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Abstract

Background

Steroid-induced sleep disturbance is a common and highly distressing morbidity for children
receiving steroid chemotherapy for the treatment of pediatric acute lymphoblastic leukemia
(ALL). Sleep disturbance can negatively impact overall quality of life, neurodevelopment,
memory consolidation, and wound healing. Hypothalamic orexin neurons are influential
wake-promoting neurons, and disturbances in orexin signaling leads to abnormal sleep
behavior. A new class of drug, the orexin receptor antagonists, could be an intriguing option
for sleep disorders caused by increased orexinergic output. Our aim was to examine the
impact of ALL treatment doses of corticosteroids on the orexin system in rodents and in chil-
dren undergoing treatment for childhood ALL.

Methods

We administered repeated injections of dexamethasone to rodents and measured respon-
sive orexin neural activity compared to controls. In children with newly diagnosed standard
risk B-cell ALL receiving dexamethasone therapy per Children’s Oncology Group (COG)
induction therapy from 2014-2016, we collected pre- and during-steroids matched CSF
samples and measured the impact of steroids on CSF orexin concentration.

Results

In both rodents, all markers orexin signaling, including orexin neural output and orexin
receptor expression, were preserved in the setting of dexamethasone. Additionally, we did
not detect a difference in pre- and during-dexamethasone CSF orexin concentrations in chil-
dren receiving dexamethasone.

Conclusions

Our results demonstrate that rodent and human orexin physiology is largely preserved in the
setting of high dose dexamethasone. The data obtained in our experimental model fail to

PLOS ONE | DOI:10.1371/journal.pone.0168731

December 20, 2016 1/13


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168731&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@° PLOS | ONE

Orexin and Dexamethasone

demonstrate a causative role for disruption of the orexin pathway in steroid-induced sleep
disturbance.

Introduction

The long-term survival rate of greater than 90% for childhood acute lymphoblastic leukemia
(ALL) has been achieved using multi-agent cytotoxic chemotherapy that employs a glucocorti-
coid backbone.[1] High-dose glucocorticoids, however, are also associated with many serious
adverse events, including severe avascular necrosis, behavioral changes, increased fatigue, and
sleep disturbances.[2, 3] Sleep disturbances can have profound influences on a child’s overall
well-being while undergoing therapy for ALL.

Sleep is a highly complex, coordinated, and integrative neurologic process vital for its
restorative value: it reduces fatigue, lethargy, mood disturbance, school absenteeism, and gen-
eral poor productivity.[4] Sleep is also crucial for memory consolidation, immune functioning,
wound healing, and overall quality of life.[5] Children with ALL and their parents rate dis-
rupted sleep as one of the most distressing symptoms related to ALL maintenance therapy.[6]
Survey studies show disturbed sleep patterns in children during dexamethasone treatment,
including frequent nighttime awakenings, restless sleep, and increased daytime sleepiness.[6,
7] Actigraphy, a reliable tool for evaluating sleep patterns in humans, is used to corroborate
these reported sleep disturbances in children with ALL during dexamethasone pulses.[7-9]
However, despite decades using glucocorticoids for ALL and many other diseases, how these
synthetic hormones cause sleep disturbance remains unclear.

Orexins are neuropeptides produced in the brain exclusively by a group of neurons located
in the hypothalamus that have profound influence on arousal and sleep in humans and ani-
mals. By stimulating wake-active monoaminergic and cholinergic neurons in the hypothala-
mus and brain stem during the daytime, orexins play a key role in maintaining a long,
consolidated awake period.[10, 11] Orexin neurons anatomically located in the perifornical
area (PFA)-dorsomedial hypothalamic area (DMH) promote wakefulness, while those located
in the lateral hypothalamus (LH) drive reward-seeking behavior.[12, 13] Loss of orexin signal-
ing causes narcolepsy in humans and animals and highlights orexin’s pivotal role in regulating
the awake-sleep switch.[10-15] Mice that lack orexin neurons, orexin neuropeptide, or the
orexin receptors display symptoms of excessive sleepiness or complete cataplectic narcolepsy.
[16-18] Furthermore, orexin receptor antagonist drugs are sleep promotors, used to treat
insomnia in humans.[19] Conversely, when orexin is overexpressed, wakefulness and poor
sleep is intensified.[20, 21]

