments,
serum-containing Roswell Park Memorial Institute
(RPMI) 1640 media was replaced by serum-free media.
After 24 h under serum-free conditions, cells were treated
with PMA (100nM) for the indicated time at 37°C.
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Stable expression of HA-Tagged H1 variants

Generation of T47D-MTVL stably expressing HA-Tagged
H1 variants was achieved as described previously (59).
Briefly, human histone H1 variants were PCR-amplified
from genomic DNA and cloned into pCDNA4-HA vector
provided by D. Reinberg’s group (NYU Medical School).
The complete HI-HA cassette was cloned into the
lentiviral expression vector pEV833.GFP provided by E.
Verdin (Gladstone Institute) upstream an internal
ribosome entry site (IRES)-GFP cassette. Viruses were
then produced and cells were infected with pEV833-
derived lentivirus. HA-tagged H1 variants-expressing cell
lines were selected by sorting in a FACSvantageSE or
FACS caliber machine (Becton Dickinson) for green
fluorescent protein (GFP)-positive fluorescence.

ChIP assays

ChIP assays were performed as described previously (67).
Briefly, cells were fixed using 1% formaldehyde, harvested
and sonicated using a Diagenode Bioruptor to generate
chromatin fragments between 200 and 500bp. To
perform the ChIP, 30 pg of chromatin was immunopre-
cipitated overnight using the indicated antibody. Rabbit
IgG (Santa Cruz Biothechnology) was used as a control
for nonspecific interaction of DNA. Input was prepared
with 10% of the chromatin material used for an
immunoprecipitation. Immunocomplexes were recovered
using 20 pl of Protein-A magnetic beads from Millipore.
Beads with bound antibody/protein/DNA complexes were
washed, decross-linked at 65°C  overnight and
immunoprecipitated DNA was recovered using the [Pure
Kit from Diagenode.

The following antibodies were used in this study:
anti-H1.2 (Abcam 4086), anti-HIX (Abcam 31972),
anit-H3 (Abcam 1791) and anti-HA tag (Abcam 9110).

ChIP-qPCR

Real-time PCR was performed on ChIP and input DNA
using EXPRESS SYBR GreenER qPCR SuperMix
Universal (Invitrogen) and specific oligonucleotides in a
Roche 480 Lightcycler. ChIP values were corrected by
the correspondent input chromatin sample. All
oligonucleotide sequences used for the amplifications are
available on request.

ChIP-chip assays with Nimblegen promoter array

At least 10ng of ChIP and input DNA was amplified
using  GenomePlex  Complete  Whole  Genome
Amplification Kit (Sigma) and eluted with GenElute
PCR Clean-Up Kit (Sigma). For ChIP-on-chip experi-
ments we used Nimblgen HGI18 Refseq Promoter
3x720K array. One microgram of ChIP and input DNA
was directly labeled by Klenow random priming with Cy5
and Cy3 nonamers with Nimblegen Dual-color DNA
Labeling Kit following manufacturer’s user’s guide
Chip-chip arrays v6.2, and the labeled DNA was
precipitated with 1 volume isopropanol. Hybridization
mix including 15 pg of labeled DNA was prepared using
Nimblegen Hybridization Kit. Arrays were hybridized in

Nimblegen Hybridization System 4 Station for 16-18 h at
42°C, and then washed in 1 x Wash solution I, IT and III.
Hybridization buffers and washes were completed using
manufacturer’s protocols. Arrays were scanned on a
Nimblegen MS 200 Scanner per manufacturer’s protocol.
ChIP-on-chip raw data was normalized and differential
intensity of each probe compared with input control was
calculated using the Nimblegen software DEVA. Average
fold change (ChIP versus input) each 50 bp bin for a range
of —3.2kb upstream and 800bp downstream window
from RefSeq transcription start sites (TSS) were calculated
using in-house Perl script. LOESS smoothed line plot
around the TSS were plotted using in-house script
written in R statistical programming language. For
ChIP-signal heat map, similarly fold change average for
each individual RefSeq transcript was calculated and then
data were visualized with Java Treeview (68). Functional
annotation of target genes based on Gene Ontology was
performed wusing DAVID Software (Database for
Annotation, Visualization and Integrated Discovery).

ChIP-seq

Library preparation for sequencing: ChIP and genomic
library preparation was performed using standard
Illumina protocols. Libraries were prepared with the
ChIP-seq Sample Preparation Kit (Illumina) according
to the manufacturer’s instructions. Briefly, 10ng of ChIP
and input DNA were repaired to overhang a 3’-dA and
then adapters were ligated to the end of DNA fragments.
DNA fragments with proper size (usually 100-300 bp,
including adaptor sequence) were selected after PCR
amplification, obtaining qualified library for sequencing.

Sequencing, mapping and peak detection: Sequencing
was performed with Illumina HiSeq 2000 system. Raw
sequence reads containing >10% of ‘N’, or bases with
Q <20 account for >50% of the total were removed and
adaptor sequences were trimmed. Identified clean reads
were uniquely aligned allowing at best two mismatches
to the UCSC (The Genome Sequencing Consortium)
reference genome (human hgl8) using the program
SOAP (version 2.21) (69). Sequences matching exactly
more than one place with equal quality were discarded
to avoid bias. Read length and read counts of each
library are listed in Supplementary Table S1. Peak caller
program for histone, SICER (version 1.1) (70), was used
with following parameters: redundancy threshold = 1,
window size = 200, fragment size = 150, effective
genome fraction = 0.75, gap size = 200, false discovery
rate (FDR) = 0.01 and Fold Change at least 2. Input sub-
tracted normalized (total mapped library size) WIG files
were produced from duplicate removed aligned reads
using the program javaGenomicsToolKit.

Binding sites to gene feature annotation: Enriched
peaks were annotated to nearest gene (RefSeq genes)
using Bioconductor package ChIPpeakAnno (71).
Distribution of enriched and depleted regions (peaks) to
various genomic features, and continuous ChIP signal
profile distribution of reads along the meta-gene were
performed using software CEAS (72) and in-house
Python and Perl scripts.
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Regulatory regions, histone modification peaks, CpG
and LADs abundance: Input-subtracted normalized
average H1 variants read density in each enriched loca-
tions of regulatory regions, histone modification peaks,
CpG and LADs were calculated, and representation in
box-plot were made using in-house scripts. As a control,
a random sample of genomic windows with equal width
was used to perform the significance test (Kolmogorov—
Smirnov test).

Publicly available genome-wide location data analysis:
Public ChIP-seq data, which includes H3K4mel,
H3K4me2, H3K4me3, H3K27me3, H3K27ac, H3K9me3,
H3K9ac, H3K36me3, P300, CTCF, FAIRE and DNase
enriched genomic locations, are taken from ENCODE
project. CpG island genomic location information (hgl8)
and the coordinates of LADs (73) were taken from UCSC
database. Publicly available whole-genome data if not
available on hgl8 version, they were first remapped to
the human genome version hgl8 using the UCSC coordin-
ate conversion tool (http://genome.ucsc.edu/cgi-bin/
hgLiftOver).

