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Abstract: A Au-stained Au nanoparticle (Aus)/pyridine (Py)/carboxylated multiwalled carbon
nanotubes (C-MWCNTs)/glassy carbon electrode (GCE) was prepared for the sensitive analysis
of As(III) by cast-coating of C-MWCNTs on a GCE, electroreduction of 4-cyanopyridine (cPy) to
Py, adsorption of gold nanoparticles (AuNPs), and gold staining. The Py/C-MWCNTs/GCE can
provide abundant active surface sites for the stable loading of AuNPs and then the AuNPs-initiated
Au staining in HAuCl4 + NH2OH solution, giving a large surface area of Au on the Aus/Py/C-
MWCNTs/GCE for the linear sweep anodic stripping voltammetry (LSASV) analysis of As(III). At a
high potential-sweep rate of 5 V s−1, sharp two-step oxidation peaks of As(0) to As(III) and As(III) to
As(V) were obtained to realize the sensitive dual-signal detection of As(III). Under optimal conditions,
the ASLSV peak currents for oxidation of As(0) to As(III) and of As(III) to As(V) are linear with a
concentration of As(III) from 0.01 to 8 µM with a sensitivity of 0.741 mA µM−1 and a limit of detection
(LOD) of 3.3 nM (0.25 ppb) (S/N = 3), and from 0.01 to 8.0 µM with a sensitivity of 0.175 mA µM−1

and an LOD of 16.7 nM (1.20 ppb) (S/N = 3), respectively. Determination of As(III) in real water
samples yielded satisfactory results.

Keywords: pyridine; carboxylated multiwalled carbon nanotubes; gold nanoparticles; gold staining;
linear sweep anodic stripping voltammetry; As(III) analysis

1. Introduction

Arsenic is widely distributed in the environment and poses a threat to human health [1–4].
Among inorganic arsenic compounds, As(III) has a higher toxicity than As(V) [5,6]. Ac-
cording to the guidelines issued by the World Health Organization, the amount of arsenic
should not be higher than 10 ppb in drinking water. On the other hand, an ultralow dose of
arsenic trioxide, also known as a Chinese traditional medicine, can well treat acute promye-
locytic leukemia [7]. Therefore, the rapid and sensitive detection of As(III) is interesting
and important. To date, the analytical methods for arsenic detection mainly include induc-
tively coupled plasma mass spectrometry (ICP-MS) [8], atomic absorption spectrometry
(AAS) [8], atomic fluorescence spectrometry (AFS) [8], fluorescent probe method [9,10],
biosensing [11], and electroanalysis [12], each with its own characteristics.

The electroanalysis methods, especially anodic stripping voltammetry (ASV), have the
advantages of being low cost and using portable instruments, making them appropriate
for the rapid and in-field detection of arsenic [13–16]. The ASV analysis of As(III) involves
three steps: (1) preconcentration of As(0) under solution-stirred conditions by cathodic
potentiostatic reduction of As(III); (2) ceasing solution-stirring to achieve minimum mass
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transfer in the bulk solution and minimum potentiostatic electrolysis from the stationary
bulk solution; and (3) oxidation of As(0) to As(III) and then to As(V) by an anodic potential
sweep. Usually, Au electrodes and Pt electrodes, as well as their modified forms, are used
for the ASV analysis of As(III) [13]. Pt has a rather strong affinity for As(0) [17–20], and
thus the anodic stripping of As(0) is somewhat difficult on a Pt electrode, making the
ASV peak current rather low and the current peak rather broad. In contrast, as Au has an
appropriate affinity for As(0), the anodic stripping of As(0) is easy and gives a high ASV
peak current and a sharp current peak on a Au electrode, and thus the Au electrode is
more favorable for the sensitive analysis of As(III). The Au-involved chemically modified
electrodes, e.g., the electrodes modified with gold nanoparticles (AuNPs) [21,22] or their
composites with metal oxides [23], silicon materials [24], carbon materials [25,26], and
appropriate organic ligands [27–29], can further improve the arsenic analysis performance,
either by stabilizing the modified Au material or increasing the effective area of exposed
Au surfaces. The pyridine-like organics can act as excellent gold ligands to support and
stabilize AuNPs [30,31] and may be developed as new materials for high-performance
Au-based arsenic analysis.

