
1SCienTifiC REPOrTS |  (2018) 8:9884  | DOI:10.1038/s41598-018-28149-8

www.nature.com/scientificreports

Correction of center of rotation and 
projection angle in synchrotron 
X-ray computed tomography
Chang-Chieh Cheng   1, Yu-Tai Ching1, Pai-Hung Ko2 & Yeukuang Hwu3

An error in tomographic reconstruction parameters can result considerable artifacts in the 
reconstructed image, particularly in micro-computed tomography and nano-computed tomography. 
This study involved designing an automatic method for efficiently correcting errors resulting from 
incorrectly determined rotational axes and projection angles. In this method, errors are corrected by 
minimizing the “total variation” of a reconstructed image, and minimization is accomplished by using 
the gradient descent method. Compared with two previous methods, the proposed method achieved 
the best reconstruction results.

Synchrotron X-ray computed tomography (SXCT) uses synchrotron radiation comprising high collimation and 
low diffraction X-ray beams as the light source for micro-computed tomography and nano-computed tomog-
raphy1. The main advantage of SXCT is the high resolution and nondestructive visualization of the interior of 
objects. SXCT has been widely applied in biology studies and industrial applications such as visualization of 
tumor growth2 and nanofabrication3.

Compared with images acquired using a well-calibrated CT scanner in a hospital, those acquired through 
SXCT more likely contain artifacts such as ring artifacts caused by imperfections in the detector4. In SXCT, the 
object rotates around a vertical axis to acquire projections from different angles. This image acquisition process 
considerably increases the introduction of errors into the reconstruction steps, and produces severe artifacts if 
the reconstruction parameters are not accurate. For example, tuning-fork artifacts are caused by errors in a recon-
struction parameter5. Because a rotating object is required, the mechanical instability of the holder is also a major 
problem when images are at the nanoscale6. In the worst case, no reconstruction is possible.

This paper proposes a method that suppresses the tuning-fork artifacts caused by biases of the rotational axis. 
As mentioned, the light source of SXCT is fixed; the object holder rotates around a vertical axis to acquire projec-
tions from different angles to construct a sinogram. The vertical line at the center of the sinogram should be the 
projection of the rotational axis; however, accomplishing this is highly difficult, particularly with high-resolution 
image acquisition. Although such inaccuracy can hardly be corrected through hardware improvement, but it can 
be resolved by using computer methods. Two methods has been reported to address this problem: entropy-based 
correction (ENP)7 and frequency-based correction (FC)8. The ENP method uses entropy9 to define a metric of 
reconstruction quality. The best possible reconstruction can be obtained by iteratively testing different biases of 
the rotational axis. The reconstruction that minimizes the metric is considered the best reconstruction. If the 
projections are parallel and considered over a half range (i.e., from 0° to 180°), the FC method estimates the bias 
in the frequency domain of the sinogram. The biases of the rotational axis also occurred in clinical tomography 
with full range scan (i.e., from 0° to 360°)10,11. There are many methods based on Helgason—Ludwig consistency 
condition (HLCC) can correct the bias in the full-range scan12–14. However, since the energy of synchrotron X-ray 
is larger than 1 GeV, the half-range scan is commonly used in SXCT to reduce radiation dose. Another reason of 
the half-range scan in SXCT is that some containers of biological samples cannot be rotated over 180°, even less 
than 180°, otherwise, the structure of container will affect the projection of sample to produce unwanted recon-
struction results. Therefore, SXCT requires a correction method for the projection data acquired by half-range 
scan. That is main motivation of the proposed method.
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An angular error between two consecutive projections also causes artifacts in the reconstructed image. We 
present a phantom to explain these types of artifacts. Figure 1a shows the original image (the ground truth). 
Figure 1b shows the tomographic image of a phantom reconstructed from 600 projections with 1024 parallel 
beams, with the interval of the projection angles being 0.303°. Figure 1c shows the tomographic image recon-
structed from the same projections but with its projection angles incorrectly configured to 0.3°; notable artifacts 
can be observed in the reconstructed image.