Overlap analysis: Overlap of genomic position range
data was done using BedTools (74). Overlap means two
genomic range data overlap by at least one base.

Average ChIP signal profile: For sequencing data, ChIP
signal around center of each given genomic location were
calculated by using normalized input subtracted-average
tags number in each 50 bp bins in a set window. Relative
distance of each tag from above-mentioned position and
average signal was determined by using ‘Sitepro’ script of
CEAS package (72) and plotting was done in R
programming language.

Occupancy of H1 variants at individual chromosomes:
Occupancy of HI variants at all human chromosomes is
an average of the input-subtracted ChIP-seq signal in
50bp windows. Heat map and dendrogram were done
with in-house R scripts. Correlation between the
occupancy of HI1 variants (input-subtracted ChIP-seq
signal average of 50bp genomic windows) and gene
expression and gene richness coefficient was done with
in-house R scripts. Gene expression for each chromosome
was computed as the average of the expression of all the
available expressed genes. The gene-richness coefficient
(GRCQ) for each chromosome was calculated as the ratio
between the percentage of total genes present in each
chromosome and the percentage of base pairs of each
chromosome to the total human genome.

Agilent expression arrays

Total RNA was extracted using High Pure RNA isolation
Kit (Roche) according to the manufacturer’s instructions.
cDNA was obtained from 100ng of total RNA using
SuperScript VILO c¢DNA synthesis Kit (Invitrogen).
High RNA integrity was assessed by Bioanalyzer nano
6000 assay. For each sample, 100ng of total were
reverse transcribed into cDNA with a T7 promoter and
the cDNA was in vitro transcribed into cRNA in the
presence of Cy3-CTP using the Low input quick Amp
kit (Agilent). Labeled samples were purified using
RNeasy mini spin columns (Qiagen). Then, 600ng of
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cRNA were preblocked and fragmented in Agilent
fragmentation buffer and mixed with Agilent GEx
Hybridization mix. Hybridization mix was laid onto
each sector of subarray gasket slide and sandwiched
against an 8 x 65K format oligonucleotide microarray
(Human vl Sureprint G3 Human GE 8x60k Microarray,
Agilent design ID 028004) inside a hybridization chamber,
which was hybridized overnight at 65°C. Subsequently
array chambers were disassembled submerged in Agilent
Gene Expression Buffer 1 and washed 1 min in another
dish with the same solution with a magnetic stirrer at
200 rpm at room temperature, followed by | min in
Agilent Gene Expression Buffer 2 with a magnetic stirrer
at 200 rpm at 37°C and immediate withdrawal from the
solution and air drying. Fluorescent signal was captured
into TIF images with an Agilent scanner using recom-
mended settings with Scan Control software (Agilent).
Signal intensities were extracted into a tabulated text file
using Feature Extraction software (Agilent) using the ap-
propriate array configuration and annotation files. The
normalized log2 intensities were obtained using quantile
method with normalized expression background correc-
tion the Bioconductor Limma package in R.

Human H1 variants nomenclature

The correspondence of the human H1 variants nomencla-
ture with its gene names is as follows: H1.0, HIF0; H1.1,
HISTIHI1A; H1.2, HISTIHIC; H1.3, HISTIHID; H1.4,
HISTIHIE; H1.5, HISTIHIB; HIX, HIFX.

RESULTS

All H1 variants are nonspecifically present at gene
promoters and are depleted from TSS in active genes or
on induced gene activation

To determine whether the genomic distribution of human
histone H1 differs between variants, we used ChIP
combined with semiquantitative PCR (ChIP-qPCR),
promoter array hybridization (ChIP-on-chip) and
massive sequencing (ChIP-seq). Because there is a
limited number of HIl-variant—specific ChIP-grade
antibodies (only H1.2 and H1X in our hands), we de-
veloped T47D-derived cell lines stably expressing HA-
tagged versions of each of the five somatic HI1 variants
expressed in most cell types (H1.0, H1.2, H1.3, H1.4 and
H1.5) (see ‘Materials and Methods’ section) (59). These
cell lines proliferated similarly to parental cells (data not
shown). HA-tagged H1 variants (HI-HA) were expressed
at levels lower than or similar to their corresponding en-
dogenous histone, comparably across the different H1
variant-expressing cell lines, and they were incorporated
into chromatin (Supplementary Figure S1). In ChIP-
gPCR experiments, an anti-HA antibody was used to spe-
cifically pull down Hl-associated chromatin fragments in
cells expressing H1-HAs (Supplementary Figure S2). H1-
associated chromatin included gene promoters, coding
regions and repetitive DNA, irrespective of which H1-
HA variant was immunoprecipitated (Supplementary
Figure S3). A few differences were observed between
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Figure 1. All H1 variants are present at gene promoters and depleted
from TSS. (A and C) ChIP experiments were performed in T47D-
derived cells stably expressing HA-tagged H1 variants, wild-type or a
K26A mutant of H1.4 with anti-HA antibody and the abundance of
IPed material was quantified by qPCR with oligonucleotides for the
indicated promoters (—10kb distal promoter or TSS), and corrected by
input DNA amplification with the same primer pair. (B) ChIP experi-
ments were performed in parental T47D cells with H1 variant-specific
antibodies against H1.2 and HIX and the IPed material was quantified
asin (A). (D) An H1 valley was performed at TSS of the JUN gene and
increased on mitogenic stimulation. T47D cells were treated with PMA
100nM for 60 min or left untreated and ChIP was performed with H1.2
and H1X antibodies. The abundance of IPed material was quantified
by qPCR with oligonucleotides for the JUN promoter (—10kb distal
promoter or TSS), and corrected by input DNA amplification.
Representative experiments performed in triplicate are shown.

variants, e.g. there were relatively less H1.3 but more H1.4
and H1.5 at alphoid repeats.

The specificity of HI1 variant distribution was
investigated in more detail at gene promoters previously
shown to contain H1 in distal regions located 10kb
upstream of their TSS and depletion of H1 at the TSS
(H1 valley) (62). All the H1 variants were detected at all
distal promoter regions tested, in similar proportions, and
a similar degree of H1 depletion was observed at the TSS
of all genes for all the H1 variants, including an H1.4
mutant (K26A) at a residue targeted by acetyl and
methyl transferases and reported to be involved in recruit-
ing chromatin proteins (Figure 1A) (5,6,46,75). Moreover,
local depletion of H1 at TSS was also observed by
immunoprecipitating endogenous histones with specific
H1.2 and H1X antibodies (Figure 1B). The ChIP specifi-
city of these antibodies was confirmed in H1.2 and HI1X
inducible knock-down cells (Supplementary Figure S4).
Interestingly, the TSS-associated H1 valley was not
observed at genes inactive in these cells, i.e. OCT4 and
NANOG (Figure 1C), while the H1 valley was evident
at genes being expressed, as indicated by mRNA accumu-
lation measured by RT-qPCR. Moreover, the H1 valley
correlated with H3K4me3 enrichment at the TSS
compared with a 10-kb upstream region, an open
chromatin state at TSS measured by formaldehyde-
assisted isolation of regulatory elements (FAIRE)-qPCR
and nucleosome depletion (H3 ChIP) (Supplementary
Figure S5). Furthermore, under stimulating conditions
H1 depletion at the TSS was increased at inducible
promoters, such as steroid hormone responsive promoters
(MMTYV) or genes induced by mitogenic agents (JUN and
FOS) (Supplementary Figures S6 and S7). Noteworthily,
in these early response genes, there was already an HI
valley in noninducing conditions and this became deeper
on stimulation (Figure 1D and Supplementary Figure S7).

