Vol. 28 ECCB 2012, pages i318-i324
doi:10.1093/bioinformatics/bts414

Long read alignment based on maximal exact match seeds

Yongchao Liu* and Bertil Schmidt*

Institut fur Informatik, Johannes Gutenberg Universitat Mainz, Mainz 55099, Germany.

ABSTRACT

Motivation: The explosive growth of next-generation sequencing
datasets poses a challenge to the mapping of reads to reference
genomes in terms of alignment quality and execution speed. With the
continuing progress of high-throughput sequencing technologies,
read length is constantly increasing and many existing aligners are
becoming inefficient as generated reads grow larger.

Results: We present CUSHAW2, a parallelized, accurate, and
memory-efficient long read aligner. Our aligner is based on the
seed-and-extend approach and uses maximal exact matches as
seeds to find gapped alignments. We have evaluated and compared
CUSHAW?2 to the three other long read aligners BWA-SW, Bowtie2
and GASSST, by aligning simulated and real datasets to the
human genome. The performance evaluation shows that CUSHAW2
is consistently among the highest-ranked aligners in terms of
alignment quality for both single-end and paired-end alignment, while
demonstrating highly competitive speed. Furthermore, our aligner
shows good parallel scalability with respect to the number of CPU
threads.

Availability: CUSHAW2, written in C++, and all simulated datasets
are available at http://cushaw?2.sourceforge.net

Contact: [liuy@uni-mainz.de; bertil.schmidt@uni-mainz.de]
Supplementary information: [Supplementary data] are available at
Bioinformatics online.

1 INTRODUCTION

Many biological applications of next-generation sequencing (NGS)
require the alignment of large quantities of produced reads to a
given reference genome. Consequently, a wide variety of short read
aligners have been developed in recent years. They can be classified
into two categories according to their approaches to identify seeds:
hash tables and prefix/suffix tries. MAQ (Li ez al., 2008), SOAP (Li
et al., 2008), SHRiMP (Rumble et al., 2009) and BFAST (Homer
et al., 2009) are examples of the hash table approach. Bowtie
(Langmead et al., 2009), BWA (Li and Durbin, 2009), SOAP2
(Li et al., 2009) and CUSHAW (Liu et al., 2012) implement the
concept of prefix/suffix tries using the Burrows—Wheeler transform
(BWT) (Burrows and Wheeler, 1994) and the FM-index (Ferragina
and Manzini, 2005).

With the progress of NGS technologies, the length of produced
reads continues to increase. Unfortunately, many existing short read
aligners are becoming inefficient as generated reads grow to a few
hundred bp in length because of two reasons. First, they typically
perform only ungapped alignments or gapped alignments allowing
a very limited number of gaps (typically one gap). Second, their
speed degrades rapidly as the number of gaps increases. However,
for long read alignment, more gaps must be allowed as indels will

*To whom correspondence should be addressed.

occur more frequently. These new features of long read alignment
thus motivate the design of new aligners with fast speed and high
quality.

In this article, we devise a new long read aligner based on the
well-known seed-and-extend heuristic. This heuristic is based on
the observation that significant alignments are likely to include
homologous regions, containing exact or inexact short matches
between the two sequences. It generally works in three steps. First,
seeds, represented as short matches indicating highly similar regions,
are generated between the query and the target sequences. Secondly,
these seeds are extended and refined under certain constraints, such
as minimal percentage identity and extension length, to filter out
noisy seeds. Finally, more sophisticated algorithms, such as the
Needleman—Wunsch algorithm (Needleman and Wunsch, 1970) or
the Smith—Waterman (SW) algorithm (Smith and Waterman, 1991),
are employed to obtain the final alignments. Several types of seeds
have been proposed, including fixed-length seeds, maximal exact
matches (MEMs), maximal unique matches (MUMs), and adaptive
seeds (Kielbasa er al., 2011). Fixed-length seeds (k-mers) are the
most widely used seed type. The simplest fixed-length seed is the
exact k-mer match. Some improvements have been suggested by
allowing mismatches and gaps in the k-mers, including spaced
seeds (Ma et al., 2002), and g-gram (a substring of g bases) filters
(Rasmussen et al., 2006). MEMs are exact matches that cannot be
extended in either direction without allowing a mismatch. MUM s are
inherently MEMs but require uniqueness in addition. An adaptive
seed has a variable seed length, and also has a limitation on the
number of seed occurrences in the target.

Recently, several long read aligners have been developed based on
the seed-and-extend approach, including BWA-SW (Li and Durbin,
2010), Bowtie2 (Langmead and Salzberg, 2012), and GASSST (Rizk
and Lavenier, 2010). BWA-SW, inspired by BWT-SW (Lam et al.,
2008), identifies long gapped seeds by employing a prefix directed
acyclic word graph (implicitly represented by an FM-index) to
perform dynamic programming (DP). Subsequently, it heuristically
extends and refines the long gapped seeds to produce the final
alignments. Bowtie2 extracts all mismatch-allowable fixed-length
seeds from a read using the BWT and then employs DP to identity
alignments. GASSST employs hash tables to find fixed-length seeds
and employs multiple filters to remove noisy seeds, prior to the
final DP-based alignment. This approach is effective to significantly
reduce the number of noisy seeds, but also has the risk of discarding
correct ones.