Herein, we report the preparation of a Au-stained Au nanoparticle (Aus)/pyridine
(Py)/carboxylated multiwalled carbon nanotubes (C-MWCNTs)/glassy carbon electrode
(GCE) by cast-coating of C-MWCNTs on a GCE, electroreduction of 4-cyanopyridine
(cPy) to Py, adsorption of gold nanoparticles (AuNPs), and gold staining. The use of
4-cyanopyridine (Py) can lead to the cleavage of the C-C bond between the pyridyl and
the cyano group when the 4-cyanopyridine undergoes electroreduction on the electrode,
resulting in a pyridine radical. The pyridine radicals are highly active and can be covalently
bound well onto the surface of C-MWCNTs/GCE to form Py/C-MWCNTs/GCE. The Py/C-
MWCNTs/GCE can provide a good substrate for AuNPs loading and gold staining to
increase the Au surface area. Under optimized conditions, the Aus/Py/C-MWCNTs/GCE
can be used for the ASV analysis of As(III), with high sensitivity, low detection limit, high
selectivity, good stability, and reproducibility.

2. Experimental Section
2.1. Instrumentation and Reagents

Electrochemical measurements were performed on a CHI660E electrochemical work-
station with a three-electrode system. A disk GCE (3.0 mm diameter, 0.0707 cm2 geometric
area) and its modified electrodes served as the working electrode, a KCl-saturated calomel
electrode (SCE) served as the reference electrode, and a platinum wire served as the auxil-
iary electrode. All potentials are reported versus SCE. A PHS-3C pH meter (Leici, Shanghai,
China) was used for pH measurements. The surface plasmon resonance absorption spectra
of AuNPs were collected on a UV–visible spectrometer (UV-2450, Shimadzu, Japan). X-ray
photoelectron spectroscopy (XPS) data were collected on a Thermo ESCALAB 250XI. A
field emission scanning electron microscope (MIRA3 LMH, TESCAN) was used to ac-
quire scanning electron microscopy (SEM) images, and it was equipped with a MAX20
energy-dispersive X-ray spectroscopy (EDX) system for elemental analysis.

4-Cyanopyridine, As(III) stock solution, and HAuCl4·3H2O were commercially ob-
tained from J&K Scientific (Nanjing, China). Carboxylated multiwalled carbon nanotubes
were commercially obtained from XFNANO, Inc. (Nanjing, China). Anhydrous ethanol,
K4Fe(CN)6·3H2O, K2SO4, trisodium citrate, and CuSO4·5H2O were commercially obtained
from Chemicals Company of Tianjin (Tianjin, China). All chemicals are of analytical grade
or higher quality. A stock solution of 1.0 mM As(III) in 0.5 M aqueous H2SO4 was prepared
and stored in a refrigerator at 4 ◦C, and a series of As(III) standard solutions at the desired
concentrations were prepared for immediate use by diluting this As(III) stock solution with
0.5 M aqueous H2SO4. Milli-Q ultrapure water (Millipore, ≥18 MΩ cm, USA) was used
throughout. The experiments were conducted at room temperature (ca. 25 ◦C).
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2.2. Preparation of Aus/Py/C-MWCNTs/GCE

The bare GCE, after being physically polished, chemically cleaned, and electrochemi-
cally cleaned, was characterized in 0.1 M K2SO4 solution containing 2.0 mM K4[Fe(CN)6]
to ensure the high electrode activity.