Extended depletion of H1 at promoters is dependent on
the transcriptional status of the gene and shows
differences between variants

To explore the genome-wide distribution of the different
HI variants across gene promoters, we hybridized ChIP
material obtained with variant-specific antibodies or cor-
responding to HA-tagged H1 variant-associated chroma-
tin with a promoter tiling array containing probes for
30893 transcripts (—3200 to +800 bp to the TSS) arising
from 22 542 human promoters. The average log2 ratio of
probe intensity for all transcripts was plotted against the
relative distance to the TSS for each variant and an H1
valley close to the TSS was apparent in all cases.
Interestingly, in the two H1.2 samples (endogenous H1.2
and HI1.2-HA), the valley was more pronounced and
slightly shifted toward the TSS, compared with that for
the other H1 variants (endogenous H1X and H1.0/3/4/5-
HA) (Figure 2A).

Subsequently, this ChIP-chip data was combined with
gene expression data for ca. 20000 of the transcripts,
obtained with the parental cell line in a human expression
array (Agilent) (Supplementary Figure S8), and heat maps
representing binding intensity were constructed for each
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Figure 2. The extension of H1 depletion at promoters is transcription status-dependent and variant-specific. (A) Average log2 enrichment ratio of
ChIP-chip probe intensity for all transcripts was represented regarding the relative distance to TSS for each variant. (B) Heat maps of ChIP-chip
probe intensity around TSS (—3200 to +800bp) for 20338 transcripts from which the expression rate was determined. Genes are ordered from
highest to lowest gene expression. (C) Average log2 ratio of ChIP-chip probe intensity represented regarding the relative distance to TSS for all
transcripts classified according to expression in 10 groups containing a same number of transcripts, from highest (EG1) to lowest (EG10) expression.
Representative ChIP-chip experiments are shown.
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variant, ranking promoters from highest to lowest gene
expression (Figure 2B). An HI1 valley was clearly seen
for at least the top 50-60% most highly expressed tran-
scripts in all variants. Notably, the valley extended toward
the least expressed genes in H1.2 samples. Then all the
transcripts considered were divided into 10 groups from
high to low expression, and average log2 ratio of ChIP-
chip probe intensity was plotted against the relative
distance to the TSS for each expression group and each
variant (Figure 2C). These graphs confirmed that HI de-
pletion at promoters is dependent on the transcriptional
status of the gene. The H1 valley around TSS was deeper
and wider for H1.2 than for the other variants, irrespective
of whether endogenous or HA-tagged histone was
measured. In general, H1 depletion extended to some
degree at least 1 kb upstream of the TSS of active genes,
further than the predicted extent of the reported nucleo-
some-free region (NFR) that lies upstream of the TSS. To
confirm this result, ChIP-chip for the core histone H3 was
also performed and showed that H3 was depleted at active
genes and more locally than H1 (Figure 2B and C). H3
and all Hls except H1.2 presented a marked enrichment
peak immediately downstream of the TSS, which may cor-
respond to a positioned nucleosome as previously
reported (76,77). ChIP-qPCR on selected promoters con-
firmed some of these observations, namely, in some re-
pressed promoters there was high H1.0 but low HI.2
content around the TSS (Supplementary Figure S9).

In addition to protein-coding genes, the promoter array
contained 1145 noncoding transcripts, including structural
RNAs and transcribed pseudogenes, that overall pre-
sented a low expression rate compared with the
complete transcriptome. An HI1 valley at the TSS was
only apparent on the ChIP-chip heat maps for endogen-
ous and HA-tagged H1.2, in agreement with our observa-
tion that an H1.2 valley occurs even at weakly expressed
promoters (Supplementary Figure S10).

H1.2 abundance at distal promoters is a mark of
transcriptional inactivity and negatively correlated with
the presence of other H1 variants

Noteworthily, H1.2 abundance at distal promoter regions
(—3200 to —2000 bp from TSS) was inversely proportional
to gene expression, being more abundant at repressed pro-
moters (Figure 2C). This was also observed to some extent
for the other H1 variants and H3 with the exception of the
ca. 10% most and least strongly expressed genes that
showed the opposite trend. In agreement with this, when
gene promoters were ranked from weakest to strongest H1
enrichment at the distal promoter region, a negative cor-
relation with gene expression was seen especially for H1.2
(Figure 3A). Genes with the highest distal promoter H1.2
content (top 10%) mainly fell among those with the lowest
expression, whereas genes with the lowest H1.2 content
(bottom 10%) fell among those with the highest expres-
sion (Figure 3A, right panel). This was partially true also
for H1X but less evident for the HI-HAs. Gene ontology
analysis of H1 variant-enriched (top 10%) or -deprived
(bottom 10%) promoters revealed that different biological
processes were regulated by the different variants in T47D

cells. For example, genes with the lowest content of H1X
at promoters included active genes involved in chromatin
organization, and those with the lowest H1.2 content in
these regions included genes involved with cell—cell signal-
ing or regionalization. On the other hand, genes with the
highest HIX and HI1-2 content at promoters included
those involved in pattern formation and repressed
genes involved in sensory perception, respectively
(Supplementary Table S2).

Moreover, H1.2 abundance at distal promoter regions
was inversely correlated with H3, HI1X and HI1-HA
abundance, while H1.2-HA showed an intermediate
pattern (Figure 3B and Supplementary Figure SI1).
This indicates that there is a preferential binding of H1.2
in some promoters (mostly repressed genes) compared
with the other variants, and vice versa, many promoters
are devoid of H1.2 but contain other H1 variants.

Venn diagrams were drawn for the top 10% genes with
high or low HI1.2 and high or low H1X at the distal
promoter to identify genes presenting high2/lowX and
vice versa (Supplementary Figure S12). The largest
overlaps  were  between low2/highX  promoters
(553 genes), mainly corresponding to expressed genes
(Figure 3C). Representative genes of the two groups were
randomly selected (TMEM204 and TUBGCPS for low2/
highX, and COL4A3 and CUGBP2 for high2/lowX-con-
taining promoters) and used to confirm by ChIP-qPCR
that some promoters preferentially bind with particular
variants (Figure 3D). Similarly, Venn diagram compari-
sons of the top 10% genes with high or low H1.2 versus
high or low H1.0-HA showed that the largest overlaps were
low2/highO with 716, and high2/low0 with 276 genes
(Supplementary Figure S13). Taken together, our data
indicated that promoters having few H1.2 variants are
loaded with large amounts of other variants, not only
with exogenously expressed H1.0-HA but also endogenous
H1X. Expression analysis of such groups of genes found
that genes with few HI1 variants at distal promoters are
highly expressed, and vice versa, but also that H1.2
content is the strongest predictor of gene expression
(Figures 3C and Supplementary Figures S12C and S13C).

