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Abstract

Rapeseed is one of important oil crops in China. Better understanding of the regulation network of main agronomic
traits of rapeseed could improve the yielding of rapeseed. In this study, we obtained an influrescence mutant that
showed a fusion phenotype, similar with the Arabidopsis clavata-like phenotype, so we named the mutant as
Bnclavata-like (Bnclv-like). Phenotype analysis illustrated that abnormal development of the inflorescence meristem
(IM) led to the fused-inflorescence phenotype. At the stage of protein abundance, major regulators in metabolic pro-
cesses, ROS metabolism, and cytoskeleton formation were seen to be altered in this mutant. These results not only
revealed the relationship between biological processes and inflorescence meristem development, but also suggest
bioengineering strategies for the improved breeding and production of Brassica napus.
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Introduction

As one of the four greatest oil crops in the world, Bras-

sica napus L., plays a crucial role in world oil crops. First of

all, rapeseed is an essential organic material for edible oil,

and it is rich in fatty acids (such as linoleic acid, linolenic

acid). Secondly, rapeseed meal is rich in protein, which is a

potential source for the feed protein. Meanwhile, rapeseed

stalks, like wheat and maize, can also be used as raw materi-

als for the production of new bio-energy and as an important

energy crop. Rapeseed is also a great source of nectar and or-

namental plants (Wang et al., 2016). Because the three com-

ponents of inflorescence structure (number of siliques per

plant, number of seeds per silique and 1000-seed weight) is

closely correlated with the seed yield in rapeseed, the discov-

ery of optimal inflorescence structure will be helpful to im-

prove the production of rapeseed (Chen et al., 2007; Lu et al.,

2017; Zhang et al., 2018).

Inflorescence development affects plant morphoge-

nesis, yield and quality. Studies in Arabidopsis thaliana and

rice have demonstrated that transcription factors and hor-

mones play a significant role in inflorescence development

and lateral branching regulation (Hofmann, 2009; Bongers et

al., 2014; Chew et al., 2014; Leduc et al., 2014; Cai et al.,

2016; Li et al., 2017; Wang and Jiao, 2018). In Arabidopsis

thaliana, TERNIMAL FLOWER 1 (TFL1), LEAFY (LFY) and

APALA 1 (AP1) are characteristic genes of the floral meris-

tem, and their antagonistic interac tions can regulate inflores-

cence branching patterns (Ma et al., 2017). TFL1 was specifi-

cally expressed in main inflorescence meristem and lateral

inflorescence meristem, while LFY and AP1 were abundantly

asserted in the floral meristem (Winter et al., 2015). The

TFL1 loss-of-function mutant may cause heterotopic expres-

sion of LFY and AP1 genes, contributing to the transforma-

tion of inflorescence meristem into floral meristem, preco-

cious flowering formless inflorescence branching in

Arabidopsis thaliana. On the contrary, overexpression of

TFL1 in Arabidopsis thaliana could inhibit the expression of

LFY and AP1, and thus delay flowering and increase inflores-

cence branching (Cheng et al., 2018). AP1 protein and its

homologs CAULIFLOWER (CAL) and FRUITFULL (FUL)

in Arabidopsis thaliana could inhibit the expression of TFL1

gene (Parcy et al., 2002), while LFY protein can promote the

expression of TFL1 gene (Serrano-Mislata et al., 2017).

Arabidopsis ARGONAUTE1 (AGO1) could also inhibit the

expression of TFL1 gene and regulate inflorescence develop-

ment (Fernandez-Nohales et al., 2014). SHORT VEGETA-

TIVE PHASE (SVP), SUPPRESSOR OF OVERE-

XPRESSION OF CONSTANS 1 (SOC1),

AGAMOUS-LIKE 24 (AGL24) and SEPLLATA 4 (SEP4)

belong to MADS-box transcription factors, which could reg-

ulate flowering time and directly inhibit the expression of

TFL1 in newly floral meristem, and thus regulate inflores-

cence development (Liu et al., 2013).