Two lines of evidence suggest that orexin overexpression may mediate steroid-induced
sleep disturbance. First, rodents with supra-physiologic levels of orexin exhibit many behaviors
seen in humans receiving exogenous steroids, including hyperlocomotion, fragmented non-
rapid eye movement (NREM) sleep frequently disturbed by short episode of wakefulness,
reduction in rapid eye movement (REM) sleep, and increased awake time.[14, 15, 20-24] Sec-
ond, orexin neurons play a role in regulating the hypothalamic-pituitary-adrenal (HPA) axis
and the eventual production of cortisol.[25] Disruption of the normal diurnal rhythm of corti-
sol in cancer treatment has been linked to sleep problems.[26] High-dose corticosteroids
greatly impact the functioning of the HPA axis and the rhythmicity of cortisol, and the finding
that adrenalectomy decreases hypothalamic orexin expression suggests that the orexin system
may be the mediator between HPA axis dysfunction and sleep disturbances.[27, 28]
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Orexin receptor antagonists are a new class of drugs aimed at reducing orexinergic tone
during the night to mitigate hyperarousal and improve sleep.[19] Having recently received US
Federal Drug Administration (FDA) approval for the treatment of insomnia following phase 2
and 3 trials, orexin receptor antagonists would be an intriguing option for other sleep disor-
ders caused by increased orexinergic tone.[29] In the present work, we sought to investigate
the relationship between the orexin system and exogenous corticosteroid administration in
mice, rats, and humans.

Materials and Methods
Animals

Male C57BL/6] mice (12 weeks) were purchased from Jackson Laboratories (Bar Harbor, ME).
Male CRL:CD (SD) rats (101-125 g) were purchased from Charles River Laboratories (Wil-
mington, MA). Mice were used to measure the impact of dexamethasone on quantitative and
anatomic orexin neuron gene expression. Rats were used to measure the effect of dexametha-
sone on quantitative orexin neuron gene expression, quantitative hypothalamic orexin protein
concentration, and cerebral spinal fluid (CSF) concentrations of orexin. All animals were
maintained in a pathogen-free room on a normal 12 h light/dark period with lights on from
06:00 to 18:00 at 22-24°C with ad libitum access to food (rodent diet 5001, Purina Mills) and
water. Animals and leftover food were weighed daily during experiments. Animal experiments
were conducted in accordance with the National Institutes of Health Guide for the Care and
Use of Laboratory Animals and approved by the Oregon Health & Science University (OHSU)
Department of Comparative Medicine Institutional Animal Use and Care Committee.

Animal steroid administration

Dexamethasone Sodium Phosphate Injection (DEX) 4 mg/mL was obtained from the OHSU
Pharmacy (Fresenius Kabi, NDC 63323-0165-01). Animals were administered DEX twice
daily for 5 days at a concentration of 1.5 mg/kg in mice and 3.0 mg/kg in rats. This drug regi-
men reflects the steroid burst used in maintenance chemotherapy for children with standard
risk (SR) ALL.[30] The body surface normalization method based on FDA recommendations
was used to calculate the mouse and rat doses in mg/kg based on the human dose of DEX (6
mg/ m” divided BID for 5 days).[31] Vehicle-treated animals were injected with an equivalent
volume of normal saline (vehicle) to DEX-treated animals. DEX or vehicle was administered
via intraperitoneal (IP) injections between 06:00-07:00 and 17:00-18:00. Animals were
returned to their home cages after injection.

Animal whole brain and hypothalamus collection

On experiment days 1-5, the animals were injected IP with DEX or vehicle. On experiment
day 5 between 16:00-18:00, animals were deeply anesthetized (mice with a ketamine-xylazine-
acepromazine cocktail, rats with 4% isofluorane), decapitated, and whole brains removed. This
time point coincides with the expected orexin nadir.[10] For mouse in situ hybridization,
whole brains were frozen on dry ice and stored at -80°C until the time of assay. For mice and
rat hypothalamus mRNA expression and for rat hypothalamus quantitative orexin protein
analysis, hypothalamic blocks (including the hypothalamus, most diencephalic structures, and
the prefrontal cortex) were excised from the whole brain as described previously.[32] Blocks
were preserved in RNAlater solution (Ambion), stored at 4°C overnight, then frozen at -80°C
without RN Alater solution until the time of assay.
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Measuring the impact of corticosteroids on the orexin system