An iterative method similar to ENP can correct the projection angle errors. Suppose that the error is in the 
interval [ua, ub], ub > ua. [ua, ub] can be digitized into n values, and each value is a candidate for the true projec-
tion angle. The desired reconstruction is achieved when the best reconstructed image is obtained with one of the 
digitized values. Depending on the value of n and the reconstruction algorithm, obtaining the best reconstruction 
could be a time-consuming task. This method is appropriate for correcting errors with a single parameter. If the 
number of parameters is k and the range of each parameter is divided into n values, nk combinations of the recon-
struction parameters can be derived. Nevertheless, the computing time renders this method impractical, even for 
recovering two parameters.

This paper presents a novel method that efficiently suppress artifacts caused by biases of the rotational axis 
and errors in the projection angle. Hereafter, we use δB and θE to denote these two types of errors, respectively. The 
proposed method uses the total variation15,16 as a metric for the quality of a reconstruction. The gradient descent 
method17 is then employed to minimize the total variation so that the parameters are corrected.

Methods
Statement.  All experiments and methods were performed in accordance with relevant guidelines and regu-
lations. All experimental protocols were approved by a named institutional/licencing committee. Specifically, all 
procedures involving the animals were approved by the Academia Sinica Institute Animal Care and Utilization 
Committee (AS IACUC). BALB/c mice were provided by National Laboratory Animal Center, Taiwan. All mice 
were housed in individual ventilated cages with wood chip bedding and kept at 24 ± 2 °C with a humidity of 
40–70% and a 12-hour light/dark cycle.

Reconstruction quality metric.  The proposed method defines a metric to present the quality of the recon-
structed image. The errors δB and θE are then computed by minimizing the quantity of the defined metric. Given 
an image with n × m pixels, let I(x, y) be the intensity of the pixel (x, y), x = 1, 2, …, n and y = 1, 2, …, m. The total 
variation, TV, is defined as in Eq. (1):
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According to the definition, TV is the sum over all pixels of squared differences from neighboring pixels. Note 
that Eq. (2) is an operator to enhance high-frequency signals (in particular, edge detection). Thus, TV is large if 
the image contains high-frequency signals such as noise and edges. Because a tomographic image with errors δB 
and θE contains artifacts of arcs and lines, TV is appropriate to measure the quality of tomographic reconstruction 
and serves as a guideline to correct any inaccurate reconstruction parameters. To ensure that TV is associated 

Figure 1.  Tomographic images of a phantom reconstructed from 600 projections with 1024 parallel beams; the 
interval of the projection angles was 0.303°. (a) Original image. (b) Result obtained using correct reconstruction 
parameters. (c) Result obtained using an interval of 0.3° instead of 0.303°.
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with the arc and line artifacts, a low-pass filter, such as a mean filter or a Gaussian filter, is applied to the images 
before TV is computed. In this study, a 7 × 7 Gaussian filter with a standard deviation of 0.84 was applied.

Gradient descent.  Consider a differentiable function F(u), where u = [u1, u2, , uk]T in the range [ua, ub], 
ua1 < ub1, ua2 < ub2, , uak < ubk. If F is convex in the range [ua, ub], the minimum of F in the range [ua, ub] can be 
computed using the gradient descent method. The gradient descent recursion with t iterations can be written as

α= − ′+ Fu u u( ), (4)i i
i

i1

where 1 ≤ i < t, αi is the step size of the i-th iteration, and
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As i approaches t, ui+1 in Eq. (4) moves toward the minimum. Let Q be an operator for computing the TV of 
an image reconstructed by a tomographic reconstruction algorithm R with a set of parameters u. Assume that u 
is within the range between ua and ub; then, Q is defined as follows:

=Q TV Ru P u( ) ( ( , )), (6)

where P is a set of X-ray projections. Then, we can substitute Q(u) into Eq. (4) to yield