In this article, we present a new long read aligner using MEMs as
seeds. MEMs have been used for whole genome alignment (Bray
et al., 2003; Choi et al., 2005; Delcher et al., 1999; Hohl et al.,
2002). However, to the best of our knowledge, MEMs have not
been used for NGS read alignment. Our aligner employs memory-
efficient versions of the BWT and FM-index data structures to
generate MEM seeds for each read. Each seed defines a potential
mapping read region on the genome. We then compute the optimal

© The Author(s) 2012. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

liuy@uni-mainz.de; bertil.schmidt@uni-mainz.de
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts414/DC1

Long read alignment based on maximal exact match seeds

MEM seed

generation

MEM seed
generation

Parallel selection of
best mapping regions

Parallel selection of
best mapping regions

.// Read mate rescuing
\ (conditionally)

Produce and report the
final alignments

Fig. 1. Pipeline of our aligner for the SE and the PE alignment: the dashed
lines show the additional two stages for the PE alignment

local alignment score between the read and each potential mapping
region and select the highest-scoring mapping region to produce
the final alignment. In addition, our aligner provides support for
paired-end (PE) alignment. For the PE alignment, a new seed-pairing
approach is introduced with the intention to quickly determine the
potential mapping regions of a PE read pair without performing
alignments. Furthermore, we employ vectorization and multi-
threading to achieve fast execution speed on standard multi-core
CPUs. The performance of our aligner is assessed and compared with
BWA-SW, Bowtie2 and GASSST, by aligning simulated and real
datasets to the human genome. The experimental results show that
our aligner achieves favorable alignment quality, highly competitive
speed and good parallel scalability with respect to the number of
threads. This new aligner has been integrated into our software
package CUSHAW. The first version of CUSHAW was designed
for short read alignment (<128-bp reads) using GPU computing. It
uses mismatch-allowable fixed-length seeds and does not provide
support for gapped alignments. We name the aligner presented in
this article, CUSHAW2, to indicate the extended functionality.

2 METHODS

CUSHAW?2 employs MEMs as seeds to compute a gapped alignment for a
long read to a given reference genome. For the single-end (SE) alignment,
CUSHAW?2 works in three stages: (i) generate MEM seeds, (ii) select the
best mapping regions on the genome and (iii) produce and report the final
alignments. For the PE alignment, we introduce two additional stages before
producing the final alignments: one is the seed pairing stage and the other is
the read rescuing stage. Figure 1 illustrates the pipelines of our aligner for
both the SE and the PE alignment.

2.1 Essentials for maximal exact match identification

2.1.1 Definitions and notations Given a sequence S, define |S| to denote
the length of S, S[i] to denote the character at position i and S[i,j] to denote
the substring of § starting at position 7 and ending at position j, for 0<i < |[S]
and 0<j < |S|. We represent an exact match between two sequences S and

S, as a triplet (p, ¢, k), where k is the length of the exact match and the
substring S1[p, p+k— 1] is identical to the substring Sz2[q, g+k— 1]. An
exact match is called right maximal if p+ 1 = |S;| or g+ 1 = |S2] or S [p+k]
#852[g+k], and left maximal if p= 0 or g= 0 or S;[p— 1] #S2[g— 1]. An
exact match is called a MEM if it is both left maximal and right maximal.

Given a sequence 7T, defined over the alphabet ¥ = {A, C, G T},
the suffix array SA of T stores the starting positions of all suffixes of
T in lexicographical order. In other words, SA[i] = j means that the ith
lexicographically smallest suffix (among all suffixes of T') starts at position j
in 7. The SA of T has an overall memory footprint of |T'| |—log2 |T|-|bits (~12
GB for the human genome). Given a substring S of 7', we can find all its
occurrences within an SA interval. An SA interval is an index range [/, Ip],
where /, and I, represent the indices in SA of the lexicographically smallest
and largest suffixes of 7" with S as a prefix.

2.1.2 BWT and FM-index The BWT of T starts from the construction
of a conceptual matrix M7, whose rows are all cyclic rotations of a new
sequence 7'$ sorted in lexicographical order. T'$ is formed by appending the
special character $ to the end of 7 that is lexicographically smaller than any
character in X. After getting Mr, the last column of the matrix is taken to
form the transformed text B, i.e. the BWT of T. Br is a permutation of T
and thus occupies the same memory size of |T'| [logz |E|-|bits as T. My has
a property called ‘last-to-first column mapping’, which means that the ith
occurrence of a character in the last column corresponds to the ith occurrence
of the same character in the first column.

The FM-index consists of a vector C(e) and an occurrence array Occ(e),
constructed from Br, to accomplish substring search. C(e) contains |X|
elements with each element C(a) representing the number of characters
in T that are lexicographically smaller than a€ X. Occ(e) is an array of
size |T|x|X| with each element Occ(a, i) representing the number of
occurrences of a € Xin Br[0,i]. In terms of memory overhead, C(e) requires
only|X| [logz |E|]bits but Occ(e) requires|X||T| |—log2 |T|-|bits.