Orexin neuronal activity can be inferred from measurements of prepro-orexin mRNA and
orexin neuropeptide. In addition, the expression mRNA coding for orexin receptors in target
neurons is also linked to rodent behavior.[33, 34] The prepro-orexin gene encodes for orexin
neuropeptides, and activity of this gene can be measured by prepro-orexin mRNA. Orexin
neuropeptides are detectable both locally in hypothalamic tissue and distally in CSF. Orexin
receptor 1 (OX;R) mRNA and orexin receptor 2 (OX,R) are orexin receptors, both of which
are important in the regulation of sleep and maintenance of arousal.[35] OX;R and OX,R dou-
ble knockout mice and dogs exhibit similar narcoleptic behaviors and electroencephalographic
phenotypes to prepro-orexin knockout animals.[16, 36] Therefore, we comprehensively exam-
ined the impact of corticosteroids on orexin activity by measuring orexin gene expression,
orexin neurotransmitter production, and orexin receptor expression.

RNA preparation and relative quantitative RT-PCR in mice and rats

Total RNA was extracted from brain tissue using QTAGEN RNeasy kits (QIAGEN, Inc., Valen-
cia, CA) and as previously reported.[37] cDNA was synthesized for both, and RT-PCR reac-
tions were run using revalidated TagMan master mix and rat-specific primer-probe (Applied
Biosystems). Relative levels of mice prepro-orexin mRNA, OX;R mRNA, and OX,R mRNA
were measured.

Hypothalamic Orexin-A protein preparation for RIA in rats

Orexin-A protein extraction from the hypothalamic tissue for RIA was performed according
to the manufacturer’s instructions and as previously described (Phoenix Pharmaceuticals, Bur-
lingame, CA).[38]

In situ hybridization (ISH) histochemistry for orexin (Hcrt) mRNA in mice

Preparation of coronal brain sections and single ISH were performed as previously described.
[32] Antisense >*P-labeled rat prepro-orexin (Hcrt) riboprobe with near complete homology
to mice (corresponding to bases 18-420 of rat Hert; GenBank accession number NM_013179)
(0.1 pmol/mL) was applied to slides. Blinded counts of the number of sliver grain clusters (cor-
responding to radiolabeled Hert mRNA) in each hypothalamic nucleus, differentiated by neu-
rons located in the PFA-DMH versus LH (user defined), as well as the number of sliver grains
in each cell, were made using Grains 2.0.b software (University of Washington, Seattle, WA).

Rat CSF sample serial collections

CSF was collected with a novel method, described and shown in S1 Fig.

Patient subjects

Eligible subjects included all newly diagnosed patients between 2014-2016 at our institution
with SR B-cell ALL treated according to Children’s Oncology Group (COG) induction therapy
with 28 days of dexamethasone (6 mg/m2/day)[30]. Involvement by eligible patients in this
study was not based on a standard consenting process, but rather based on an opt-out proce-
dure and was approved by the OHSU Institutional Review Board. Compliant with the “Policy
for Accessing Tissue Specimens or Information at OHSU for Anonymous or Coded Genetic
Research” that allows de-identified samples obtained from standard of care procedures to be
used for future research provided individuals do not opt out, we provided a study information
sheet to all participating patients/parents/guardians that included information on this study as
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well as details about the opt out process for this research. Patient samples were included in this
study if the patients/parents/guardians did not opt out.

Human CSF sample collections

One milliliter of CSF was collected at the time of standard-of-care therapeutic lumbar punc-
tures (LPs) on Days 0 and 8 of induction chemotherapy (n = 22). Day 0 of induction repre-
sented the baseline orexin level; Day 8 represented 7 days into DEX treatment. While CSF
samples were also collected at later time points, Days 0 and 8 were tested in this study in order
to simulate the 5-day burst of steroid treatment during maintenance therapy of ALL. Specific
time of day of CSF collection was not standardized. Samples were stored in 500 puL aliquots at
-80°C until the time of assay.

Rat CSF and hypothalamus, and human CSF orexin-A levels by orexin-
A radioimmunoassay (RIA)

Rat and human CSF were prepared and processed using the same technique. Frozen samples
were thawed on ice. Duplicates of 25 pL of CSF were used for each RIA. Lyophilized hypotha-
lamic protein extract was re-dissolved in 250 uL of RIA buffer. Orexin-A levels were deter-
mined in duplicate for all samples using a commercial radioimmunoassay (RIA) kit (Phoenix
Pharmaceuticals, Burlingame, CA) according to manufacturer’s instructions. The detection
limit was 10 pg/mL for all samples and intra-assay variability was <10% for rat hypothalamus,
rat CSF, and human CSF.