The universality of the relative H1.2/H1X abundance at
representative genes was tested in two additional cell lines
by ChIP-qPCR (Figure 3E and Supplementary Figure
S14). HeLa cells showed results similar to T47D, i.e.
H1.2/H1X ratios were higher in COL4A3 and CUGBP2
genes than TMEM204 and TUBGCPS, although ratios in
all genes were higher than in T47D reflecting a higher
relative abundance of H1.2 in HeLa cells (Supplementary
Figure S14). On the other hand, H1.2/H1X ratios in MCF7
were similar in all four genes, due to higher H1X signals in
COL4A3 and CUGBP2 genes. This result indicated that
relative abundances between variants at promoters were
not fully conserved between cell types, although the
patterns in T47D and HeLa were similar. In relation to
this, ChIP-chip of H1.2 and H1X in HeLa confirmed that
these two variants do not coexist at exactly the same distal
promoters (Supplementary Figure S15).

Next, we plotted heat maps of H1.2 abundance at the
promoters of genes ranked according to their position
along several human chromosomes (Figure 4A).
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Figure 3. H1.2 abundance at distal promoter regions negatively correlates with gene expression and abundance of other variants. (A) Heat maps of
gene expression data for 20338 transcripts ordered from lowest to highest HI content at distal promoter regions (—3200 to —2000 bp relative to
TSS), for each of the H1 variants indicated. (Right panel) Expression levels of genes presenting the highest or lowest H1 variant content at distal
promoter is shown as a box plot. Significance was tested using the Kolmogorov—Smirnov test. Enrichment and depletion is marked with red and blue
asterisks, respectively. *P < 0.001. (B) Heat maps of HI ChIP-chip probe intensity around TSS (—3200 to +800 bp) for 20 338 transcripts from which
the expression rate was determined. Genes are ordered from lowest to highest H1.2 content at distal promoter regions. Genes with the top or lowest
distal H1 content are indicated. These genes (2050 genes for each group, 10% of the total) were used to determine the number of coinciding genes as
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Interestingly, several domains of high H1.2 abundance
were detected along these chromosomes, correlating with
clusters of differential gene expression. Notably, chromo-
some 19, the most gene-rich chromosome, showed overall
high gene expression and low H1.2 content at promoters, as
did chromosome 17. On the other hand, the least gene-rich
chromosome, chromosome 13, presented low gene expres-
sion and high H1.2 content (Figure 4A and Supplementary
Figure S16). The observed clustered distribution was well
conserved between cell lines, but differed between H1
variants. H1X and H1.0-HA abundances were not clus-
tered with the same pattern as gene expression. Rather,
these variants were abundant at promoters located on
gene-rich chromosomes 17 and 19, and depleted on the
gene-poor chromosome 13 (Supplementary Figure S16).
In summary, H1.2 content at promoters is the best HI
reporter of gene expression.

H1 variants are differentially depleted from regulatory
regions and enriched at CpG sites

To further explore whether the genomic distribution of H1
variants is heterogeneous, we combined ChIP of endogen-
ous H1.2, H1X, H3 and HA-tagged H1.0, H1.2 and H1.4
with high-resolution sequencing (ChIP-seq) of up to 50
million reads per sample (Supplementary Table S1). To
confirm the results obtained by ChIP-chip, we focused
first on the input-subtracted normalized average ChIP
signal obtained around coding regions of genes grouped
according to basal expression as before (Figure S5A).
Again, the H1 valley at the TSS depended on expression
rates and differences were seen between HI1 variants,
mainly the abundance of H1.2 at the TSS of nonexpressed
genes being lower than that of the other subtypes, which
showed high levels toward nucleosome +1. Transcription
termination sites (TTS) also showed differences between
variants, being depleted of H1 subtypes except for HI1.2.
Interestingly, the H1 content of gene bodies increased
toward the end and also depended on gene expression
rates. While H3 levels were uniform, those of HI1
variants such as HI1.2 were lower at the 5 moiety of
highly active genes (Figure 5A).

In addition to the local displacement of H1 from active
promoters, H1 variants were markedly depleted from
other regulatory regions along the genome, namely, CC
CTC-binding factor (CTCF) binding sites corresponding
to insulators, and p300 binding sites associated with
enhancers, but little affected at DNase hypersensitivity
sites and FAIRE-identified regions representing open
chromatin (Figure 5B and Supplementary Figure S17).
When we calculated the input-subtracted coverage of HI
variants across the peaks of selected core histone modifi-
cations, depletion of H1.0 and H1.2, and to some extent of

H1.4 but not HI1X, was associated with positive histone
marks linked to strong enhancers such as H3Kd4mel,
H3K4me2 and H3K27ac (Supplementary Figure S17).
H1 abundance at H3K4me3 and H3K9ac sites, enriched
at TSS of active promoters, differed between variants, re-
flecting H1.2 depletion at the TSS of most genes but local
enrichment of the other variants immediately after the
TSS. No strong enrichment of HI was found at negative
histone marks such as H3K9me3 or H3K27me3. It is also
worth noting that H1.2 abundance was lower at active
marks than at those related with repression and chromatin
compaction, in agreement with the observed correlation
between H1.2 content and gene repression.

Next, we investigated whether the location of HI1
variants coincided with CpG regions across the genome.
As seen in Figure 5C, H1.0, H1X and H1.4 were clearly
overrepresented in CpG regions compared with HI.2.
Because CpG are mostly localized at gene promoters,
this finding may reflect the overall higher abundance of
those variants compared with H1.2 around TSS, consider-
ing the weakly expressed genes. Alternatively, it is not
possible to rule out a certain relationship between H1.0
(and other variants apart from H1.2) and CpG or DNA
methylation.

Differential prevalence of H1 variants along the genome

To further correlate ChIP-chip data of H1 abundance at
promoters with ChIP-seq signals, regions of clustered
genes with high H1.2 content such as the ones marked
with asterisks in Figure 4A (chromosomes 1 and 12) were
explored for input-subtracted H1 variant content using the
UCSC genome browser (Figure 4B). The whole domain was
enriched in H1.2 ChIP-seq signal compared with neighbor-
ing regions, indicating that H1.2 enrichment was not limited
to the promoters of repressed genes therein. Interestingly,
this domain was characterized by low GC content and the
presence of LADs reported to anchor chromatin segments to
the nuclear periphery (73). LADs are typified by low gene-
expression levels, representing a repressive chromatin envir-
onment. Notably, the distribution of the other variants
analyzed by ChIP-seq was not as clearly delimited to this
domain as H1.2. Further examination of HI variant signals
across several regions containing LADs using the UCSC
genome browser showed that H1.2 was the variant most
strongly correlated with LAD positions and had fairly
well delimited borders of enrichment (Supplementary
Figure S18). When the input-subtracted coverage of HI
variants across LADs was calculated, H1.2 was the only
variant showing enrichment (Figure 4C).