The cleaned GCE was cast-coated with 6 µL of 0.2 mg/mL C-MWCNTs dispersion
and air-dried to obtain C-MWCNTs/GCE. The C-MWCNTs/GCE was then placed in 0.1 M
aqueous H2SO4 containing 10 mM 4-cyanopyridine (cPy) and subjected to cyclic voltam-
metry (CV) treatment for 3 cycles (−1.2~−0.5 V, 0.1 V s−1) to obtain Py/C-MWCNTs/GCE.
After being water-rinsed and air-dried, the Py/C-MWCNTs/GCE was cast-coated with
10 µL of AuNPs dispersion for 20 min, washed with ultrapure water, and dried with N2
to obtain AuNPs/Py/C-MWCNTs/GCE. The AuNPs/Py/C-MWCNTs/GCE was again
cast-coated with 10 µL of gold staining solution (3 mM HAuCl4 + 18 mM NH2OH·HCl) and,
after standing for 5 min, washed with ultrapure water to obtain Aus/Py/C-MWCNTs/GCE.
The electrode preparation is shown in Scheme 1.
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Scheme 1. The preparation of Aus/Py/C-MWCNTs/GCE for As(III) analysis.

2.3. Electroanalysis of Arsenic(III)

As(III) was detected by linear sweep anodic stripping voltammetry (LSASV). The
working electrode was immersed in a stirred 0.1 M aqueous H2SO4 containing As(III) at
a desired concentration to enrich As(0) at −0.40 V for 420 s. The solution-stirring was
then stopped for 15 s, and then the linear sweep anodic stripping of As(0) at 5 V s−1 was
conducted from −0.40 V to 1.15 V.

3. Results and Discussion
3.1. Preparation and Characterization of Aus/Py/C-MWCNTs/GCE

The AuNPs were prepared according to Ji et al. [32]. The UV-Vis absorption spectrum
shows a surface plasmon resonance absorption peak of AuNPs at 521 nm, as shown in
Figure S1. The electroreduction of cPy at different pH values was investigated by CV. As
shown in Figure 1, 10 mM cPy showed irreversible electroreduction signals at pH 1.0, 3.0,
7.0, 11.0, and 13.0. With the increase in solution pH, the reduction peak shifted negatively
and the intensity was weakened. Almost no reduction peak was found in the alkaline
environment in the examined potential range. Hence, the electroreduction reaction of
cPy was an electron transfer reaction coupled with proton transfer [33,34]. Finally, 0.1 M
aqueous H2SO4 was selected to dissolve cPy for its electroreduction. As shown in Figure 1B,
the irreversible reduction peak at ca. −0.8 V resulted from the reduction of cPy [35]. The
electroreduction of cPy will reach saturation in a short time, forming a saturated thin layer
structure. In the electrode preparation, the number of cPy-electroreduction cycles was
selected to be 3.
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Figure 1. (A) CV curves of 10 mM cPy on GCE at different pH values. (B) CV curves of 0.1 M aqueous
H2SO4 containing 10 mM cPy on C-MWCNTs/GCE.

C-MWCNTs/GCE and Py/C-MWCNTs/GCE were electrochemically characterized
with redox probe 1.0 mM K4Fe(CN)6 in 0.1 M phosphate buffer solution (PBS) at pH 7.0, as
shown in Figure S2. Compared with GCE, C-MWCNTs/GCE also showed reversible redox
peaks, and the peak currents became slightly larger, indicating good electrode activity.
The Py/C-MWCNTs/GCE showed a slightly decreased electrochemical activity versus
C-MWCNTs/GCE, implying that an electron-insulating thin-layer Py has been bonded to
the electrode surface.