Phytohormones, especially auxin (IAA) and cytokinin

(CK), are key regulators of inflorescence structure, playing

an important role in inflorescence growth and development
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(Benkova et al., 2003; Heisler et al., 2005; Shani et al., 2006;

Werner and Schmulling, 2009). AUXIN-RESPONSE

FACTOR (ARF) gene could directly induce the expression of

LFY and two AP2 homologous genes (AINTEGUMENTA

and AIGUMENTA-LIKE6/PLETHORA3) (Krizek, 2009;

Krizek and Eaddy, 2012; Yamaguchi et al., 2013; Krogan et

al., 2016; Carey and Krogan, 2017). The LFY gene in Arabi-

dopsis also participates in feedback regulation of auxin bio-

synthesis pathway by inhibiting the expression of some auxin

biosynthesis genes, such as YUCCA1 (YUC1) and YUCCA4

(YUC4) (Moyroud et al., 2011; Li et al., 2013; Winter et al.,

2015). However, LFY gene could promote the expression of

PINOID (PID), an auxin transport regulator (Yamaguchi et

al., 2013). In Arabidopsis, cytokinins promote inflorescence

meristem development and affect inflorescence structure by

promoting the expression of WUSCHEL (WUS) gene and in-

hibiting the expression of CLAVATA1 (CLV1) and CLV3

(Gordon et al., 2009). LONELY GUY (LOG), encoding a

cytokinin-activating enzyme, catalyzes the last step of CK

biosynthesis. There are nine LOG homologous genes in

Arabidopsis thaliana. The log3, log4, log7 triple mutant and

log1, log2, log3, log4, log5, log7, log8 seven-mutant produce

fewer floral meristem, indicating that the development of in-

florescence meristem requires CK (Kuroha et al., 2009;

Tokunaga et al., 2012). In Arabidopsis, AP1 could reduce the

expression level of CK biosynthesis gene LOG1, but activate

the cytokinin-degrading gene CKX3 by binding directly to

the promoter of the target gene (Ma et al., 2017; Joshi et al.,

2018). The study in Arabidopsis showed that mutations in

AHK2, AHK3 and AHK4, which encodes CK receptor his-

tidine kinase, reduced inflorescence stem length (Nishimura

et al., 2004).

Optimized inflorescence architecture is fundamental

for high-yield breeding of rapeseed. Thus, much research has

been done on the genetic mechanism of inflorescence struc-

ture (Cai et al., 2016; Zhao et al., 2016; Zhang et al., 2018).

However, insufficient information is available on the devel-

opment of rapeseed. Here, we present Bnclv-like, a natural B.

napus mutant, which was characterized by abnormal devel-

opment of inflorescence meristem (IM). Two-dimensional

electrophoresis (2-DE) was used to reveal the mechanism of

the change in protein level. The proteins involved in IM regu-

lation displayed significant variation, which could provid

molecular basis for IM development and inflorescence struc-

ture formation in Brassica napus.

Materials and Methods

Plant materials and growth conditions

In this study, B. napus plants (Bnclv-like and Ningyou

12) were grown in the experimental field of Jiangsu Univer-

sity. The IM samples for proteomic analysis were collected

when the first flower was opening, so that the development of

IMs from the mutant and the wild type could keep the same

stage. All samples were frozen with liquid nitrogen immedi-

ately after harvest and stored at -80 oC before use.

Protein extraction

The total high-quality proteins from Bnclv-like mutant

and Ningyou 12 (1.5 g [FW]) were extracted using the

ReadyPrep protein extraction kit (Bio-Rad, USA) according

to the manufacturer’s instruction with some modifications.

Protein concentrations were determined using the RCDC Kit

(Bio-Rad, USA) according to the manufacturer’s instruction.