Given a substring S of T, the SA interval of all its occurrences can be
computed in O(|S]) time using a backward search procedure. Based on C(e)
and Occ(e), the SA interval [/,, Ip] can be recursively calculated, from the
rightmost to the leftmost suffixes of S, as:

[Iu(i):C(S[i])+00c(S[i],Ia(i+1)— D+1,0<i<|S|)

Ip())=C(S[D+O0ce(S[i], I (i+ 1), 0<i<|S|

where 1,(7) and (i) represent the starting and end indices of the SA interval
for the suffix of S starting at position i, and 1,(|S|) and I, (]S|) are initialized as
0 and |T'|, respectively. The calculation stops if it encounters 1,(i+ 1)> I (i+
1). The condition /,(i) <I,(7) holds if and only if the suffix of S starting
at position i is a substring of 7. The total number of the occurrences is
calculated as 1,(0) - I,(0) + 1 if 1,(0)< 1(0), and 0, otherwise. After getting
the SA interval, the location of each occurrence can be determined by directly
looking up SA with a constant time complexity. Hence, the time complexity
for finding n occurrences of S isO(|S|+n).

2.1.3 Reducing memory overhead From Equation (I, the substring
search using the FM-index does not require Br, meaning that the overall
memory footprint is the memory sum of the FM-index and SA. This memory
overhead (~60 GB for the human genome) can be reduced by an order of
magnitude by taking advantage of some features of the BWT at the cost of
a slightly higher substring search time complexity as follows.

For the FM-index, Occ(e) dominates the overall memory overhead. An
approach to trade-off speed and memory space is to use a reduced FM-
index (detailed in the [Supplementary Material) with a time complexity of
O(u-|S|) for substring search, which is able to reduce the memory size to
IZ[[log, |Z[]+IT (1] [log, IT] /u+[log, |£]) bits (u=128 by default
and thus ~1.1 GB for the human genome). For SA, by employing the ‘last-
to-first column mapping’ property of BWT, we can reduce the memory
size to |T| [logleﬂ/v bits (v=8 by default and thus ~1.5 GB for the
human genome) through the use of a reduced suffix array (detailed in the

i319

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts414/DC1

Y.Liu and B.Schmidt

|Supplementary Material) with an approximate time complexity of O(n-v)for
locating n occurrences of S.

Now, we have arrived at a significantly smaller memory footprint
of | 2| +1T) [log, | =1 +ITI(| =] /u+1/v)[log, |T|]bits (e.g. ~2.6 GB for
the human genome). Furthermore, the increased time complexityO(u-|S|+
v-n) for finding n occurrences of S is still acceptable.

2.2 Estimation of the minimal seed size

We are only interested in the MEM seeds whose lengths are not less than
a minimal seed size Q. Decreasing Q generally increases the sensitivity by
finding more hits in homologous regions, at the cost of producing more
noisy hits. Increasing Q generally decreases the number of hits at the cost of
decreased sensitivity. Many seed-based aligners, therefore, require users to
carefully tune Q. However, this tuning work is tedious. To address this issue,
we propose an automatic estimation of Q according to a given read length.

Our estimation of Q is based on the g-gram lemma (Rasmussen et al.,
2006) and a simplified error model. The g-gram lemma states that two aligned
sequences S; and S, with an edit distance of e (the number of errors) share
at least ¢ g-grams where t =max(|S1|, [S2]) —g+1—g-e. This means that for
overlapping g-grams, one error may cause up to g -eg-grams not to be shared
by the two reads, and for non-overlapping g-grams, one error can destroy
only one g-gram (Blom et al., 2011). Hence, given the edit distance e of S
aligned to the genome, Q is estimated as:

S
N A >

where Oy, and Qp are the global lower-bound and upper-bound, respectively.
The estimation is based on the pigeonhole principle for non-overlapping g-
grams, meaning that at least one g-gram of length Q is shared by S and its
aligned substring mate on the genome. By default, our aligner sets Or, =13
and Oy =49.

Since the error model for gapped alignments is quite complicated, we
employ a simplified error model for ungapped alignments to estimate e.
Supposing that the number of substitutions w in the full-length alignment of
S is a random variable and each base in S has the same error probability p
(default = 2%), the probability of having z substitutions is calculated as:

P(w=2)=Cip*(1—p)isI" A3)

where w follows a binomial distribution. By specifying a missing probability
m (default = 4%), e can be estimated as min{z|P(w > z) <m}. Our simplified
error model results in the following values: Q =16 for 100-bp reads, Q =22
for 200-bp reads and Q =35 for 500-bp reads. In addition, we also provide
parameters to allow users to customize Q.

2.3 Generation of maximal exact matches

To identify MEMs between S and T', we advance the starting position p in
S, from left to right, to find the longest exact matches (LEMs) using the
BWT and the FM-index. According to the above definitions, we know that
the identified LEMs are right maximal. We know that the LEMs starting at
the beginning of S are both left maximal and right maximal. This means that
when advancing the starting positions from the beginning to the end of S,
the identified LEMs are also left maximal if it is not part of any previously
identified MEM. In this way, only unidirectional substring search is required.
Since we are only concerned about MEMs of sufficient lengths, we discard
the MEMs whose lengths are less than Q. For large genomes, it is possible to
find a lot of occurrences of a MEM starting at a certain position of S. In this
case, we only keep its first 2 (h=1024 by default) occurrences and discard
the others.