We then examined individual chromosomes for the
presence of the input-subtracted signal of the different H1
variants. Abundance of HI1 was heterogeneous along

Figure 3. Continued

shown in Supplementary Figures S12 and S13. (C) Expression levels of coinciding genes in the comparisons between genes presenting the highest or
lowest H1.2 or H1X (h2/12/hX/IX, respectively) content at distal promoter is shown as a box plot. The number of common genes for each
comparison is indicated. Significance was tested using the Kolmogorov—Smirnov test. **P <0.001 and *P <0.005. (D) ChIP-qPCR confirmed
that some genes are enriched in H1.2 or HIX at distal promoter. TMEM204 and TUBGCPS genes were randomly chosen among the group of
genes presenting low H1.2 and high H1X (553 genes), and COL4A3 and CUGBP2 genes among the genes presenting high H1.2 and low H1X (189
genes) (see Supplementary Figure S12). After ChIP-qPCR of H1.2 and H1X abundance at distal promoter regions of these genes in T47D cells, the
relative ratio HI1.2/H1X was calculated. (E) The differential ratio between H1.2 and H1X abundance at selected genes observed in T47D cells is
conserved in HeLa cells but not in MCF7. Representative ChIP-qPCR experiments performed in triplicate are shown.
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Figure 4. H1 variant content at gene promoters along human chromosomes and relation of H1 variants with LADs and GC content. (A) Heat maps
of H1.2 ChIP-chip probe intensity around TSS (—3200 to +800 bp) for genes ordered according to their position along several human chromosomes.
Gene expression levels for each gene in T47D cells is represented in the left in two different ways (as a heat map and graphical representation of log 2
ratios). A GRC for each chromosome, calculated as the ratio between the percentage of genes present in each chromosome and the percentage of
base pairs of each chromosome to the total human genome, is indicated. The centromere location is marked with a triangle. Regions of interest are
marked with an asterisk and viewed in the UCSC genome browser in (B). (B) Distribution of H1 variants along selected regions of chromosome 1
and 12. Input-subtracted H1.2 and HIX ChIP-seq signal viewed in the UCSC genome browser together with GC content, RefSeq genes, H3K4me3
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chromosomes, showing extensive patches of enrichment or
depletion of H1 compared with the input (Supplementary
Figure S19). Interestingly, the H1.2 pattern was the most
different from the other variants, endogenous H1X and
HA-tagged variants showing patterns that were similar to
each other and to that of H3, while the pattern for HA-
tagged H1.2 was more similar to endogenous H1.2 than to
other HA-tagged Hls. It is worth noting that long genome
patches of low GC content were found to be devoid of all
H1 variants except H1.2, which was enriched. We next per-
formed genome-wide correlation analysis between the
input-subtracted H1 variant signal and GC content. Low
CG content was associated with high occupancy of H1.2
but low occupancy of the other variants, including HI1X,
and vice versa (Figure 4D and Supplementary Figure S20).

Further comparison of the overall abundance of H1
variants at each individual chromosome revealed unique
patterns creating corresponding clusters of chromosomes
and H1 variants (Figure 6). Interestingly, chromosomes
were clustered in a manner that was related to their
gene-richness and the overall expression of genes they con-
tained. Gene-rich chromosomes showed H1.0 and H1X
enrichment, and H1.2 depletion, whereas the opposite
was found at gene-poor chromosomes, in agreement
with the promoter ChIP-chip data described above.
Correlation analysis confirmed these conclusions
(Supplementary Figure S21). Notably, H1 variants were
clustered differently depending on whether they were rep-
lication-independent (H1.0 and H1X) or synthesized over
the course of DNA replication only (H1.2, H1.4 and the
core H3 histone). Further, H1.0 and H1X had a more
heterogeneous distribution between chromosomes (data
not shown).

Genomic annotation of enriched or depleted regions of
individual H1 variants shows that H1.2 is associated with
intergenic regions and repressed genes

Next, we searched specific regions of the genome either
enriched or depleted for each H1 variant signal over
input DNA with a fold change >2 using SICER
software (Supplementary Table S3). Most Hl-enriched
regions were inside genes (arbitrarily defined as from
—5kb upstream to +3kb downstream of the TTS),
whereas H1.2 peaks were more abundant at intergenic
regions (Supplementary Table S3 and Supplementary
Figure S22). On the other hand, all H1-depleted regions
were more abundant inside genes, especially for H1.2.
Within genes, H1.2-enriched regions were disfavored at
promoters (—5kb to +1kb flanking TSS) compared with
other H1 peaks, whereas HI1.2-depleted regions were
strongly favored, in agreement with ChIP-chip data pre-
sented in Figure 2. In agreement with our aforementioned
data, the GC content in H1.2-enriched regions was lower

than in the other variants (Supplementary Figure S20).
Next, we analyzed the overlap between Hl-enriched and
depleted regions with CpG islands. CpG islands were
enriched at HI1.2-depleted regions and at regions
enriched for the other variants, confirming the inverse cor-
relation between CpG islands and H1.2 described above
(Supplementary Figures S22 and S23). As expected,
regions overlapping with CpG sites were preferentially
located at promoters. For example, 42% of HI1.0- or
H1X-enriched regions located at promoters overlapped
with a CpG island, while this was the case for only
4-8% of regions enriched in these variants located at
intergenic regions.

To identify H1 variant target genes we looked for genes
that had at least one Hl-enriched region from —5kb to
+3 kb from the TTS. H1.2 was the variant that was found
to have the smallest number of target genes
(Supplementary Table S3). Overlap analysis disclosed
the number of genes containing peaks of a single variant
or several variants (Supplementary Figure S24), and
expression analysis revealed that genes with only HI.2
peaks were less expressed than target genes containing
peaks of any other H1 variant (Figure 7A), in agreement
with data above showing lower expression of genes con-
taining elevated levels of H1.2 at distal promoter or coding
regions. In those genes, the peak tended to be outside the
promoter for H1.2, but at the promoter for the other
single variant target genes (Supplementary Table S3). On
the other hand, genes presenting H1.2-depleted regions
were highly expressed, while genes with depleted regions
of H1.0, H1.4 or H1X were expressed at lower levels than
the total transcriptome average (Figure 7A).

We further investigated whether the identified
H1-enriched regions fell within genes, proximal regulatory
regions or distal intergenic regions using CEAS software
(70). Again, H1.2 was more differently distributed than the
other variants analyzed. H1.0-HA, H1X and HI1.4-HA
peaks were overrepresented in promoters, UTRs, exons
and downstream regulatory regions, and underrepresented
in distal intergenic regions compared with the complete
genome, whereas H1.2-enriched regions were overrepre-
sented in intergenic regions and underrepresented in
exons and promoters (Figure 7B and Supplementary
Figure S25). Except for those for H1.2, H1 peaks were as
abundant in introns as in distal intergenic regions. On the
other hand, depleted regions were similarly distributed
across compartments in the different HI variants, except
H1.2-depleted regions, which were more abundant at pro-
moters and less so at intergenic regions.