Two-dimensional electrophoresis (2-DE) and image
analysis

2-DE was carried out with 17 cm Immobiline DryStrips

(Bio-Rad, USA, linear, pH 4-7) as using a modification of the

method of Yang (Yang et al., 2014). First, 1,200 �g of total

protein was loaded onto the Immobiline DryStrip using pas-

sive rehydration (12 h). Second, isoelectric focusing (IEF)

was performed on an IPGphor III IEF system (GE

Healthcare, USA) with these steps: at 300, 500, 1,000 and

8,000 V for 1 h each and then held at 8,000 V until a total

voltage of 54,000 Vh was reached. Third, the isoelectric fo-

cused strips were equilibrated for 15 min in equilibration

buffer (0.05 M Tris-HCl, pH 6.8, 2.5% SDS, 30% v/v glyc-

erol and 1% DTT) and then equilibrated again for 15 min

(0.05 M Tris-HCl, pH 6.8, 2.5% SDS, 30% (v/v) glycerol and

2.5% (w/v) iodoacetamide). Fourth, second-dimensional

electrophoresis was done with a Laemmli buffer system us-

ing 5% stacking gels and 15% resolving gels. At last, the gels

were stained with 0.116% Coomassie brilliant blue R-250 in

a solution containing 25% (v/v) ethanol and 8% acetic acid.

The 2-DE gels were scanned by ImageScanner III (GE

Healthcare, USA) at transparency mode with 300 dpi resolu-

tion. Gel comparison and spot analysis were performed using

ImageMasterTM 2D platinum version 7.0 software (GE

Healthcare, USA) according to the manufacturer’s instruc-

tion. The intensity ratio of the corresponding spots in differ-

ent gels was calculated and spots with a ratio �2 and an

ANOVA �0.05 were defined as differential spots. The exper-

iment was repeated three times with independent samples.

Mass spectrometry (MS) analysis and data analysis

The differential protein spots in Bnclv-like mutant and

Ningyou 12 were excised manually from the gels and rinsed

in ultrapure water with two rounds of ultrasonic treatment (10

min/each). The proteins were digested in gels according to

the method of Yang et al. (2014). Then, the peptides in the re-

sulting digestion were identified by MALDI-TOF MS (Bru-

ker Daltonics, Ultraflex-TOF-TOF, Germany).

The database searching and protein identification of the

peptide mass fingerprinting was performed as described by

Yao et al. (2011). B. napus was selected as the taxonomic cat-

egory. Proteins with a Mascot score > 64 were considered to

be credible.

Gene ontology analysis of differential proteins

The Gene Ontology (GO) IDs of the identified proteins

were obtained through InterProscan searching with the amino

acid sequences and were output in txt format. Subsequently,
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the annotation files of up- and down-regulated proteins and

unique proteins in Bnclv-like mutant and Ningyou 12 were

respectively uploaded in InterproScan.txt into WEGO (Ye et

al., 2006; Ye et al., 2018). Finally, the analysis results were

output as a histogram file after online operation. The pro-

tein-protein interaction network was initially constructed

from differential proteins using the STRING database and re-

constructed by Cytoscape.

RNA extraction and quantitative real-time PCR

To validate the differential proteins, quantitative real-

time PCR (qPCR) was used to confirm the expression pat-

terns of selected proteins in Bnclv-like and Ningyou12. The

total RNA of collected samples were extracted using TRIzol

reagent (Life technologies, USA) following the protocol of

the supplier. First strand cDNA was synthesized by reverse

transcription of total RNA (500 ng) using the HiScript Q RT

SuperMix for qPCR kit (Vazyme, China). All reactions were

performed with an ABI 7300 Real-Time PCR Detection Sys-

tem (Applied Biosystems, USA) with SYBR Green Master

Mix (Vazyme, China). Primer premier 5.0 was used to design

gene-specific primers according to the corresponding uni-

gene sequences. The sequences of primers were listed in Ta-

ble S1. Primers were checked for efficiency using the

standard curve method, and their specificities were checked

using melting curves after all qPCR runs. All qPCRs were

performed in triplicate in a total volume of 20 �L. The ACTIN

gene was used as an internal reference gene. The relative ex-

pression levels of genes were calculated using the 2-��Ct

method.