However, it is also observed that we sometimes fail to find any MEM
seeds for some reads using Q. To improve sensitivity, we therefore attempt
to rescue them by re-conducting the MEM identification procedure using a
new and smaller minimal seed size Qy =(Q+Qr)/2.

2.4 Determination and selection of mapping regions

For local alignment with affine gap penalty, the positive score for a match
is usually smaller than the penalty charged for a substitution or for a
gap. Using such type of scoring schemes, the length of the optimal local
alignment of S to the genome cannot be >2|S]| as a local alignment requires
a positive alignment score. This conclusion forms the foundation of our
genome mapping region determination approach for each identified MEM
seed. In our aligner, we employ a commonly used scoring scheme [e.g. also
used in BLAST (Altschul ez al., 1990) and BWA-SW] with the score 1 for a
match, a penalty of 3 for a substitution, a penalty of 5 for a gap opening and
a penalty 2 for a gap extension.

For a read, a MEM indicates a mapping region on the genome, which
includes the seed and potentially contains the correct alignment of the full
read. We can determine the range of the mapping region by extending the
MEM in both directions by a certain number of bases. Since the optimal
local alignment length of S cannot be >2|S| in our aligner, it is safe to
determine the mapping region range by extending the MEM by 2|S| bases
in each direction. This extension does work, but will result in lower speed
due to the introduced redundancy. Hence, we attempt to compute a smaller
mapping region with as little loss of sensitivity as possible.

We define Ppem to denote the starting position of a MEM in S, Tem to
denote the mapping position of the MEM on the genome and Lyem to denote
the MEM length. Assuming that the MEM is included in the final alignment,
our aligner estimates the mapping region range [7,, T}] as:

To=Tmem —2(Pmem +1)

Ty =Tmem +Lmem +2(IS| — Pmem — Lmem)
Our aligner computes the optimal local alignment scores in all determined
mapping regions of S using the SW algorithm, and then builds a sorted list of
all mapping regions in the descending order of score. Mapping regions whose
scores are less than a minimal score threshold (default = 30) are removed
from the sorted list. Subsequently, the sorted list of qualified mapping regions
is used in the SE and the PE alignment (e.g. determining the final alignments
and approximating the mapping quality scores).

“)

2.5 Paired-end mapping

The alignment of a paired read pair generally has two constraints: alignment
strand and mapping distance. For the alignment strand constraint, our aligner
requires the two reads to be aligned to the genome from different strands.
For the mapping distance constraint, our aligner requires that the mapping
distance of the two reads cannot exceed a maximal mapping distance
threshold defined by the insert-size information of a library. Assuming that
the mean insert-size is X and the standard deviation of the insert-size is o,
we calculate the maximal mapping distance threshold as X 4+4c. For the
PE mapping, our aligner employs two stages: (i) pairing qualified mapping
regions in order to find the correct alignments for both ends and (ii) rescuing
un-aligned reads through their aligned read mates.

For any aligned read pair, we can first compare their mapping distance on
the genome (calculated from the positions of the best alignments of the two
reads) to the insert-size constraint. If this comparison is within the mapping
distance threshold, the corresponding alignment is output. Otherwise, we
could calculate the mapping distance for each mapping position pair from
all qualified mapping regions in the sorted list. However, the associated
computational overhead cannot be tolerated since we need to obtain the
alignment paths for all qualified mapping regions of a read pair. Hence, we
introduce a seed-pairing approach to heuristically accelerate the read pairing.

The seed-pairing heuristic works by enumerating each seed pair of S
and S in order to find all potential seed pairs. If the seed pair has different
alignment strands and locates on the same genome fragment, it will be used to
estimate the mapping distance of S and S, and otherwise will be discarded.
In our aligner, the mapping position T of S is estimated from one of its
MEMs as:

Pmem. if the strand is forward
|S| —Pmem + 1, if the strand is reverse

Ts=Tmem — {)

i320

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts414/DC1

Long read alignment based on maximal exact match seeds

where we assume that S is aligned to the genome without gaps. To
compensate for the difference between the estimated mapping distance
and the correct one, we employ a larger maximal insert-size threshold
X +40 +2e for the seed-pairing heuristic. If the estimated mapping distance
does not exceed the maximal insert-size threshold, this seed pair is considered
qualified and will be saved for future use. After finding all qualified seed pairs,
we enumerate each qualified seed pair to compute the real mapping distance
of S; and S», which is compared with the maximal insert-size threshold
X +4o. If the insert-size constraint is met, S and S, are reported as paired.
Otherwise, we will compute the best alignment for S; (or S2) to rescue its
mate by employing the insert-size information to determine the potential
mapping region of its mate. This rescuing procedure is also applied when
only one read of S| and S is aligned.

2.6 Approximation of mapping quality scores

Since the introduction of mapping quality scores in MAQ (Li et al., 2008)
to indicate the probability of the correctness of alignments, the concept of
mapping quality scores has been frequently used in many NGS read aligners.
Generally, a higher mapping quality score indicates a higher confidence in
the correctness of an alignment.