In summary, our data shows that histone HI is
not uniformly distributed along the genome and there
are differences between variants, HI1.2 being the
one showing the most specific pattern and

Figure 4. Continued

(ENCODE average of 9 cell lines), CpG and LADs (data from Tig3 lung fibroblasts). (C) Box plots showing the occupancy of H1 variants (input-
subtracted ChIP-seq signal) within LADs. Significance was tested using the Kolmogorov—Smirnov test taking as a control a random sample of
windows with equal width to the LADs. Enrichment and depletion is marked with red and blue asterisks, respectively. *P < 0.001. (D) Genome-wide
correlation scatterplots of H1.2 and H1X variants versus GC content. X axes: average input-subtracted H1 signal (normalized to 1000 bp window). Y

axes: GC%. R: Pearson’s correlation coefficient.
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Figure 5. H1 is depleted from regulatory regions but present at CpG sites in a variant-specific manner. (A) Average, input-subtracted ChIP-seq
signal of H1 variants around gene bodies flanked by TSS and transcription termination site (TTS), grouped according to basal expression (10% of
total genes in each group). EG1 represents top expressed genes and EG10 genes with the lowest expression. Average for all genes is shown in black.
Genic regions are represented as a 3-kb-long meta-gene surrounded by 1kb region upstream TSS and 1kb downstream TTS. (B) Average, input-
subtracted ChIP-seq signal of H1 variant around the center of genomic CTCF and p300 binding sites (data from T47D cells). (C) Average, input-
subtracted ChIP-seq signal of H1 variant around the center of CpG islands (as defined in UCSC database).

strongest correlation with low gene expression in breast testing several H1 variant-specific antibodies that we and
cancer cells. others have produced, only HI1.2 and HIX commercial

antibodies were found to be useful in the ChIP-qPCR ex-

periments, and variant specific, as shown by performing
DISCUSSION ChIP experiments in HI1.2 and H1X knockdown (KD)
cells. Consequently, we generated stable cell lines express-
ing HA-tagged versions of the H1 variants at protein
levels close to or below endogenous levels, despite
mRNA levels of exogenous H1 forms being higher (data
Herein, we have investigated the distribution of all not shown). This suggests that H1 is tightly posttranscrip-

Mapping of H1 variants by ChIP with variant-specific
antibodies and protein tagging uncovers differences
between H1.2 and the other variants in breast cancer cells

somatic histone H1 variants present in breast cancer tionally regulated to control the overall levels of H1 and
cells, i.e. H1.0, HIX and H1.2 to H1.5 by combining the proportion between variants, which vary considerably
ChIP with genomic technologies such as tiling promoter across cell types and cell lines. HA-tagging allowed us to

array hybridization and high-resolution sequencing. After perform ChIP of all variants with the same antibody,
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ruling out the variability being due to diverse antibody
specificity or affinity. We found that all the H1 variants
studied are widely distributed along the genome and
within promoters with few differences between HA-
tagged H1.0, H1.3, H1.4 and H1.5. In contrast, endogen-
ous H1.2 presents striking differences. We rule out the
possibility that the differential distribution is due to
antibody usage or protein overexpression, as endogenous
H1X presented an occurrence similar to HA-tagged
variants and exogenous H1.2-HA resembled its endogen-
ous counterpart more closely than the other HI-HAs.
On this basis, we report that, in the cell line investigated,
H1.2 presents a variant-specific distribution and may have
differential functions. In fact, we reported elsewhere that
H1.2 KD produces unique effects, namely, cell cycle arrest
at G1 and decreased nucleosome spacing, not seen in other
H1 KDs, and these were observed not only in T47D cells
but also in MCF7 cells (59). Nonetheless, this feature was
not general, as it was not seen in other cell types tested,
including HeLa cells in which H1.2 is highly abundant,
indicating that H1 variants may have cell type-dependent
specific effects. Instead, our data cannot rule out that the
other variants studied may have redundant functions and
distribution in breast cancer cells. A recent report on the
genomic distribution of Dam-H1.1 to H1.5 in lung fibro-
blasts IMR90 cells found that H1.1 is the only subtype
showing divergent features (66). H1.1 is not expressed in
breast cancer cells or in many other cell types. Instead,
H1.2 and H1.4 are the only variants that have been
found in all cell lines tested to date (29,78).

Additionally, mRNA levels of these two variants are
maintained in nondividing cells and along differentiation,
compared with H1.3 and HI1.5 levels that are reduced
(31,79). Although too small a sample, these results
suggest that different H1 subtypes may play different
roles in different cell types, over the course of development
and in cancer cells, inviting further investigation of Hl
variants occurrence.

We have noticed that H1.2-HA was not distributed in
exactly the same way as endogenous H1.2 and showed
intermediate features somewhat similar to the other H1-
HAs. We believe that this recombinant protein has the
H1.2 structural features that direct it to the natural
H1.2-occupied sites, but owing to its overexpression it
may also locate at distinct sites normally occupied by
other H1 variants. We have observed, by ChIP, that on
knock down of endogenous H1.2, H1.2-HA occupancy
increased (data not shown), suggesting a relocation to
H1.2 sites. Overall, we believe that caution should be
taken when interpreting data generated with exogenous
histone variants fused either to the Dam domain or to
peptide tags.

H1 depletion from promoters and coding regions is more
pronounced than H3 depletion and shows differences
between H1 variants

Our analysis has also shown that all Hls are removed
from active promoters, with maximum depletion close to
TSS but extending several nucleosomes upstream, beyond
the reported NFR, and within the coding regions. These
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Figure 7. Genomic annotation of regions found to be enriched or depleted of individual H1 variants and expression of target genes. (A) The
expression profiles of target genes containing enriched or depleted regions for a unique variant are shown as box plots. The profile of genes
containing both H1.2-HA and Hl.2endo (replica 2) enriched or depleted regions are also shown (2HA & 2e_r2). Significance was tested using
the Kolmogorov—Smirnov test. Enrichment and depletion is marked with red and blue asterisks, respectively. **P <0.001 and *P <0.005. (B)
Genomic annotation of regions enriched or depleted of endogenous H1.2 or HI1X. Pie diagram of distribution of HI variants enriched regions at
genes, proximal regulatory regions and distal intergenic regions. Promoter and downstream regions are defined as 3000 bp upstream TSS or down-
stream TTS, respectively. The proportions of the HI.2 and H1X enriched or depleted regions in several genomic features were significantly different
from the whole genome proportions of those features (P < 2.2e-16). Significance was tested using in-house R scripts.