Results

Morphological and genetic characterizations of
Bnclv-like mutant

We obtained a natural mutant in Ningyou 12 experi-

mental field, which showed fused-inflorescence branching at

the flowering stage (Figure 1), similar to the Arabidopsis cla-

vata-like phenotype (Brand et al., 2000; Liu et al., 2009),

therefore we named the mutant as Bnclavata-like (Bnclv-

like). The Bnclv-like homozygote was obtained through

self-crossing for five generations, which showed stable in-

heritance with no segregation of phenotypic traits was ob-

served. Like the Bnclv-like mutant, the F1 of hybrid between

Bnclv-like mutant and ZS11 (Zhongshuang 11) also exhib-

ited the fused-inflorescence phenotype. Among 42 F2 indi-

viduals, 32 and 10 plants were identified as Bnclv-like mutant

and wild-type, respectively, which fitted an expected Mende-

lian segregation ratio of 3:1 (�2=0.02, P=0.90). These results

indicated that Bnclv-like mutant was controlled by a domi-

nant gene.

Protein expression profiles and differential proteins
between Bnclv-like mutant and ZS11 in IM

Proteomic analysis has been widely used in the identifi-

cation of various proteins in plants (Yang et al., 2014; Zhu et

al., 2014; Wu et al., 2015; Yang et al., 2015; Apaliya et al.,

2019). In this study, 17 cm Immobiline DryStrips (pH 4-7,

linear) were used for 2-DE analysis. More than 1200 repro-

ducible protein spots were detected in 2-DE gels (Figure 2).

Fifty spots were detected to be significantly differentially ex-

pressed (ANOVA �0.05) (Figure 2). Relative to the wild

type, 25 proteins were up-regulated and 12 proteins down-

regulated in the Bnclv-like mutant. We also found 13 unique

proteins in the Bnclv-like, indicating that the Bnclv-like muta-

tion induces de novo accumulation of these proteins.

Protein identification by MALDI-TOF-MS and
functional classification

After MALDI-TOF-MS analysis, 41 spots were identi-

fied successfully (Table 1). To further predict and classify the

function of these proteins, the sequences of these differential

proteins were used to search for genes with GO assignments.

Of the 41 proteins, 37 were annotated successfully and classi-

fied to the categories of molecular function, biological pro-

cess and cellular component (Figure 3A). Fifteen functional

sub-categories were identified for biological process, 11 for

the cellular component and 3 for molecular function. Some of

the proteins were assigned to more than one sub-category.

Therefore, based on the biological function of these proteins,

we performed an accurate classification of the biological pro-

cess (Figure 3B). The largest three sub-categories were “met-

abolic process”, “response to stimulus” and “cellular compo-

nent organization or biogenesis”, which were essentially

consistent with the results generated by BLAST2GO.

The information about metabolic pathways of the dif-

ferential proteins is valuable for identifying altered physio-

logical processes in the Bnclv-like IM. KEGG pathway anal-

ysis was performed subsequently. Twenty-one out of 37

annotated proteins were mapped to 41 biological pathways,

among which “biosynthesis of antibiotics”, “glycolysis/glu-

coneogenesis” and “carbon fixation in photosynthetic organ-

isms” were the three largest pathways, consisting of 11, 7 and

7 proteins, respectively (Figure 3C).

To further investigate the roles of differential proteins

in the abnormal IM development in the Bnclv-like mutant, we

searched for evidence of direct or functional protein-protein

interactions (PPI). Based on their GO annotations, 37 pro-

teins were chosen for PPI analysis. The results showed that
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Figure 1 - Inflorescence morphology of wild type (A) and Bnclv-like mu-

tant (B) at flowering stage. Bar=10 cm.



23 of them were predicted to interact with each other (Figure

4). In the network, TPI, GAPC1, c-NAD-MDH1, and

mMDH1 were predicted to have the most interactions with

other proteins. The up-regulation of TPI, c-NAD-MDH1, and

mMDH1 might be a central contribution to the development

of Bnclv-like IM. In addition to proteins related to metabo-

lism, the interaction network also contained proteins invol-

ved in cytoskeleton construction and stress responses. ACT7

was up-regulated 9-fold and the expression of FSD1 was

down-regulated 7-fold. In order to reveal how cytoskeletal

formation and stress response proteins are related with the

abnormal IM development in Bnclv-like, these two proteins

were selected as the center of these two pathways to analyze

the interacting networks around them. The results showed

that seven proteins interacted with ACT7 (Figure 5A) and 10

proteins interacted with FSD1 (Figure 5B). Interestingly,

three proteins showed interactions with both ACT7 and

FSD1, indicating a connection between these two biological

processes.