The modified materials and electrodes were characterized by XPS, as shown in Figure 2.
After the N1s peaks of Py are separated, the peak positions of Py N and cyano N are at
399.0 eV and 399.8 eV, respectively. When the atoms in the ligand are coordinated or
protonated, the density of the electron cloud decreases to a certain extent, which is reflected
in the positive shift of the peak position in the XPS spectrum [36,37]. The N1s peak positions
of Py and protonated N are at 399.9 eV and 401.9 eV, respectively, and both peaks have a
certain degree of positive shift, indicating that the Py ligand was successfully modified on
the C-MWCNTs/GCE. Obvious Au 4f peaks are found in Figure 2A,D, indicating that the
Aus/Py/C-MWCNTs/GCE has been successfully prepared.
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Figure 2. (A) XPS survey of GCE, Py/C-MWCNTs/GCE, and Aus/Py/C-MWCNTs/GCE;
(B) high-resolution N1s region of Py/GCE; (C) high-resolution N1s region of Py/C-MWCNTs/GCE;
(D) high-resolution Au4f region of Aus/Py/C-MWCNTs/GCE.
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The Aus/Py/C-MWCNTs/GCE was characterized by CV in 0.1 M aqueous H2SO4, as
shown in Figure 3. The anodic peaks of ca. 1.1 V and 1.5 V are assigned to the formation
peaks of gold oxides (AuOx). The cathodic peaks of ca. 0 V and 0.9 V are assigned to the
reduction peaks of H+ and AuOx, respectively. As shown in Figure S3, with the increase
in the gold-staining time, the current intensity of the reduction peak of AuOx increased
significantly, and the increase slowed down after the time exceeded 5 min. Therefore, the
gold-staining time of 5 min was used in the subsequent experiments. The real surface
area of Au (SAu) is positively correlated with the charge of the reduction peak of AuOx
(QAuOx) [38] and can be estimated using a conversion factor of 390 µC cm−2. The ratio of
SAu to the geometrical area of the electrode (0.0707 cm2) gives the roughness factor (Rf).
Next, the effect of the time of gold dyeing on the roughness Rf was investigated. Reduction
peaks of AuOx were observed for Au/GCE, Aus/C-MWCNTs/GCE, Aus/Py/GCE, and
Aus/Py/C-MWCNTs/GCE, but the heights of reduction peaks are obviously different. The
QAuOx of Aus/Py/C-MWCNTs/GCE is 58.2 µC, corresponding to SAu = 0.149 cm−2 and Rf
= 2.12, which are significantly higher than those of Au/GCE, Aus/C-MWCNTs/GCE, and
Aus/Py/GCE, indicating that gold staining is a simple and effective method to increase Rf.
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Figure 3. CV curves of Au/GCE, Aus/C-MWCNTs/GCE, Aus/Py/GCE, and Aus/Py/C-
MWCNTs/GCE (5 min gold staining) in 0.1 M aqueous H2SO4. Scan rate: 50 mV s−1.

The modified electrodes were characterized by SEM and EDX, as shown in Figure 4.
The Py/GCE shows a rather smooth surface. The Py/C-MWCNTs/GCE shows random
stacking of obvious nanotubes (C-MWCNTs). The AuNPs/Py/C-MWCNTs/GCE shows
obvious and uniform distribution of AuNPs on the GCE substrate and C-MWCNTs. The
AuNPs/Py/C-MWCNTs/GCE shows an increased size and number of Aus. N and Au
elements are found on the AuNPs/Py/C-MWCNTs/GCE, the amount of Au is increased
after gold staining.
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MWCNTs/GCE (C,F), and Aus/Py/C-MWCNTs/GCE (D,G).