Statistical analysis

Data were graphed and analyzed using GraphPad Prism 5. All comparisons were made
between two groups at a single time point and were performed using two-tailed Student’s t
test.

For the human CSF study with 25 samples, this study has been powered to have an 80%
chance of detecting a 20% increase in mean of CSF orexin concentration from baseline to
Induction Day 8. All differences between groups were considered significant when p < 0.05.

Results

Orexin signaling appears to be preserved following dexamethasone
administration

To examine the effect of DEX on orexin physiology, we measured orexin gene expression, neu-
ropeptide production, and receptor expression following DEX treatment compared to control.
First, we measured total prepro-orexin gene expression at the end of the dark cycle (expected
nadir) following a 5-day burst of DEX. We obtained orexin mRNA from DEX-treated mice

(n = 5) and vehicle-treated mice (n = 3) and found comparable mean total orexin mRNA pro-
duction (DEX, 0.95-fold decrease + 0.1, p = 0.7)(Fig 1A). We performed the same experiment
in rats (DEX, n = 3; vehicle, n = 4) and similarly did not detect a significant difference in total
orexin mRNA between groups (DEX, 1.5-fold increase + 0.3, p = 0.2) (Fig 1B).

Second, because anatomically distinct subpopulations of orexin neurons have different pro-
jections and functions, we examined whether DEX administration increases orexin gene
expression at the end of the dark phase in the sleep-regulating neurons in the PFA-DMH com-
pared to the primarily reward-regulating neurons in the LH (Fig 1C). We did not detect a dif-
ference in the number of orexin-positive cells in the PFA-DMH in DEX-treated mice (n = 8)
compared to vehicle-treated mice (n = 10) (mean-DEX = 54 + 7; mean-vehicle = 61 + 9 cells, ¢
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Fig 1. Mice (a, c-e, i-j) and rats (b, f-h) treated with dexamethasone (DEX) versus saline (vehicle) exhibit
largely preserved orexin neuron signaling. (a) DEX does not cause a measurable difference in mouse orexin
neuron gene expression as measured by RT-PCR (Vehicle n=3, DEX n=5). (b) DEX does not cause a measurable
difference in rat orexin neuron gene expression as measured by RT-PCR (Vehicle n=4, DEX n= 3). (c) Schematic
illustrating the division between LH and PFA/DMH orexin neuron populations. (d, ) DEX does not upregulate mouse
orexin neuron gene expression as measured by ISH, as grain clusters per orexin neuron (corresponding to
radiolabeled Hcrt mRNA) are equivalent in both the DEX and NS animals in both the PFA/DMH and LH (Vehicle n=9,
DEX n = 8). (f) DEX does not alter total hypothalamic orexin (Ox-A) protein concentration in rats treated with DEX
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(Vehicle n=7, DEX n=7). (g) A disrupted normal diurnal variation of Ox-A by day 5 of DEX-treatment compared to
sham (Vehicle n=8, DEX n=7) **p<0.01. (h) On repeat testing, CSF Ox-A concentration on day 5 was equivalent
between groups (Vehicle n=7, DEX n=7). (i, j) DEX did not cause a measurable difference in mice orexin 1 receptor
gene expression (Vehicle n=4, DEX n= 3) or orexin 2 receptor gene expression (NS n=4, DEX n= 3) as measured
by RT-PCR. Data, unless otherwise specified, represent orexin levels at the expected nadir (evening) on day 5 of DEX
or sham treatment. Data are expressed as mean + SEM.

doi:10.1371/journal.pone.0168731.g001

(16) = 0.65, p = 0.3) or in the LH (mean-DEX = 162 + 7; mean-vehicle = 153 + 10 cells, #(16) =
0.68, p = 0.5)(Fig 1D and 1E).