Quantitative real-time PCR

To confirm the accuracy of the 2-DE results, 19 genes

were selected for qPCR validation (Figure S1). Fourteen

genes displayed the same trend variations with the results of

2-DE, whereas five genes exhibited different directions of

change in expression (Figure 6). Surprisingly, the proteins

4 Zhu et al.

Figure 2 - The proteomic profiles of wild type (A) and Bnclv-like (B). The proteins which are upregulated or expressed de novo in Bnclv-like are marked

in (B) and downregulated proteins are marked in (A). The numbers indicated represent the match ID of the proteins analyzed by ImageMaster7.0 and

listed in Table 1.

Figure 3 - Annotation and classification of differential proteins according to GO and KEGG pathway analysis. (A) Classification of significantly differ-

ential proteins annotated by Blast2GO. (B) Reclassification of the biological processes annotated in (A). (C) KEGG pathway analysis of the differential

proteins annotated through Blast2GO.
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found to be expressed only in the Bnclv-like background were

detected in the wild type using qPCR, such as CPN20,

mMDH1 and S6PDH (Figure S1). This may be due to a

post-transcriptional modification of mRNAs. Collectively, at

the protein level, three biological processes made major con-

tributions to the abnormal development of the IM in Bnclv-

like. The up-regulation of proteins in the metabolic processes

and cytoskeleton formation could provide enough energy and

faster transportation of cellular materials for fulfilling the

higher activity of the Bnclv-like in IM. On the other hand, the

downregulation of proteins involved in ROS metabolism

might have a positive influence on the maintenance of stem

cell activity. In general, the qRT-PCR results showed that the

transcriptional and protein levels of the fourteen proteins

were the same.

Discussion

In present study, we obtained a natural mutant of rape-

seed named as Bnclv-like, which exhibited abnormal inflo-

rescence formation. We speculated that the Bnclv-like

phenotype was caused by abnormal development of the IM.

So, the proteomic analysis was implemented to further inves-

tigate the unusual IM development in Bnclv-like. Using the

GO classification and KEGG pathway analysis of the differ-

ential proteins between the Bnclv-like mutant and wid-type

IM, we found that these differential proteins were mainly in-

volved in metabolic processes, responses to stimulus and cel-

lular component organization or biogenesis.

Plants need a lot of ATP for energy during the whole

growth and development process (Parker et al., 2006; Kang

et al., 2012). From KEGG pathway analysis, we identified
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Figure 4 - Schematic representation of the protein-protein interaction net-

work of the differentlial proteins in the Bnclv-like. Proteins with larger

numbers of interacting proteins are represented by a larger circle size and

color depth. The line width represents the reliability of the predicted inter-

action between two proteins, where interactions containing more evidence

are thicker. The network was initially constructed from Bnclv-like differ-

ential proteins using the STRING database and reconstructed by Cytos-

cape.
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seven proteins belonging to the glycolysis/gluconeogenesis

pathway and seven proteins participating in the process of

carbon fixation in photosynthetic organisms. GAPC1, TPI,

and TIM are involved in these two pathways simultaneously.

GAPC1 (Phosphorylating glyceraldehyde-3-P dehydrogen-

ase) is a highly conserved cytosolic enzyme, but it is also

thought to be related to other cellular functions apart from its

participation in glycolysis. The gapc1 mutant exhibits de-

layed growth, altered silique morphology, and decreased

ATP level and respiratory rate (Rius et al., 2008). However,

GAPC1 overexpression had no significant influence on seed-

lings in the vegetative stage, which presented a seed-specific

expression pattern of GAPC1 (Guo et al., 2014). In plants,

triose phosphate isomerase (TPI) participates in several met-

abolic processes, including gluconeogenesis, glycolysis, and

the Calvin cycle. One or various TPIs are present in plant

genomes and are located in the cytoplasm and chloroplast

(cTPI and pdTPI), respectively. cTPI is involved in gly-

colysis, whereas the chloroplastic enzymes participate in the

Calvin cycle (Turner et al., 1965; Kurzok and Feierabend,

1984; Tang et al., 2000; Chen and Thelen, 2010). In Ara-

bidopsis, the lack of pdTPI results in termination of the tran-

sition from vegetative to reproductive stages or plants suffers

from stunted growth and abnormal development of chloro-

plasts (Lopez-Castillo et al., 2016). In the present study, the

expression of TIM and TPI was upregulated, which might

contribute to energy metabolism in the IM in the Bnclv-like

mutant.