As stated in BWA-SW, if an aligner guarantees to find all local alignments
of a read, the mapping quality score M, is determined by these local
alignments only. Although our aligner does not find all local alignments of
the read, the sorted list of qualified mapping regions still provides sufficient
information to approximate M. In our aligner, we employ two equations to
approximate M, for the SE and the PE alignment. For the SE alignment,
M, is approximated as 250(b; —b3)/by x r, similar to the mapping quality
approximation in BWA-SW, where b; is the best local alignment score, by
is the second best local alignment score, and r is calculated by dividing the
number of bases of the read in the final alignment by the read length. For the
PE alignment, the calculation of M, depends on two conditions. If the two
reads are correctly paired through the seed-pairing heuristic, the mapping
quality score for each read is equal to its SE M,,. Otherwise, if one read is
rescued by its mate, the mapping quality score of the read is approximated
as r X Mg, where My,q is the SE M, of its mate.

2.7 Parallel design

In CUSHAW?2, the most time-consuming part of SE alignment is the selection
of the best mapping region using the SW algorithm. To accelerate its
execution, we have adopted the (SSE2) Streaming SIMD Extensions 2-based
parallel implementation of the SW algorithm in SWIPE (Rognes, 2011).

In addition, as multi-core CPUs have become commonplace, our aligner
employs a multi-threaded design using Pthreads to parallelize the alignment
process. We use a dynamic scheduling policy to assign reads to threads, which
allows one thread to immediately start a new alignment without waiting for
the completion of the other threads. For SE alignment, a thread aligns a single
read at a time and then reads a new read from the input file immediately
after finishing the current alignment. For PE alignment, we follow the same
scheduling policy with the difference that one read pair is assigned at a time.
Locks are appropriately used to ensure mutually exclusive accesses to both
the input and output files.

3 RESULTS

The performance of CUSHAW?2 is compared with three other
long read aligners: BWA-SW (v0.6.1), Bowtie2 (v2.0.0-beta5)
and GASSST (v1.28). BWA-SW employs the default settings and
Bowtie2 also employs the default settings, except for the insert size
related parameters for the PE alignment. GASSST uses a minimal
percentage identity of 90% and default settings for other parameters.
CUSHAW?2 requires the final alignment to have a percentage identity
of >90% (default setting) and to include >80% (default setting)
bases of the read.

Table 1. Alignment results on the simulated 200-bp datasets

Aligner 1% 2% 4%

Recall Prec. Recall Prec. Recall Prec.

SE
CUSHAW2 90.39 97.84 90.28 97.77 90.02 97.57
BWA-SW 90.30 97.74 90.03 97.50 88.92 96.43
Bowtie2 89.99 97.45 89.44 96.97 87.41 96.03
GASSST 80.41 96.04 79.58 96.01 71.73 95.98
PE
CUSHAW2 90.94 98.44 90.85 98.39 90.76 98.26
BWA-SW 90.51 97.97 90.42 97.90 90.19 97.51

Bowtie2 90.82 98.32 90.48 98.03 89.16 97.58

All the tests are conducted on a workstation with two six-core
Intel Xeon X5650 2.67GHz CPUs and 96 GB RAM, running the
Linux operating system. The runtime of each aligner is measured in
wall clock time for all tests, where the one-time construction time
of the BWT and the FM-index is not counted in for CUSHAW?2,
BWA-SW and Bowtie2. We use the recall and precision measures to
assess all aligners using simulated datasets, where recall (precision)
is calculated by dividing the number of reads that are correctly
aligned by the total number of reads (the number of aligned read). If
not explicitly specified, a read is deemed to be correctly aligned if
the mapping position has a distance of <5 to the true position. For
real datasets, we use the sensitivity measure, which is calculated by
dividing the number of aligned reads by the total number of reads.

GASSST does not evaluate every seed to determine the best
alignment for a single read. Instead, it continues reporting identified
alignments until reaching the maximal limit of the number of
alignments. Thus, we consider the best of all reported alignments as
the final alignment of the read and discard the others. In addition,
GASSST does not provide the support for PE alignment and thus
is only evaluated for SE alignment. BWA-SW might report more
than one alignment for a single read (in rare cases for not very long
reads), where one alignment corresponds to one fragment of the read.
Since these fragment alignments are difficult to be distinguished and
ranked, we take all of them into consideration.

3.1 Evaluation on simulated datasets

We have first evaluated all aligners using nine simulated 100-bp,
200-bp and 500-bp datasets with different uniform base error rates
(i.e. 1%, 2% and 4%). These datasets are simulated from the human
genome using the wgsim utility in SAMtools v0.1.17 (Li et al., 2009)
with 10% errors being indel errors. Each dataset is comprised of
2 million PE reads, and the insert-sizes are drawn from normal
distributions N (500, 50), N(1000, 50) and N (2000, 50) for the
100-bp, 200-bp and 500-bp datasets, respectively.

Table 1 shows the alignment results of all aligners for the 200-
bp datasets, whereas the alignment results for the other datasets
can be obtained from the [Supplementary Material CUSHAW2
yields the highest recall and precision for both the SE and the PE
alignment for all datasets (with an exception that for the 100-bp
dataset with 1% error rate, Bowtie2 has a slightly better precision
than CUSHAW?2 by ~0.04% for the PE alignment). Furthermore,

i321

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts414/DC1

Y.Liu and B.Schmidt

Table 2. Alignment results using Q30 on the simulated 200-bp datasets

Table 3. Alignment results using different percentages of indel errors

Aligner 1% 2% 4%

Recall Prec. Recall Prec. Recall Prec.