Figure 2.  Tomographic images of Phantom 1 reconstructed from 600 projections with 1024 parallel beams. 
The interval of angle for generating the projections was 0.303° and the projected rotational axis was biased to 
the right by 10 pixels. (a) Reconstruction result without correction of the interval of projection angles or the 
rotational axis. (b) Reconstruction result when δB was corrected by the ENP method. (c) Reconstruction result 
when δB was corrected by the FC method. (d) Reconstruction result when δB and θE were corrected by the 
proposed method.
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In Eq. (7), ′Q u( )i  is estimated through numerical differentiation as in Eq. (8)
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where Δui is the variation of ui, and 2H is the number of neighbors of ui. To estimate the tendency of convergence 
of Q in the range [ua, ub], Δu should be large in the first iteration and should decrease as the number of current 
iterations increases. In this study, Δu1 = (ub − ua)/2H. In the (i + 1)-th iteration, for the j-th component of Δu, 
Δ = Δ+u u /2j
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In real application, the domain may not be convex, and Eq. (7) may not converge or may converge to a local 
minimal. To avoid divergence, the number of iterations is limited by a preset value tm. The search fails if i = tm or 
any component of ui is out of range. By contrast, the search terminates before i reaches tm if Q′(ui) is a near-zero 
number and αi = αi−1. In this case, Eq. (7) converges to the minimum or a local minimum. In the implementa-
tion, each of H, α0, and tm should be assigned a reasonable value. Assigning H = 2 or 3, α0 = 1.0, and tm = 20 is 
effective in most cases.

Implementation.  The gradient descent method requires an adequate range of [ua, ub] such that the solution 
falls within the range. The initial point, u0, for the recursion (Eq. 7) also affects the result of the gradient descent 
method17. Determining the most adequate range and u0 for each case is difficult. We propose a multi-range testing 
method to overcome this problem. The idea of this method is simple: We test several ranges with different u0, and 
the best result among all the tests is the solution to the problem. The implementation is listed as Algorithm 1.

In most cases, the largest and smallest ranges of δB are ±55 and ±10 pixels respectively. The largest and small-
est ranges of θE are ±0.1% and ±0.01% of the projection angle. The ranges of δB and θE are digitized to 10 tests, 
where the differences between consecutive ranges of δB and θE are 2ud and 2vd, respectively. Therefore, the total 
number of tests is 100. The test that achieves the least total variation, Q, yields the corrected δB and θE.

Experimental design.  Two computer generated phantom images and a mouse kidney image were used 
in this experiment. Phantom images are often used as the ground truth to validate or compare tomographic 

Algorithm 1.  Multi-range testing.
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reconstruction algorithms. In this study, the use of the phantom images was necessary because of the microscale 
or nanoscale resolution of SXCT; physically creating a phantom for ground truth is difficult or even impossible. 
Phantom 1 (Figs 1 and 2) was the Shepp-Logan phantom18, which is typically used to evaluate almost all recon-
struction algorithms19. Because artifacts caused by δB and θE occur at places involving significant changes in 
intensity, we designed Phantom 2 (Fig. 3) to enhance the artifacts.

The sinogram of Phantom 1 comprised 1024 × 600 projection data (1024 parallel beams × 600 projection 
angles), and the projection angles was 0.303° when the sinogram was generated. During the reconstruction, the 
angle was configured as 0.3° (i.e., θE = 1%). The sinogram was shifted toward the right by 10 pixels as δB (i.e., 
δB = +10). Figure 2a shows an image of 1024 × 1024 pixels reconstructed without correcting the biases.

Figure 3.  Tomographic images of Phantom 2 reconstructed from 180 projections with 512 parallel beams. The 
projection angle was 1.02° and the projected rotational axis was biased to the left by 10 pixels. (a) Target image. 
(b) Reconstruction result without correcting the errors. (c) Reconstruction result when δB was corrected by the 
ENP method. (d) Reconstruction result when θE was corrected by the FC method. (e) Reconstruction result 
when δB and θE were corrected by the proposed method.

Method δB (pixel) θE (°) MSE
Computing Time 
(sec.)

Reconstructed 
Image

ENP 11 — 0.021 3.9 Figure 2b

FC 10 — 0.009 4.6 Figure 2c

Proposed Method 10 0.303 0.002 970 (9.7 × 100) Figure 2d

Table 1.  Results of applying the ENP, FC, and proposed methods to Phantom 1. The θE values of the ENP and 
FC methods are denoted by dashes because these two methods could not correct the projection angle errors.