Actin plays a key role in regulating organ growth, cell

proliferation and floral bud morphogenesis from vegetative

to reproductive stages in plants (Feng et al., 2006; Zhang et

al., 2013; Zheng et al., 2013; Wu et al., 2016). The Arabi-

dopsis ACT7 gene is expressed in rapidly developing tissues,

in which the highest level of ACT7 mRNA could be detected

in developing vegetative organs (McDowell et al., 1996). In

addition, ACT7 is the only actin gene in Arabidopsis that re-

sponds strongly to auxin (McDowell et al., 1996). A recent

study demonstrated that ACT7 participated in the process of

TWISTED DWARF1 (TWD1) mediation of auxin transport.

Although ACT7 may be an indirect-TWD1 interactor, it con-

trols the presence of efflux transporters at the plasma mem-

brane. As a consequence, act7 and twd1 mutants shared

developmental and physiological phenotypes indicative of

defects in auxin transport (Zhu et al., 2016). Our data showed

that the expression level of ACT7 protein was significantly

up-regulated in the Bnclv-like mutant. Taken together, the

highly expressed ACT7 in Bnclv-like mutant might promote

cell division and growth during IM development.

Proteomic analysis of a mutant 7

Figure 6 - Comparison of the results obtained from 2-DE with those from

qPCR. The results obtained by 2-DE and qPCR are marked in blue and or-

ange columns, respectively. The Y-axis represents the fold-change in the

Bnclv-like mutant relative to the wild type.

Figure 5 - Schematic representation of the protein-protein interaction net-

work of the differential proteins in the bnclv-like that interact with act7 (a)

and fsd1 (b), respectively. proteins with larger numbers of interacting pro-

teins are represented by a larger circle size and color depth. The line width

represents the reliability of the predicted interaction between two proteins,

where interactions containing more evidence are thicker. The network was

initially constructed from Bnclv-like differential proteins using the

STRING database and reconstructed by Cytoscape.



ROS are well-known stress responding molecules in

plants and animals which can be increased dramatically in re-

sponse to pathogens and environmental stresses (Finkel and

Holbrook, 2000; Swanson and Gilroy, 2010). A recent study

indicated that redox participated in the regulation of plant

stem cell fate (Zeng et al., 2017). O2
-, the precursor for most

ROS, can be transformed into H2O2 by superoxide dismutase

(SODs). Ideal concentrations of O2
- can stabilize the activity

of stem cells, but excess H2O2 can suppress or even disrupt

their activity (Zeng et al., 2017). Two SODs, SOD2, and

FSD1, were altered significantly in the Bnclv-like IM. In a

previous report, these two proteins were found to be strongly

expressed in the differentiating peripheral zone instead of the

stem cells as a result of the different distribution of O2
-

(Yadav et al., 2014; Zeng et al., 2017). In the present study,

the expression of SOD2 was up-regulated dramatically,

which could catalyze the transformation from O2
- to H2O2 to

suppress stem cell activity. However, FSD1 showed a more

significant down-regulation than SOD2, which may compen-

sate for the elevated activity of SOD2. Another study indi-

cated that ROS were crucial molecules in triggering meiotic

fate acquisition in maize (Kelliher and Walbot, 2012), which

demonstrated an important role of ROS in cell fate determi-

nation.

The PPI network showed that proteins involved in cell

metabolism, cytoskeleton formation and ROS metabolism

interact with each other. Due to their crucial role in cyto-

skeleton formation and ROS metabolism in cell develop-

ment, ACT7 and FSD1 were selected for further analysis.

The number of proteins interacting with ACT7 and FSD1 ac-

counted for > 70% in all interacting with proteins, indicating

the vital role of these two processes in regulating the develop-

ment of the Bnclv-like mutant IM.