SE

CUSHAW2 86.32 99.95 86.07 99.94 85.95 99.93
BWA-SW 85.80 99.94 85.04 99.94 82.33 99.93
Bowtie2 80.76 99.98 76.96 99.98 71.59 99.98
GASSST 76.15 99.54 75.47 99.57 73.92 99.49

PE

CUSHAW2 86.34 99.95 86.12 99.94 86.17 99.93
BWA-SW 86.55 99.95 86.09 99.94 84.25 99.93
Bowtie2 83.81 99.98 82.71 99.97 82.71 99.97

CUSHAW?2 is on an average superior to all other evaluated aligners
in terms of both recall and precision for the SE (PE) alignment,
where the average recall is ~89.92% (90.75%) and the average
precision is ~97.46% (98.28%). For the SE alignment, on average,
BWA-SW is the second best with an average recall (precision)
of ~88.54% (96.81%), whereas GASSST is the worst with an
average recall (precision) of only ~79.46% (95.51%). For the PE
alignment, on average, BWA-SW has a higher recall than Bowtie2,
whereas the latter gives a higher precision. For BWA-SW, the
average recall (precision) is ~90.14% (97.65%) and for Bowtie2,
~89.71% (97.92%). Moreover, an increased recall and precision
can be observed for CUSHAW2, BWA-SW and Bowtie2 after
performing PE mapping on each dataset. In general, for each aligner,
both recall and precision improve for increasing read length for a
fixed error rate, and degrade for increasing error rates for a fixed
read length.

To evaluate alignments with high mapping quality scores, we have
taken into account the alignments whose mapping quality scores are
>30 (Q30). Moreover, an aligned read is deemed to be correctly
aligned only if the mapping position is identical to the true position
of the read. Table 2 shows the alignment results using Q30 for the
200-bp datasets, whereas the alignment results using Q30 for the
other datasets can be obtained from the[Supplementary Material} For
both the SE and the PE alignment, on average, CUSHAW?2 yields the
highest recall whereas Bowtie2 gives the highest precision. For all
datasets, the average recall (precision) for SE alignment is ~85.80%
(99.94%) for CUSHAW?2, 81.70% (99.94%) for BWA-SW, 76.47%
(99.98%) for Bowtie2 and 75.44% (99.51%) for GASSST. On an
average for all datasets, the recall (precision) for PE alignment is
~86.01% (99.94%) for CUSHAW?2, 84.15% (99.94%) for BWA-
SW and 81.84% (99.98%) for Bowtie2. Compared with the SE
alignment, the recall of each aligner gets better for each dataset.
As for the precision, both CUSHAW?2 and BWA-SW can hold their
precision for each dataset, whereas Bowtie2 has a minimal decrease
for some datasets.

Finally, we have evaluated the impact of the amount of indel
errors on each aligner. In this evaluation, we have re-simulated four
200-bp datasets from the human genome containing 2 million PE
reads each. All the four datasets have the same uniform base error
rate of 2%, but have different percentages of indel errors (i.e. 20%,
40%, 60% and 80%). Table 3 shows the alignment results. For the

Aligner Measure 20% 40% 60% 80%
SE

Recall 90.29 90.26 90.27 90.29

CUSHAW2 Prec. 97.77 97.76 97.77 97.76

Recall 90.05 90.05 90.03 90.05

BWA-SW Prec. 97.49 97.52 97.50 97.49

Bowtied Recall 89.45 89.43 89.45 89.46

wi Prec. 96.96 96.97 96.99 96.97

Recall 79.61 79.55 79.57 79.59

GASSST Prec. 96.01 96.01 96.04 96.04
PE

Recall 90.87 90.83 90.84 90.86

CUSHAW2 Prec. 98.38 98.38 98.38 98.37

Recall 90.43 90.41 90.41 90.44

BWA-SW Prec. 97.89 97.90 97.90 97.90

Bowticd Recall 90.5 90.49 90.49 90.51

owhe Prec. 98.03 98.05 98.04 98.04

Table 4. Real dataset information

Type Name No of Reads ~ Max Mean Insert

454 SRX000001 1026 049 849 192 + 58 -
SRX001829 2790 032 4996 560 £ 165 —

lunima ERX009608 107 967 800 102 101 + 1 311
SRX028059 243441880 102 101 £1 510

SE alignment, CUSHAW?2 has the highest recall and precision for
all datasets. BWA-SW is second and GASSST is worst. For the PE
alignment, CUSHAW?2 still holds the highest rank in terms of both
measures. For each aligner, both the recall and the precision nearly
keep constant with negligible fluctuations. This suggests that every
aligner can tolerate a high percentage of indel errors.

3.2 Evaluation on real datasets

We have assessed all aligners using four datasets produced by
454 and Illumina sequencers, respectively. All the datasets are
publicly available from NCBI SRA and named after their accession
numbers (see Table 4). We have used two runs (SRR000026 and
SRR000027) of the SRX000001 experiment, two runs (SRR006428
and SRR006433) of SRX001829, two runs (ERR024139 and
ERRO024140) of ERX009608 and the single run (SRR189815) of
SRX028059. For all 454 datasets, we have removed all reads shorter
than 100-bp and only conducted the SE alignment. For all Illumina
datasets, we have performed both the SE and the PE alignment.