regions containing nucleosomes but not Hl may coincide
with H2A.Z and H3.3-containing nucleosomes, as both
H2A.Z and H3.3 have been reported to locate at active
promoters surrounding the NFR, where they positively
regulate transcription (80-82). Additionally, other
authors have observed weaker histone H1 binding in
H2A.Z-containing nucleosomes (83) and a negative
genome-wide correlation between HI1 and H3.3 (63).
These observations support the view that H1 removal is
part of the chromatin remodeling events that occur on
promoter activation to facilitate binding of transcription
factors and the RNA polymerase machinery (49,84-86).
Furthermore, the shape of the H1.2 (and H1.2-HA) valley
at the TSS in ChIP-chip and ChIP-seq data (Figures 2 and
5) was slightly different from that of other H1 variants.
Unlike the signals for other variants, the H1.2 signal did
not show local enrichment immediately after the TSS. This
local enrichment may coincide with a well-positioned

nucleosome (+1), flanked by phased nucleosomes. This
indicates that such a nucleosome may contain any HI1
variant except HI1.2. Additionally, HI1.2 was not
abundant around the TSS of repressed genes, suggesting
that TSS of genes are epigenetically marked, including the
absence of H1.2. Overall, we have shown a strong rejec-
tion of H1.2 from the TSS of most genes.

Interestingly, we have found that immediate-early re-
sponsive promoters, under nonstimulating conditions,
are prepared to respond to stimuli by keeping the TSS
free of HI, indicating that mechanisms other than tran-
scription initiation might dictate H1 clearance. In this
case, there is also histone H3 depletion at the TSS
compared with at the distal promoter in the absence of
stimuli, indicating that the NFR might be maintained to
allow rapid response after stimulation. Supporting our
hypothesis, it has been recently proposed that transcrip-
tion factors interact with DNA in a dynamic way, and
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some transcription factor-DNA interactions are estab-
lished before the stimuli, especially at immediate-early
genes (87).

Comparison of HI occupancy with H3 has shown that
all Hls except H1.2 follow the distribution of the core
histone, whether this represents nucleosome enrichment,
stability or defined positioning through the cell popula-
tion. Nonetheless, H1 depletion at promoters and regula-
tory sites (CTCF or p300 binding sites) is more extensive
than H3, denoting that nucleosomes might be ejected from
delimited sites such as the NFR at the TSS, but HI might
be depleted from larger regions encompassing several nu-
cleosomes. This is in agreement with previous reports
showing that dips of low H1 occupancy at TSS and regu-
latory sites are not due to a lack of nucleosomes as they
show enrichment of the core histone variant H3.3 (63).
Moreover, at coding regions, the differential content of
HI in active versus repressed genes is more pronounced
than those of H3, especially toward the 5 of genes.
Consequently, gene-rich domains might adopt an overall
decondensed chromatin structure. Nonetheless, at active
genes HI1 is less abundant in promoters than coding
regions, indicating that H1 presence might be more re-
strictive for transcription initiation than for elongation.

Initial ChIP-qPCR experiments indicated that all H1
variants were present at all tested promoters.
Nonetheless, hybridization of ChIP material with a
promoter array revealed that promoters might present dif-
ferential H1 variant abundance (Figure 3). The most
striking difference is between H1.2 and the other Hls,
including H1X. Subsets of genes with the highest abun-
dance of one variant and the lowest of another have been
identified, i.e. those with a high or low H1.2/H1X ratio.
Overall, expression of genes presenting these features is
different, relating H1 variant content with gene expres-
sion. Notably, the relative abundance of H1.2 and H1X
in the selected promoters was conserved in the distant
HeLa cell line, but not in MCF7 cells. Thus, we propose
that the relative promoter abundance of H1 variants may
be related to, among other factors, their relative HI1
variant content in a given cell type.

Two types of H1-containing chromatin are present in
breast cancer cells with different association with gene
density and expression

The negative correlation observed between gene activity
and H1.2 content found at promoters extended upstream
toward the whole genomic region. Patches of H1.2 enrich-
ment seem to be associated with gene repression, gene-
poor regions (including entire chromosomes, such as
chromosome 13), low GC content or LADs, features
related to chromatin compaction (Figure 4). Moreover,
H1.2-enriched regions were frequently found at intergenic
regions. Similar results were found in previous studies,
linking histone H1 to repressive and compacted regions
of the genome and suggesting a role for H1 in 3D organ-
ization of the genome. Some of these features were
described by Cao et al. for mouse H1c™¥ and H1d"A¢
in ESCs, the closest orthologs of human HI1.2 and H1.3,
by Li et al. for human HI.5 in differentiated IMR90

fibroblasts, and by Izzo et al. for human Dam-H1.2 to
H1.5 in IMR90 cells also (64—66). However, in the last
of these, HI.1 presented a DamlID binding profile
distinct from the other subtypes that, in some extent, re-
sembles the distribution of H1 other than H1.2 in our
analysis in breast cancer cells, that is, they were more
closely associated with higher GC content, genes, its pro-
moters and CpG islands, and were not enriched in LADs.
Interestingly, in the study of Cao et al. when single peaks
for Hlc and HId in mouse ESCs were compared, H1d
(H1.3) was more closely related to GC-rich sequences
and LINES, and Hlc (H1.2) to AT-rich sequences,
Giemsa-positive regions and satellite DNA. It is conceiv-
able that there are at least two groups of H1 variants with
different distributions in each cell type, such that taken
together histone H1 variants cover the whole genome,
being present in most of the nucleosomes.

Whether a single variant may present distinct features in
different cell types rather than having intrinsic properties
is an intriguing question. Factors involved may be the
relative and absolute abundance of each variant and
whether a genome needs more plasticity or is progressively
silenced, i.e. pluripotency versus terminal differentiation.
In this sense, Li et al. described the existence of zones of
H1.5 enrichment in differentiated fibroblasts but not in
ESCs (64), and it has been reported that architectural
proteins, such as HP1 and HI, are hyperdynamic and
bind loosely to chromatin in ESCs (88,89). Additionally,
we have previously reported progressive changes in the
expression and abundance of HI1 variants over the
course of differentiation of human embryonic stem cells
and of reprogramming of differentiated cells to Induced
pluripotent stem cells (iPS), i.e. the opposite direction (31).
Thus, considering the importance of H1 in chromatin
structure and compaction, differential expression and/or
distribution of HI1 variants could mediate the transition
between different chromatin states, and explain the more
‘open’ chromatin state of undifferentiated cells, which
contributes to the maintenance of pluripotency by
creating a poised chromatin state that leads to rapid acti-
vation of lineage-specific genes when differentiation is
induced. In fact, it has been proposed that different
‘anti-silencing’ mechanisms, including incorporation of
specific histone variants such as H3.3, are involved in
the maintenance of open chromatin in ES cells (90).