Among the proteins interacting with ACT7, PRF1 en-

codes profilin. The vitro studies had shown that the profilin-

actin complexes were associated with the barbed ends of

actin filaments and promoted actin polymerization by reduc-

ing the critical concentration and increasing nucleotide ex-

change on G-actin (Pollard and Cooper, 1984; Pantaloni and

Carlier, 1993). In Arabidopsis thaliana, PRF1 participates in

stochastic actin dynamics by regulating formin-mediated

actin nucleation and filament elongation in the process of ax-

ial cell expansion (Cao et al., 2016). Consistent with our re-

sults, the expression of PRF1 in the Bnclv-like mutant is

up-regulated relative to the wild type, together with ACT7,

which is consistent with the enrichment of ACT7. Fructose 1,

6-biphosphate aldolase (FBA) in plants is a key metabolic en-

zyme in glycolysis and gluconeogenesis in the cytoplasm

(Gross et al., 1999). FBA8 is a member of the cytoplasmic

fructose 1, 6-biphosphate aldolase family. A recent study

showed that the knockout of the FBA8 gene resulted in slight

alternations of the actin cytoskeleton morphology of guard

cell and reduced the rate of stomatal closure in cope with de-

creased humidity (Garagounis et al., 2017). Moreover, the

fba8 mutant displayed sterility (Lu et al., 2012). In vitro ex-

periments confirmed the interaction between FBA8 and actin

in Arabidopsis (Lu et al., 2012). Due to the significant role in

cytoskeleton formation and glucose metabolism, FBA8 may

provide a link between these two processes. The

up-regulation of PRF1 and FBA8 could enhance the develop-

ment of IM through their interaction with ACT7.

Among the proteins interacting with FSD1, Arabido-

psis chloroplast CHAPERONIN 20 (CPN20) can form

tetramers in vitro, which is a cofactor of chaperonin (Kou-

moto et al., 1999). In Arabidopsis, CPN20 is speculated to

have many functions in the chloroplast independent of its

co-chaperonin, such as regulating abscisic acid signaling

transduction and mediating iron SOD activity (Kuo et al.,

2013; Zhang et al., 2014). CPN20 was identified as a media-

tor for activating FeSOD by direct interaction in vivo and in

vitro (Kuo et al., 2013). mMDH1 encodes a mitochondrial

malate dehydrogenase, which participates in the transforma-

tion of malic acid and oxaloacetic acid in the tricarboxylic

acid cycle. A decreased activity of mMDH1 has a

up-regulated influence on photorespiratory metabolism,

which leads to smaller rosettes and decreased fresh weight

(Linden et al., 2016; Sew et al., 2016). The mmdh1mmdh2

double mutant plants exhibit a significantly higher rate of leaf

respiration, low net CO2 assimilation, limitation in photo-

respiratory rate, and slow-growth phenotypes in rosettes

(Tomaz et al., 2010; Linden et al., 2016). In the Bnclv-like

mutant, the upregulation of CPN20 and mMDH1 contribute

to the protein biosynthesis and biomass accumulation to

maintain the accelerated activity of IM. Besides, the interac-

tion among CPN20, mMDH1, and FSD1 could represent the

transformation from energy metabolism to reactive oxygen

metabolism in the plant body. A further study should be un-

dertaken to reveal the relationship between these two pro-

cesses.

We found that the three proteins, TPI, GAPC1, and

ACHT1, showed interactions between with ACT7 and FSD1.

The first two of them participate in glycometabolism, while

ACHT1 is involved in regulating photosynthetic electron

transport progress (Dangoor et al., 2012). Therefore, we pro-

posed that energy metabolism could be a link connecting cell

organization and superoxide metabolism. Taken together, in

protein level, three biological processes showed a great con-

tribution to the abnormal development of Bnclv-like mutant

and the understanding of interaction between these proteins

could be key to uncover the inner mechanism of IM develop-

ment. This study provided clues for the further study of the

Bnclv-like mutant in B. napus and the mutant was also a use-

ful material for the study of IM development in B. napus.
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