Figures 2 and 3 show the alignment results for the 454 and
Illumina datasets, respectively. In this evaluation, the alignment of a
read is taken into account only if it has a percentage identity of
>90% and contains >80% bases of the read. This constraint is
also in accordance with our intention for long read alignments, i.e.
attempting to align a read in the full length to the genome. We have
excluded GASSST from the larger [llumina datasets due to its very
slow speed.

i322

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts414/DC1

Long read alignment based on maximal exact match seeds

O CUSHAW?2
BBWA-SW
A Bowtie2
5GASSST

Percentage(%)
wn
(=]

Dataset

Fig. 2. Alignment results using the 454 datasets

97 96.79 9622 96.82

Percentage (%)
O O O O O O
(=} _— N W F Y

o
Nl

OCUSHAW2 ®BWA-SW & Bowtie2
Fig. 3. Alignment results using the Illumina datasets

For each 454 dataset, CUSHAW?2 has the highest sensitivity.
BWA-SW is second and GASSST is worst. For the Illumina datasets,
Bowtie2 aligned the most reads and CUSHAW?2 the second most.
For the SE (PE) alignment, the average sensitivity is ~94.93%
(95.28%) for CUSHAW?2, 93.99% (94.95%) for BWA-SW and
95.45% (95.81%) for Bowtie2.

3.3 Speed and scalability evaluation

We have assessed the speed of each aligner using 12 threads on our
workstation (see Table 5), where we organized all simulated datasets
into three groups, namely D100, D200 and D500, as per the read
lengths and averaged the runtimes of all datasets in each group.

For the SE alignment, GASSST is the slowest for each data
group and is almost two orders of magnitude slower than the other
three aligners for D100, D200 and SRX000001. For the datasets
with smaller mean read lengths of <200-bp, Bowtie2 is the fastest
and CUSHAW?2 outruns BWA-SW. However, for the datasets with
greater mean read lengths of around 500-bp, Bowtie2 becomes
slower than both CUSHAW?2 and BWA-SW and BWA-SW outruns
CUSHAW?2. This suggests that Bowtie2 might have been optimized
for reads of lengths around 200-bp, but does not scale well towards
longer reads. The PE alignment comparison between CUSHAW?2,
BWA-SW and Bowtie2 shows a similar trend.

From the runtimes of all simulated data groups, it is observed that
the runtime for CUSHAW?2, BWA-SW and Bowtie2 significantly
increases as the read lengths grow from 100 to 500. This can

Table 5. Runtime comparison (in seconds) of the tested aligners

Data Group CUSHAW2 BWA-SW Bowtie2 GASSST
SE
D100 108 116 64 3348
D200 238 302 147 3538
D500 1157 842 2,038 4574
SRX000001 57 87 40 3273
SRX001829 925 758 1796 3941
ERX009608 2499 3761 1909 —
SRX028059 11 551 16 731 8191 -
PE
D100 110 123 71 -
D200 241 320 240 —
D500 1157 928 2179 -
ERX009608 2657 4053 2048 —
SRX028059 12 936 17 093 9741 -

be explained by the quadratic time complexity of the DP-based
alignment computation and the increasing number of seeds for
longer reads. However, the runtime of GASSST does not increase
significantly for increasing read length due to its use of both the
multi-filtration mechanism and the early stop of seed search that
stalls when the number of seed occurrences reaches a specified
limit (Rizk and Lavenier, 2010). The multi-filtration mechanism is
likely to eliminate many noisy seeds efficiently. The early stop of
seed search makes the overall number of seeds relatively stable for
different read lengths. However, the negative side effect of the two
approaches is that it causes the loss of relevant seeds, thus missing
some correct alignments as we can observe from evaluation with
simulated reads.

Finally, we have assessed the parallel scalability of all aligners
with respect to the number of threads. In this evaluation, we have
used the three simulated 100-bp, 200-bp and 500-bp datasets with
1% error rate to run each aligner. Figure 4 illustrates the average
speedups of each aligner using different number of threads for
the SE and PE alignment. For both the SE and PE alignment,
CUSHAW?2 shows the best scalability and BWA-SW the second
best. The scalability of GASSST is the worst for the SE alignment,
where it only gets slight speed improvement after doubling the
number of threads. Using 12 threads, for the SE (PE) alignment, the
average speedup is about 11.4 (11.3) for CUSHAW?2, 10.6 (10.6) for
BWA-SW and 8.7(6.3) for Bowtie2, whereas GASSST only has an
average speedup of about 2.2 for the SE alignment.

4 CONCLUSIONS

In this article, we have presented CUSHAW?2, a parallel and accurate
algorithm and tool for aligning long reads to large genomes, such as
the human genome. In this aligner, MEMs are used as seeds to find
gapped alignments and final alignments are reported in SAM format
(Li et al., 2009) to facilitate the downstream analysis. To accelerate
the alignment selection, our aligner employs fine-grained parallelism
from Single instruction, Multiple data (SIMD) vector execution units

i323

Y.Liu and B.Schmidt

2 Sealabiltiy (SE) 2 Scalability (PE)

Speedup

2 4 8 12 2 4 8 12
No. of threads No. of threads
[—6-CUSHAW2 B T |

Fig. 4. Scalability comparison between all aligners for the SE and PE
alignment

with the use of SSE2 assembler instructions. In addition, multi-
threading is supported in order to benefit from the coarse-grained
parallelism on multiple CPU cores.