Method δB (pixel) θE (°) MSE
Computing Time 
(sec.)

Reconstructed 
Image

ENP −8 — 0.076 1.4 Figure 3c

FC −9.5 — 0.074 3.2 Figure 3d

Proposed Method −10 1.0226 0.002 172 (1.7 × 100) Figure 3e

Table 2.  Results of applying ENP, FC, and the proposed method to Phantom 2.
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Phantom 2 involved 16 white circles (with different radii) enclosed by a black square; the black square was 
inside a larger gray circle. The image size was 512 × 512 pixels. The sinogram of Phantom 2 comprised 512 × 180 
projection data (512 parallel beams × 180 projection angles), and the projection angle was 1.02° when the sino-
gram was generated. During the reconstruction, the projection angle for reconstruction was configured as 1.0° 
(i.e., θE = 2%). The sinogram was shifted toward the left by 10 pixels as δB (i.e., δB = −10). Figure 3b shows an 
image reconstructed without correcting the biases.

Figure 4.  Tomographic images of mouse kidney reconstructed from 601 projections with 1600 parallel beams. 
The projection angle was configured to be 0.2995° for projection acquisition. (a) Reconstruction result without 
any correction. (b) Partial enlargements of the region bounded by the white-bordered rectangle in (a).

Figure 5.  Reconstructed images of the same data in Fig. 4 after correcting errors. (a) Reconstruction result 
when δB was corrected by the ENP method. (b) Reconstruction result when θE was corrected by the FC method. 
(c) Reconstruction result when δB and θE were corrected by the proposed method. (d–f) Are the partial 
enlargements of the region in (a–c) respectively.
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The third test sample was a set of real data, a sinogram acquired from a mouse kidney using the facility at the 
National Synchrotron Radiation Research Center, Hsinchu, Taiwan. The vessel tissues were stained by barium sul-
fate (BaSO4). The sinogram comprised of 1600 × 601 X-ray projections (1600 parallel beams × 601 projections). 
The size of each pixel was 2.76 μm2, and the projection angle of the instrument was recorded as 0.2995°.

The correction methods used were ENP, FC, and the proposed method. Because the ENP and FC could correct 
δB only for a given range that was set to ±20 pixels, we left θE un-corrected during the application of ENP and FC. 
However, the proposed method corrected both biases.

The reconstruction algorithm was the filtered back projection (FBP). An NVIDIA GTX 980 graphics process-
ing unit (GPU) was used to accelerate the reconstruction20. A computer equipped with an Intel Xeon E3 CPU and 
32 GB memory was used.

Results
Phantom 1.  The results obtained by applying the ENP, FC, and proposed methods are summarized in Table 1. 
Because we had ground truth information, we could compute the mean squared error (MSE) of the ground truth 
with the reconstruction results. The parameters used for applying the proposed method were H = 2, α0 = 1.0, 
and tm = 20. For multi-range testing, we set 10 ranges for δB from ±55 pixels to ±10 pixels (ud = 5 pixels) and 10 
ranges for θE from ±0.03° to ±0.003° (vd = 0.003°). The multi-range testing required approximately 970 s, nearly 
9.7 seconds for a range. A visual comparison of the reconstructed images revealed that the proposed method 
achieved the best result. The MSE between the ground truth and the reconstructed image provided by the pro-
posed method was 0.002, which is also the best among the three methods.

Phantom 2.  The reconstruction without any correction is shown in Fig. 3b. The results obtained by applying 
the ENP, FC, and proposed methods are summarized in Table 2. The parameters used in the proposed method 
were H = 3, α0 = 1.0, and tm = 20. The proposed method had the least MSE.