3.2. LSASV Analysis of As(III)

First, the response of Aus/Py/C-MWCNTs/GCE to As(III) was investigated by CV
and LSASV. Only the reduction peak of AuOx was observed in the solution without
As(III) (red line), as shown in Figure 5A. When As(III) was added to the solution (blue
line), Aus/Py/C-MWCNTs/GCE exhibited characteristic oxidation peaks at 0.25 V and
1.00 V, which are assigned to the electrooxidation of As(0) to As(III) and then to As(V),
respectively. The oxidation peak of ca. 1.10 V is due to the oxidation of Au(0) and prob-
ably H2O. The reduction peaks of AuOx are not very different whether or not As(III) is
present, indicating that the enrichment and dissolution of As(0) have little effect on the
interface, which also endows the electrode with the ability of continuous detection. The
analytical performance comparison of Au/GCE, Aus/C-MWCNTs/GCE, Aus/Py/GCE, and
Aus/Py/C-MWCNTs/GCE for As(III) is shown in Figure 5B. Aus/Py/C-MWCNTs/GCE
showed the highest ASV peaks of As(0) to As(III) and As(III) to As(V), and the peak shapes
are also good. The Aus/Py/C-MWCNTs/GCE has the largest Rf value of Au, the highest
enriched As(0) efficiency, and the highest analytical sensitivity, due to the largest surface
area of Au on this electrode. In addition, the Au film is more stable due to the introduc-
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tion of Py-functionalized C-MWCNTs on the electrode surface, which is beneficial for the
stability and reproducibility of the electrode in As(III) electroanalysis.
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Figure 5. (A) CV curves on GCE (black) and Aus/Py/C-MWCNTs/GCE (blue) in 0.1 M aqueous
H2SO4 containing 1.0 µM As(III) and on Aus/Py/C-MWCNTs/GCE in As(III)-free 0.1 M aqueous
H2SO4 (red); (B) LSASV response on the Au-modified electrodes in 0.1 M aqueous H2SO4 containing
1.0 µM As(III). The experiments were conducted after preconcentration at −0.40 V for 7 min. Scan
rate: 5 V s−1.

Subsequently, the conditions for the detection of As(III) by LSASV were optimized.
As shown in Figure S4, the dissolution peak heights of As(0) to As(III) and As(III) to As(V)
increase with the increase in potential scan rate. However, as the sweep speed increases,
the background current and noise also increase. The signal-to-noise ratio (S/N), being the
ratio of current (S) to noise (N) at the dissolution peaks of As(0) to As(III) and As(III) to
As(V), increases when the potential scan rate is increased. The potential scan rate of 5 V
s−1 gave the maximum S/N ratio and was thus selected in the subsequent experiments. In
addition, a high scan rate can not only save detection time, but also reduce the interference
from some kinetically sluggish substances in the solution [39].

The deposition potential (ED) and deposition time (tD) were also optimized, as shown
in Figures S5 and S6. As shown in Figure S5, the ASV peak heights of As(0) to As(III)
and As(III) to As(V) increased as the deposition potential shifted negatively from −0.10.
When the deposition potential reached −0.40 V, the signals of As(0) to As(III) and As(III) to
As(V) reached saturation. Therefore, ED is selected as −0.40 V. As shown in Figure S6, the
ASV peaks of As(0) to As(III) and As(III) to As(V) increased with the increase in tD. When
tD reached 7 min, the signals of As(0) to As(III) and As(III) to As(V) reached saturation.
Therefore, tD is selected as 7 min.

The performance of Aus/Py/C-MWCNTs/GCE for the determination of As(III) was
investigated under optimal experimental conditions. The continuous LSASV response
curves of As(III) at different concentrations and the corresponding standard curves are
shown in Figure 6. When the concentration of As(III) in the detection system increases,
both the amount of As(0) enriched on the electrode surface and the total force of the
interaction between Au and As(0) increase. Hence, the reaction of As(0) to As(III) oxidation
requires more energy and gives the slight positive shift of the peak potential. The ASV
peak currents of As(0) to As(III) and As(III) to As(V) have a good linear relationship with
the concentration of As(III) from 0.01 to 6.00 µM (R2 = 0.997) with a sensitivity of 0.741 mA
µM−1 and a limit of detection (LOD) of 3.3 nM (0.25 ppb) (S/N = 3), and from 0.01 to 6.00 µM
(R2 = 0.991) with a sensitivity of 0.175 mA µM−1 and an LOD of 16.7 nM (1.20 ppb) (S/N
= 3), respectively. The comparison of analytical performance in detecting As(III) with
reported gold-modified electrodes is listed in Table 1. The Aus/Py/C-MWCNTs/GCE
gives high sensitivity and a low detection limit, which can meet the requirements for the
detection of As(III) in the environment. In addition, it is noteworthy that Aus/Py/C-
MWCNTs/GCE shows a wide linear concentration range, which is due to the large SAu
that makes the enrichment of As(0) not easily reach saturation.
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Table 1. Comparison of the analytical performance of Au and Au-based electrodes for ASV assay
of As(III).