We have assessed the performance of CUSHAW?2 and the three
other long read aligners: BWA-SW, Bowtie2 and GASSST using
simulated as well as real datasets. For the simulated reads, we have
computed the recall and precision measures since we know the
true position of each read on the genome. For the real datasets, we
have employed the sensitivity measure. Using the above measures,
CUSHAW?2 is shown to be among the highest-ranked aligners in
terms of alignment quality for both the SE and the PE alignment for a
variety of error rates and varying amount of indel errors. Our aligner
achieves good parallel scalability with respect to the number of
threads, while demonstrating highly competitive overall execution
speed. Furthermore, through the use of memory efficient data
structures, CUSHAW?2 only requires a memory footprint of ~4 GB
(using 12 threads) for performing alignments to the human genome.
This approach makes it possible to accurately align hundreds of
millions of long reads to a mammalian-sized genome in only a
few hours on a standard multi-core workstation with only a modest
amount of RAM installed. Since throughput and read-length of NGS
machines continues to grow, these results are of high importance to
the bioinformatics community.

Funding: We acknowledge funding by the Center for Computational
Science, Mainz.

Conflict of Interest: None declared.

REFERENCES

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403—410.
Blom,J. et al. (2011) Exact and complete short read alignment to microbial genomes
using Graphics Processing Unit programming. Bioinformatics, 27, 1351-1358.

Bray,N. et al. (2003) AVID: a global alignment program. Genome Res., 13, 97-102.

Burrows,M. and Wheeler,D.J. (1994) A block sorting lossless data compression
algorithm. Technical Report 124 Digital Equipment Corporation, Palo Alto,
CA, USA.

Choi,J.H. et al. (2005) GAME: a simple and efficient whole genome alignment method
using maximal exact match filtering. Comput. Biol. Chem., 29, 244-253.

Delcher,A.L. et al. (1999) Alignment of whole genomes. Nucleic Acids Res., 27,
2369-2376.

Ferragina,P. and Manzini,G. (2005) Indexing compressed text. J. ACM, 52, 4.

HohLM. et al. (2002) Efficient multiple genome alignment. Bioinformatics,
18(Suppl. 1), S312-S320.

Homer,N. et al. (2009) BFAST: an alignment tool for large scale genome resequencing.
PL0S One, 4, €7767.

Kietbasa,S.M. et al. (2011) Adaptive seeds tame genomic sequence comparison.
Genome Res., 21, 487-493.

Lam,T.W. er al. (2008) Compressed indexing and local alignment of DNA.
Bioinformatics, 24, 791-797.

Langmead,B. er al. (2009) Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome Biol., 10, R25.

Langmead,B. and Salzberg,S. (2012) Fast gapped-read alignment with Bowtie 2. Nature
Methods, 9, 357-359.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows—
Wheeler transform. Bioinformatics, 25, 1755-1760.

Li,H. and Durbin,R. (2010) Fast and accurate long read alignment with Burrows—
Wheeler transform. Bioinformatics, 26, 589-595.

Li,H. et al. (2008) Mapping short DNA sequencing reads and calling variants using
mapping quality scores. Genome Res., 18, 1851-1858.

Li,H. et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics,
25, 2078-2079.

Li,R. et al. (2008) SOAP: short oligonucleotide alignment program. Bioinformatics, 24,
713-714.

Li,R. et al. (2009) SOAP2: an improved ultrafast tool for short read alignment.
Bioinformatics, 25, 1966—1967.

Liuw,Y. et al. (2012) CUSHAW: a CUDA compatible short read aligner to large genomes
based on the Burrows-Wheeler transform. Bioinformatics, 28, 1830-1837.

Ma,B. et al. (2002) PatternHunter: faster and more sensitive homology search.
Bioinformatics, 18, 440—445.

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48, 443-453.

Ning,Z. et al. (2001) SSAHA: a fast search method for large DNA databases. Genome
Res., 11, 1725-1729.

Rasmussen,K.R. ef al. (2006) Efficient g-gram filters for finding all epsilon-matches
over a given length. J. Comput. Biol., 13, 296-308.

Rizk,G. and Lavenier,D. (2010) GASSST: global alignment short sequence search tool.
Bioinformatics, 26, 2534-2540.

Rognes,T. (2011) Faster Smith—Waterman database searches with inter-sequence SIMD
parallelisation. BMC Bioinformatics, 12, 221.

Rumble,S.M. et al. (2009) SHRiIMP: accurate mapping of short color-space reads. PLoS
Comput. Biol., 5, e1000386.

Smith,T.F. and Waterman,M.S. (1991) Identification of common molecular
subsequences. J. Mol. Biol., 147, 195-197.

i324

	Long read alignment based on maximal exact match seeds
	1 Introduction
	2 METHODS
	3 RESULTS
	4 CONCLUSIONS