Mouse kidney.  The final test sample was a slice of mouse kidney. Figure 4a shows a reconstructed image of 
1600 × 1600 pixels without error corrections. Figure 4b presents the enlarged view of the region bounded by the 
white-bordered rectangle in Fig. 4a. The ENP and FC methods were applied to compute δB. The ENP and FC 
methods shifted the rotational axis toward the right by 2 and 3.5 pixels, respectively, and they required 19.5 and 
12.5 s, respectively. The reconstruction results obtained using the ENP and FC methods are shown in Fig. 5a and b,  
respectively. With the same view boundary as in Figs 4a and 5d,e show the enlarged views of Fig. 5a,b, respec-
tively. Improvements were observed after correction.

The proposed multi-range testing method was applied with H = 3, α0 = 1.0, and tm = 20. δB was shifted toward 
the right by 3.75 pixels, and θE was corrected to 0.3005° (0.167%). The time required was 1807 s (approximately 
18 s for a test). Figure 5c shows the image obtained using the proposed method. Figure 5f shows the enlarged view 
of Fig. 5c with the same view boundary as in Fig. 4a.

Because no ground truth was available for this data set, the MSE was not determined. Using a visual compar-
ison of the three results could not indicate that the proposed method had the best result. This could be because 
the error with the projection angle was small (0.167%). However, the image reconstructed using the proposed 
method had the best contrast. From the experiments of the phantom data sets, we believe that our reconstructed 
image is closer to the true mouse kidney.

Conclusion and Discussions
This paper presents a method for correcting both the rotational axis biases and projection angle errors. The pro-
posed method uses TV as a metric for evaluating the quality of tomographic reconstruction. The gradient descent 
method is then applied to correct the errors.

Figure 6.  Experiment of the variation of the image of Phantom 2. This image contains more information than 
the Phantom 2 image. Tomographic images were reconstructed from 180 projections with 512 parallel beams. 
The interval of angles for generating the projections was 1.02° and the projected rotational axis was shifted to 
the left by 10 pixels. (a) Target image. (b) Reconstruction result without error corrections. (c) Reconstruction 
result obtained by the proposed method.
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The proposed method requires an adequate range of [ua, ub] and an initial point u0. Determining the most 
appropriate range and u0 for each case is difficult. We thus propose the method of multi-range testing to address 
this problem. In our experiments, a large range did not prevent the method from finding a solution nor increased 
the computing time substantially. Moreover, the differences between the TV values or MSE values (available for 
the phantom data experiments) were not significant for different ranges during the multi-range test. In particu-
lar, in experiments conducted using real images (mouse kidney experiments), the range was not sensitive to 
the reconstructed result. We conjectured that real images contain more information, and the gradient descent 
method is more robust if images contain more information.

We used Phantom 2 to validate this conjecture. Information complexity is defined as the entropy of an image 
in information theory9. If the entropy is normalized to the range [0, 1], an image is informative if its entropy is 
close to 1. A variation of Phantom 2 was created by blending two copies of Phantom 2 (Fig. 6a). Figure 6b shows 
the reconstructed image without any correction, and Fig. 6c presents the corrected image. The multi-range testing 
method was applied to both Phantom 2 and the variation of Phantom 2 by using the same set of parameters. The 
TV values obtained from all the ranges were normalized to the range [0, 1]. The histograms of the TV for both 
cases were constructed with a bin size of 0.2. Figure 7a,b illustrate the histograms of the TV values of the recon-
structed Phantom 2 and its variation respectively. The variation of Phantom 2 contained more information, and 
more ranges fell within bin 1.

For the case of the true image, the entropy of the image should be higher than 0.7, which is the entropy of 
the variation of Phantom 2. For example, the entropy of the reconstructed mouse kidney was 0.79; thus, more 
ranges could fall in the first bin. This conjecture suggests that multi-range testing may not be necessary. Randomly 
choosing, for example, three ranges from the range ±50 pixels for δB and ±10% for θE can result in a solution close 
to the best solution obtained by the multi-range testing.

The proposed method can efficiently compute δB and θE simultaneously and improve the quality of recon-
structed images. From the study of the data sets Phantom 1 and Phantom 2, we believe that the proposed method 
can correct the errors for the reconstruction of real objects. We implemented the proposed method as a software 
system named nct that can be downloaded from the following link: http://www.cs.nctu.edu.tw/~chengchc/nct. 
The data sets used in this work can also be downloaded from the link.
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