Electrode Technique Used Oxidation Peak Sensitivity (µA µM−1) LOD (ppb) Ref.

AuNPs/ITO LSV As(0)→As(III) 58.8 5 [40]
Nano-Au/GCE LSV As(0)→As(III) 2.5 1.8 [41]
Au-CNTs/GCE LSV As(0)→As(III) 32.5 0.6 [25]

AuNPs-ERGO/GCE LSV As(0)→As(III) 12.2 0.2 [42]
Au/Te hybrid/GCE SWV As(0)→As(III) 516.2 0.003 [43]

AuNPs/α-
MnO2/GCE SWV As(0)→As(III) 62.1 0.019 [23]

NF(Aunano)/GCE SWV As(0)→As(III) 23.4 0.047 [44]

Au-PtNPs/GCE LSV As(0)→As(III)
As(III)→As(V)

940
517

0.28
0.45 [45]

Autemp/GCE LSV As(0)→As(III)
As(III)→As(V)

1130
880

0.495
0.654 [46]

Aus/Py/C-
MWCNTs/GCE LSV As(0)→As(III)

As(III)→As(V)
787
280

0.25
1.20 This work

SWV: square wave anodic stripping voltammetry; AuNPs: gold nanoparticles; ITO: indium tin oxides; ERGO:
electroreduced graphene oxide; NF(Aunano): Au-nanoparticle-embedded Nafion; Autemp: porous gold prepared
by template removing; CNTs: carbon nanotubes.

The stability and reproducibility of the modified electrodes were investigated. As
shown in Figure S7A, for the same Aus/Py/C-MWCNTs/GCE electrode performing five
consecutive LSASV responses to 1.0 µM As(III) solution, the relative standard deviations
(RSDs) of As(0) to As(III) and As(III) to As(V) peak currents are 3% and 2%, respectively. As
shown in Figure S7B, for the LSASV responses of five Aus/Py/C-MWCNTs/GCE electrodes
fabricated in the same batch to 1.0 µM As(III) solution, the RSDs of As(0) to As(III) and
As(III) to As(V) peak currents are 4% and 2%, respectively. After the same Aus/Py/C-
MWCNTs/GCE electrode was stored in a refrigerator for 7 days, its detection performance
was still good, and the ASV peak signal of As(0) to As(III) and As(III) to As(V) still retained
90% performance. The above results indicate that the Aus/Py/C-MWCNTs/GCE has good
stability and reproducibility.

The interference of Cu2+ and As(V) in the system was investigated. In the actual detection
process, Cu2+ that may exist in the water will form an intermetallic compound [23,43] with
the detected target, which will interfere with the detection results of anodic stripping
voltammetry. Thus, it is necessary to study the effect of Cu2+ on the detection of As(III). As
shown in Figure S8, when the Cu2+ concentration reaches 1.0 µM, there is little effect on the
dissolution peaks of As(0) to As(III) or As(III) to As(V) in 1.0 µM As(III). Therefore, there is
no need to worry about the influence of Cu2+ in the actual sample detection. Because the
deposition potential during detection is −0.40 V, while the reduction deposition of As(V)
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requires a more negative potential, so As(V) has little effect on the dissolution peaks of
As(0) to As(III) and As(III) to As(V).

