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Abstract: Retinitis pigmentosa (RP) is a class of diseases that leads to progressive degenera-

tion of the retina. Experimental approaches to gene therapy for the treatment of inherited retinal 

dystrophies have advanced in recent years, inclusive of the safe delivery of genes to the human 

retina. This review is focused on the development of gene therapy for RP using recombinant 

adenoassociated viral vectors, which show a positive safety record and have so far been successful 

in several clinical trials for congenital retinal disease. Gene therapy for RP is under development 

in a variety of animal models, and the results raise expectations of future clinical application. 

Nonetheless, the translation of such strategies to the bedside requires further understanding of 

the mutations and mechanisms that cause visual defects, as well as thorough examination of 

potential adverse effects.
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Introduction
The major causes of blindness are associated with malfunction and/or degeneration 

of retinal cells, which impairs the flow of visual information from the eye to the 

brain. Similar to other areas of the mammalian central nervous system, neurons of the 

retina are not replaced following degeneration. However, worldwide efforts aim to 

develop new therapies for preserving or improving retinal function. Such treatments 

are expected to slow the progression of degeneration, and if possible also to reverse 

its course. To help this endeavor, a number of animal models of retinal degeneration 

have recently led to a better understanding of mechanisms of retinal disease, and have 

consequently promoted the development of new therapeutic strategies.1

Diseases of the retina display remarkable genetic and clinical heterogeneity.2 

Retinitis pigmentosa (RP) is the most common subtype of retinal degeneration, 

responsible for loss of vision in one in 4,000 people worldwide,3 one in 1,000 in the 

People’s Republic of China,4 and one of 930 in India.5 RP can result from defects in 

any of more than 60 genes inherited as autosomal dominant (30%–40% of cases), 

autosomal recessive (50%–60%), or X-linked (5%–15%), and it can occur either alone 

or together with other systemic disorders. Notwithstanding, mutations in 30%–35% 

of RP patients cannot be identified.6–8

Despite the heterogeneous genetic origin, RP patients display common clinical 

hallmarks, such as an abnormal, bone-spicule dark, punctuate pigmentation, typical of a 

thinned, degenerate retina; attenuated retinal vessels; dysfunction of the photoreceptors 

or the retinal pigment epithelium (RPE), marked by diminished electroretinogram (ERG) 

responses of both rods and cones, and progressive photoreceptor death. In most cases, 
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rods are affected first, leading to night blindness, peripheral 

visual field loss leading to tunnel vision, and eventual total 

blindness. In a few cases, cones are affected first, causing loss 

of central vision. All RP conditions are progressive, but the 

speed and the pattern of deterioration of sight varies among 

patients. In fact, the same gene mutation can cause variable 

symptoms depending on the environment.6

Knowledge of underlying mechanisms of disease sup-

ports the design of optimal therapies. Such is the case with 

gene therapy, the aim of which is either to slow down or 

stop the progress of retinal degeneration in RP. Since the 

nature of the underlying mutation narrows down the range 

of treatment options, gene therapy for RP is discussed below 

according to the genetic classes of the disease.

Gene therapy for eye conditions
Currently, gene therapy represents the most promising 

therapeutic option for many inherited and acquired retinal 

diseases, and many preclinical and clinical assays have been 

done using gene therapy strategies. Recombinant adenoas-

sociated virus (rAAV) is the most widely used vector for 

ocular gene delivery, because of its ability to transduce 

various retinal cell types in vivo efficiently,9 a result likely 

due to its small size relative to other viral vectors. Other 

advantages of AAV are the lack of pathogenicity and the 

ability to transduce both dividing and nondividing cells. 

While recombinant AAV vectors do not contain viral gene 

sequences, a neutralizing antibody response may be mounted 

against capsid proteins, which may impact the use of this 

vector in certain settings.10

The eye is arguably more amenable to gene therapy 

than other organs for several reasons: the structure and 

accessibility of the retina allow local, relatively noninva-

sive administration of the agent compared to other internal 

organs; treatment outcomes can be easily monitored both 

objectively and subjectively by noninvasive methods, such 

as electroretinography and optical coherence tomography, in 

addition to patient input; and the enclosed eye and the pres-

ence of the blood–retinal barrier prevent the unintentional 

systemic spread of vectors, and confer partial immune privi-

lege status to the eye, thus limiting immune responses toward 

the transgene and the vector proteins.11 Notwithstanding 

these features, rAAV vectors are subject to intense research 

to improve their efficacy in gene therapy.

Ideally, therapeutic gene modulation should be restricted 

to specific cell types. The penetration of AAV vectors can 

be limited by the site of injection for intravitreal injections 

allow targeting to the ganglion cell layer, while subretinal 

injections target photoreceptors and RPE. In addition, distinct 

AAV-vector serotypes vary in both their targeting and trans-

duction efficiency (Table 1).

Serotype tropism may also vary among distinct species. 