Cancer is another cellular state in which global chroma-
tin rearrangement is observed. In fact, alterations in
nuclear morphology are one of the characteristics of
cancer cells. Tumor-originated cells accumulate genetic
and/or epigenetic differences compared with nontumor
cells, and chromatin is reorganized leading to altered
gene expression programs and higher plasticity. The
hallmark of cancer is dedifferentiation and gene
dysregulation. DNA methylation and histone modifica-
tions are two epigenetic mechanisms that are altered in
cancer cells. Moreover, large organized chromatin K
(Iysine) modifications are reduced in cancer (91), and
genes encoding proteins of the nuclear membrane
present altered expression in many cancer types (92),
indicating that LADs might be partially disorganized in
cancer in accordance with the large-scale chromatin
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decondensation. Thus, it is conceivable that the distribu-
tion of histone H1 variants could be different in such
reorganized nuclei, to that observed in nonmalignant
cells. In turn, this could be the reason why in our study
most of the HI variants in genome regions were found to
be associated with more active and open chromatin.
Moreover, given the association of HI1 with LADs
reported here and by Izzo et al., we hypothesize that H1
could be a key player in establishing LADs in normal cells,
and could also participate in the rearrangement of such
domains in cancer cells due to a different prevalence of H1
variants within these domains. Alternatively, LAD re-
organization in cancer cells could cause H1 variant
redistribution in these genomic domains.

Tumor cells are characterized by a different methylome
from that of normal cells [reviewed in (93)]. There is both
global CpG hypomethylation, causing genomic instability,
and hypermethylation of particular promoters including
tumor-suppressor genes. In our analysis, we found that
CpG islands contain H1.0, HIX and to a lesser extent
Hl1.4, but not HI1.2. This might reflect the relative
abundance of these variants at promoters and suggests
that promoter occupancy by HI1 variants other than
H1.2 is more permissive for transcription regulation in
breast cancer cells. Alternatively, as H1.2 prevalence in
intergenic CpG islands is also lower than that of other
variants, we cannot rule out a direct role of the different
H1 variants in CpG island regulation in breast cancer
cells.

Similarly, within a long region of genomic sequence,
genes are often characterized by having a higher GC
content than the background GC content of the entire
genome. We found that H1 variants except H1.2 are
associated with higher GC content regions, consistent
with the preferential location of Hl-enriched regions
within genes. H1.2 presents an inverse correlation with
GC content at a genome-wide level and H1.2-enriched
regions associate with lower GC content than other
variants. In our analysis, H3 also associates preferentially
with higher GC-content regions, in agreement with reports
describing  greater  nucleosome-space occupancy
coinciding with active transcription and higher GC
contents (94).

Altogether, it seems that H1 variants are differentially
associated with CpG islands and GC content in breast
cancer cells. Our data are not completely consistent with
previous reports showing low amounts of Hl in CpG
islands (65,95). However, mouse H1d was more closely
associated with GC-rich regions than Hlc in the study
of Cao et al. (65). Additionally, another study showed
H1 variant-dependent interaction with DNMTs (96). In
that study, it was found that, unlike other H1 variants,
Hlc (H1.2) does not interact with DNMTI and
DNMT3B. Based on the differential association of HI1
variants with CpG islands and GC-rich regions in T47D
breast cancer cells, we hypothesize that a redistribution of
most of histone H1 variants in cancer may help to estab-
lish a differential chromatin state, but also an altered
methylation pattern. In fact, H1 variants are differentially
related to several types of cancer (33,97). Additionally,
comparison of human mammary epithelial cells with
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breast cancer cell lines including T47D (98) showed
global massive hypomethylation at CpG-poor regions,
and hypermethylation at CpG-rich gene-related regions,
proximal to the TSS, where local enrichment of all H1
variants except H1.2 is observed in our data. Moreover,
hypomethylated regions in breast cancer cells coincide
with repressive chromatin, gene silencing, repressive
histone posttranslational modifications (PTMs), intergenic
regions and LADs (99), which in turn coincides with an
enrichment of H1.2 found in our analysis. Further inves-
tigation of the DNA methylation profile of T47D breast
cancer cells could confirm a differential role of HI variants
in establishing or maintaining DNA methylation in breast
cancer.

Chromatin containing H1 variants other than HI.2
might support a level of compaction that facilitates a
rapid conversion into either an active or a repressed
state and, consequently, these variants are allowed at
TSS of genes before activation. In fact, a particular
posttranslational modification in H1.4 (K34Ac) has been
found to locate around the TSS of active genes (49).
Instead, we have described that H1.2 occupancy at distal
promoters is the best predictor of gene repression.
Moreover, genes presenting H1.2-enriched regions are
clearly less strongly expressed than average. This study
points toward the inclusion of HI1.2 as a repression
mark and to it being associated with closed chromatin.
In this regard, H1.2 has been found to be included in a
p53-containing repressive complex in HeLa cells (50), and
murine H1.2 has been found to be developmentally
upregulated in the retina, promoting facultative hetero-
chromatin formation in mature rod photoreceptors (100).

Several studies have compared the chromatin binding
affinity and residence time on chromatin of the different
H1 subtypes in different organisms or cell lines, as well as
its nuclear localization, obtaining diverse, if not contro-
versial, results on the functional heterogeneity of HI
variants. In general, H1.2 is among the variants presenting
intermediate or low affinity for chromatin and, conse-
quently, elevated mobility. Instead, HI1.4 has been
mostly associated with high affinity, low mobility and
colocalization with heterochromatin (40,101-103). We
do not fully understand how these properties may relate
or contradict our observation of H1.2 being enriched in
repressed and gene-poor chromatin in breast cancer cells.
Certainly, different experimental approaches performed in
the same cell model would facilitate to reconcile the dif-
ferent observations.

There is nowadays increasing evidence of a 3D organ-
ization of the genome within the cell nucleus. Interphase
chromatin is organized in large chromosome territories
defined as ‘topological domains’, which can interact
despite being several megabases apart (104,105). These
domains are stable across different cell types and highly
conserved across species. It has already been reported that
embedded genes in these domains are in a transcription-
ally similar state and associated with transcriptionally
related histone marks and chromatin features. Hence, it
is not unreasonable to speculate that H1 could be involved
in the formation or maintenance of such domains due to
its role in chromatin structure. High-throughput profiling
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of chromatin marks and components has recently made it
possible to define chromatin states (106,107). In
Drosophila cells, five principal chromatin types have
been described, H1 being present in all of them in different
proportions (107). Although this may reflect the general
features of H1 occurrence, in cells presenting several H1
subtypes a differential distribution of subtypes between
different chromatin types may occur, as is suggested in
our study. We have found that H1.2 is the variant most
closely associated with LADs, low GC content and gene-
poor regions and chromosomes that are normally located
at the periphery of the nucleus, features related to chro-
matin compaction, while chromatin associated with the
other variants presents features of a more plastic chroma-
tin. Interestingly, gene-rich chromosomes, presumably
with a more dynamic chromatin and histone HI
exchange, and located toward the center of the nucleus,
are enriched in H1 variants synthesized all through the cell
cycle, namely H1.0 and H1X. It would be interesting to
further analyze the colocalization of the different human
HI1 variants with chromatin marks and components that
better define the diverse chromatin states, although these
types of comparisons are limited by the availability of
high-throughput data on the same or related cell types.
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