Third, in order to directly measure orexin neuron output, we measured total orexin protein
concentration in the hypothalamus following DEX. We found no difference in total hypotha-
lamic orexin concentration between DEX-treated rats (n = 7) and vehicle-treated rats (n = 7)
(mean-DEX = 432 + 85.6 pg/mL; mean-vehicle = 399 + 37.9 pg/mL, #(12) = 0.36, p = 0.7)

(Fig 1F). Fourth, because orexin signaling is clinically measured by CSF orexin concentrations,
we measured rat orexin CSF levels at four time points, every 36 hours, during a 5-day course of
treatment. Rats treated with DEX (n = 5) compared to vehicle (n = 7) exhibited disrupted
orexin rhythmicity with elevated nadirs, most prominently and significantly at the end of the
5-day course of DEX (mean-DEX = 1,291 + 77.2 pg/mL; mean-vehicle = 936 + 51.5 pg/mL, ¢
(4) =0.5, p=0.002)(Fig 1G). To confirm these data, rat orexin concentration in the CSF was
measured on day 5 at the expected orexin nadir following DEX (# = 7) and vehicle (n = 7)
treatment; we found no difference in mean orexin concentrations (mean-DEX = 1,398 + 89.8
pg/mL; mean-vehicle = 1,234 + 22.6 pg/mL, #(12) = 1.8, p = 0.1)(Fig 1H).

Finally, we examined the impact of corticosteroids on the orexin receptors of downstream
neurons in the hypothalamic area. We measured comparable mean total OX;R and OX,R
gene expression in response to DEX (n = 3) and vehicle (n = 4) (OX;R, DEX, 1.4-fold
increase + 0.2, p = 0.2)(OX,R, DEX, 1.3-fold increase + 0.1, p = 0.4)(Fig 1I and 1]). Thus, we
did not find evidence that DEX increases orexin activity by increasing the transcription of the
receptor mRNA.

Data on mice and rat body weights, food intake, plasma and CSF glucose levels are shown
in S2 Fig. All DEX-treated rodents experienced weight loss, and no vehicle-treated animal
experienced weight loss. No animals exhibited hypophagia. Rats were found to have hypergly-
cemia within 36 hours of initiating DEX treatment, whereas mice were normoglycemic
throughout DEX and vehicle treatments.

Taken together, these data indicate that physiologic orexin signaling is preserved following
DEX treatment.

Dexamethasone administered to children undergoing induction therapy
for ALL is not associated with an increase in CSF orexin concentration

To test the hypothesis that corticosteroids upregulate the orexin system, we measured CSF
orexin concentrations in children undergoing DEX treatment as part of induction therapy for
ALL. We performed orexin measurements on the initial 22 paired samples. None of the chil-
dren carried a previous diagnosis of sleep abnormalities, and none of the children experienced
acute neurological toxicity from chemotherapy. Mean pre-DEX baseline CSF orexin concen-
trations were 574 + 26.6 pg/mL compared to 580 + 126.1 pg/mL at day 8 of DEX (p = 0.8)

(Fig 2A). When compared to matched baseline orexin levels, mean increase in CSF orexin
level was 5.2 + 6.9% (p = 0.6)(Fig 2B). These data also suggest that orexin signaling is preserved
during DEX administration in children.
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Fig 2. Human CSF orexin levels. (a) Individual patient CSF orexin levels at baseline and then 8 days into dexamethasone (DEX) therapy for ALL.
Mean baseline orexin concentration is equivalent to mean DEX day 8 orexin concentration. (b) There was no significant change in mean orexin level
from baseline to DEX day 8 (n=22). Data are expressed as mean + SEM.

doi:10.1371/journal.pone.0168731.9002

Discussion

In children undergoing therapy for ALL, sleep disturbance is a common and distressing symp-
tom associated with corticosteroid chemotherapy. However, the neural mediators of this
adverse reaction are unknown. Evidence that phenotypic patterns of steroid-induced sleep dis-
turbance are strikingly similar to behavioral changes associated with supraphysiologic orexin
output led us to hypothesize that dexamethasone causes sleep disruption by altering normal
orexin physiology. This study was timely, as the FDA recently approved an orexin receptor
antagonist that reduces orexinergic tone as a drug to improve sleep. Based on our experimental
system, we demonstrate that orexin signaling is largely preserved during dexamethasone ther-
apy. We show that orexin gene expression, both globally and specifically in the PFA-DMH, the
subset of hypothalamic orexin neurons linked to sleep behavior, is unaltered by dexametha-
sone. We show that orexin neurons produce equivalent levels of orexin protein, found both in
the hypothalamus and in the CSF of rodents and in the CSF of humans, following dexametha-
sone and vehicle therapy. We also show that orexin activity is not increased by increasing the
expression of downstream orexin receptors. In these experiments, the response of the orexin
system to corticosteroids was studied at both the mRNA and protein level, in rodents and in
humans, and the consistency of the data presented here suggests that orexin pathology is not
the key mediator of steroid-induced sleep disturbance.