Under optimal conditions, analysis of As(III) in actual water samples (tap water,
Xiangjiang River water, and Yuelu Mountain spring water) was performed on Aus/Py/C-
MWCNTs/GCE. Analyzed by the standard addition method, the spiked water samples
were filtered through a 0.22 µm filter membrane and mixed with an equal volume of 0.2 M
H2SO4. The results are shown in Table 2. The good recovery values indicate the application
potential of the developed electrode for As(III) analysis in actual water samples.

Table 2. Dual-signal LSASV analysis of As(III) in real water samples on Aus/Py/C-MWCNTs/GCE.

Determined (µM) Added (µM) Found (µM) Recovery (%) RSD (%)

Tap water a - 0.100 0.097 97 2.9
Spring water a - 0.100 0.103 103 3.7
River water a 0.010 0.100 0.102 102 3.5
Tap water b - 0.100 0.104 104 2.8
Spring water b - 0.100 0.098 98 3.4
River water b 0.010 0.100 0.096 96 4.1

a Detected on Aus/Py/C-MWCNTs/GCE by the signal of As(0)→As(III) electrooxidation. b Detected on
Aus/Py/C-MWCNTs/GCE by the signal of As(III)→As(V) electrooxidation.

4. Conclusions

By cast-coating multiwalled carbon nanotubes on GCE and then modifying pyridine
and AuNPs and staining with Au, we have prepared a Aus/Py/C-MWCNTs/GCE with
a high surface area of Au for the sensitive and selective detection of trace As(III). To our
knowledge, this is the first example of the combination of pyridine and AuNPs with carbon
nanotubes for the detection of As(III), and the combination of carbon materials and organic
ligands can improve the loading efficiency of AuNPs for gold staining. In this work, two-
step oxidation peaks of As(0)–As(III) and As(III)–As(V) were simultaneously obtained
by using fast-speed LSV to achieve the sensitive dual-signal detection of As(III). High
analytical performance in the detection of As(III) was obtained. The electrode-preparation
strategy may be extended to the field of noble metal electrocatalysis and electrochemical
determination of drugs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12091450/s1. Figure S1. UV-Vis spectrum of the AuNPs;
Figure S2. CV curves on GCE, C-MWCNTs/GCE and Py/C-MWCNTs/GCE in 0.1 M PBS containing
1.0 mM K4Fe(CN)6 at pH 7.0; Figure S3. CV curves on Aus/Py/C-MWCNTs/GCE prepared at differ-
ent gold staining time. Scan rate: 50 mV s−1; Figure S4. (A) CV curves on Aus/Py/C-MWCNTs/GCE
in 0.1 M aqueous H2SO4 containing 1.0 µM As(III) at different scan rates, (B) the associated S/N
plots of As(0)→As(III) (grey) and As(III)→As(V) (black) vs scan rate, S: peak current, N: noise of the
background current. The experiments were conducted after preconcentration at −0.40 V for 7 min;
Figure S5. LSASV responses (A) on Aus/Py/C-MWCNTs/GCE in 0.1 M aqueous H2SO4 containing
1.0 µM As(III) at various As(0)-deposition potential (ED) values and the corresponding peak currents
versus ED (B). As(0)-deposition time (tD) = 7 min; Figure S6. LSASV responses (A) on Aus/Py/C-
MWCNTs/GCE in 0.1 M aqueous H2SO4 containing 1.0 µM As(III) for various As(0)-deposition
time (tD) and the corresponding peak currents versus tD (B). ED = −0.40 V; Figure S7. Stability and
reproducibility of LSASV response of 1.0 µM As(III). (A) Repeated five times on one Aus/Py/C-
MWCNTs/GCE in 0.1 M aqueous H2SO4, (B) On a batch of five different Aus/Py/C-MWCNTs/GCEs.
ED =−0.40 V, tD = 7 min; Figure S8. LSASV response on Aus/Py/C-MWCNTs/GCE in 0.1 M aqueous
H2SO4 containing 1.0 µM As(III) with an interval addition of 0.25 µM Cu2+. ED = −0.40 V, tD = 7 min.
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