Previous studies have explored various hypothesized mechanisms through which cortico-
steroids may cause sleep disturbance. Vallance, et al. evaluated the relationship between dexa-
methasone and sleep and found a correlation between a polymorphism in glucocorticoid
metabolism [AHSG C>G (Thr238Ser) exon 7 genotype], upregulation of this ASHG hepatic
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protein, and sleep disturbance.[9] The same study evaluated the connection between serum
albumin concentration on patients undergoing dexamethasone therapy and sleep and found
no association.[9] There may exist a relationship between elevated IL-6 and TNF, two proin-
flammatory cytokines associated with fatigue and sleep disturbances in patients with chronic
illnesses.[39, 40] In studying this relationship in children undergoing steroid chemotherapy
for ALL, Vallance, et al. found a correlation between a polymorphism in the TNF gene
(-308G>A) and steroid-associated sleep disruption.[41] In our study and presented in sup-
porting information, we also investigated the effect of dexamethasone on melanin-concentrat-
ing hormone (MCH), an influential regulator of the ascending arousal system that controls the
switch from REM sleep to NREM sleep; we found no evidence that dexamethasone affects
MCH physiology (S1 Supplemental Methods, S1 Supplemental Results and S3 Fig).

There are several limitations to this study. First, mice and rats receiving dexamethasone
invariably exhibited significant weight loss compared to controls, though none were hypopha-
gic. Rats were found to have both hyperglycemia and elevated glucose concentrations in the
CSF. Therefore, their weight loss was attributed to steroid-induced hyperglycemia, polyuria,
and dehydration. Mice, however, did not develop hyperglycemia; additionally, dexametha-
sone- and vehicle-treated mice had equivalent total body water, total body fat, and gastrocne-
mius muscle weight at the end of 5 days of treatment. Therefore, we were not able to explain
the dexamethasone-associated weight loss in mice. These findings, most notably the speed and
severity of the hyperglycemia and weight loss, were unexpected, because literature suggests
that dexamethasone causes an insulin resistance that necessitates longer-term glucocorticoid
exposure.[42, 43] Overall, this significant toxicity in rodents is a potential confounder to our
data. Furthermore, the use of both mice and rats is another potential weakness of our study.
Both animals bring advantages to this type of basic research which prompted our use of both:
mice have the advantage of ease of access to relevant genetic models and a very robust body of
basic neuroscience research, particularly regarding the role of orexin in arousal and sleep sta-
bility, whereas rats are larger, facilitating ease of sampling, and have a robust body of literature
supporting them as models of neuroendocrine regulation. In the overwhelming majority of
cases, the neurophysiology of mice and rats is similar, and we attempted to capitalize on the
strengths of each model to support our research.

Additionally, while we were able to control the time of day of the CSF collection in the
rodent models, we were not able to do so for acquisition of the human CSF samples, given
practical scheduling constraints. In rats and in squirrel monkeys, orexin levels in the CSF fol-
low a predictable diurnal pattern of peaking near the end of the wake period and while the
nadir is during the sleep period.[10, 44] In contrast, human orexin levels peak during sleep in
the early morning; however, diurnal cycle-related variability is small, at no more than 10%.[45,
46] Ripley and colleagues also demonstrated the consistency and stability of orexin CSF levels
within subjects in the setting of neurologic diseases and malignancies, but highlighted the wide
variability between subjects.[47] We were able to capitalize on this intrasubject stability by col-
lecting paired measurements from each patient, enabling the correlation to an internal control.
Thus, the timing of CSF collection in humans may have had minimal impact on our ability to
detect a change in CSF orexin concentrations after seven days of dexamethasone therapy.
Other potential confounders to our human data may include unknown effects on the orexin
system of concomitant chemotherapy and supportive care medications, disruption of the nor-
mal home environment, and the fatigue associated with cancer per se.[48]

Understanding the causal mechanisms of steroid-induced sleep disturbance is important,
given the pervasiveness of this corticosteroid toxicity and the potential for intervention. Future
research should continue to explore possible mechanisms underlying steroid-induced sleep
disturbance.
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S1 Fig. Technique for serial sampling of rat cerebrospinal fluid (CSF).
(TIF)

S2 Fig. Dexamethasone (DEX) causes significant weight loss mice (a-d) and rats (e-g) as
compared to saline (vehicle).
(TIF)

$3 Fig. Mice (A, C) and rats (B) treated with dexamethasone (DEX) versus saline (vehicle)
exhibit preserved MCH function.
(TIF)
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