In canine models, various serotypes have been shown to 

transduce the outer retina, but recent work tends to favor 

especially serotypes 5 and 8 for the direct targeting of 

photoreceptors.12–23 In nonhuman primates, AAV2  shows 

good transduction in ganglion cells of the foveal area,24 rod 

photoreceptors and RPE25; AAV5 transduces primarily rods,26 

while primate cones may be targeted by AAV5 in combina-

tion with cone-specific promoters.27 More recent work in 

primates showed effective transduction of photoreceptors 

with serotypes 1, 5, 8, and 9, with the latter showing par-

ticularly good transduction of cones.28–31 In several species, 

including primates, serotype 4 was shown to effectively 

target RPE.14

Tyrosine mutations in the capsid of AAV prevent vector 

ubiquitination and consequent degradation.32 New vectors 

have been developed in which the capsids of various 

AAV serotypes contain substitutions of phenylalanine for 

tyrosine residues. These provide for an increased efficiency 

of transduction, therefore reducing the amount of viral 

vector required for therapeutic effects, and consequently 

decreasing immune responses to the vector itself. Such 

substitutions result in increased penetration of the retina 

following intravitreal injections, which allows for the target-

ing of photoreceptors and RPE while avoiding the trauma 

of subretinal injections currently used to transduce these 

cell types.33,34

The development of AAV vectors with cell-specific pro-

moters helps in targeting the cell of interest. rAAV vectors 

containing a human rpe65 promoter were used to induce 

RPE-specific expression in RPE65-deficient Briard dogs. 

Table 1 Efficiency of transduction of different retinal cells 
following subretinal or intravitreal injection of different serotypes 
of AAV vectors in mice

Cell type/ 
injection site

RPE/ 
subretinal

Photoreceptor/ 
subretinal

Ganglion cell 
layer/intravitreal

Capsid
AAV1 +++ – –

AAV2 ++ + ++
AAV4 ++ – –

AAV5 + ++ –

AAV8 + +++ ++
AAV9 – +++ ++

Notes: –, no transduction; + to +++, increasing transduction.
Abbreviations: AAV, adenoassociated virus; RPE, retinal pigment epithelium.
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This was shown to be 10% stronger then the ubiquitous 

cytomegalovirus promoter, and was ineffective in older 

animals.17 More recently, RP guanosine triphosphatase 

(GTPase) regulator (RPGR) promoter region was char-

acterized, and it may be useful in future RPE targeting.35 

Photoreceptors have been successfully targeted by both 

rhodopsin and rhodopsin-kinase promoters, with substantial 

activity in mice, dogs, and nonhuman primates,30,36,37 and 

a cone arrestin promoter has been used more recently for 

cone dystrophy.38,39 Promoters selective for retinal bipolar 

cells and ganglion cells have also been explored, mostly for 

optogenetic strategies of intervention through gene therapy, 

aimed at examining their use for recovery of visual function 

in patients at advanced stages of retinal degeneration.24,40

Autosomal-recessive RP
In autosomal-recessive RP, the patient has two dysfunctional 

copies of the mutated gene. In this case, gene-replacement 

therapy constitutes a straightforward approach to treat both 

the defective genotype and phenotype. A key element of this 

strategy is that the therapy is directed at the retinal cells where 

the mutation or lack of the relevant gene causes the primary 

defect. Target cells are usually photoreceptors or the RPE.

One example of gene therapy for RP in animal models 

that mimics the human disorder is directed at mutations in 

the MERTK gene. Human receptor tyrosine kinase MER 

(MERTK) was originally cloned as a novel tyrosine kinase,41 

expressed as a transmembrane protein with two fibronectin 

type III domains, two immunoglobulin-like C2-type domains, 

and one tyrosine-kinase domain.41 In addition to its potential 

onco-transforming ability, deletion of the MERTK gene was 

identified as the underlying defect in a classic rat model of 

RP: the Royal College of Surgeons (RCS) rat.42 Mutations in 

MERTK are responsible for a rare autosomal-recessive form 

of RP in humans.43–45

Photoreceptors are exposed to intense levels of light 

that lead to the accumulation of photo-oxidized proteins 

and lipids, as well as free radicals, especially at the tips of 

the outer segments. Thus, photoreceptors have evolved to 

undergo constant outer-segment loss at their tips through 

RPE phagocytosis, together with renewal at their base via the 

cilium.46,47 Shed outer segments are digested in the RPE, from 

where important molecules are recycled to photoreceptors. 

Failure to regulate these functions properly can lead to the 

accumulation of debris in the interphotoreceptor space and 

retinal/RPE degeneration. MERTK located in the RPE medi-

ates the association between these cells and the photoreceptor 

outer segments, and in MERTK-knockout mice, as well as in 

the RCS rat, in which a truncated, nonfunctional MERTK 

fails to localize to the cell membrane, the normal ingestion 

by RPE cells of the shed tips of photoreceptor outer segments 

is impaired. The clearance of apoptotic cells by mononuclear 

phagocytes is also altered in MERTK-knockout mice.48 

These data are consistent with the function of MERTK in 

the cytoskeletal remodeling required for engulfment during 

phagocytosis.49

Attempts to treat MERTK defects have thus far focused 

on gene transfer. It was reported that transfer of normal 

copies of the MERTK gene by adenoviral vectors into the 

subretinal space of RCS rats led to both histological and 

functional improvement 30 days after injection. Importantly, 

this included correction of RPE phagocytosis defects in areas 

near the injection site. However, the survival of photorecep-

tors appeared to be only transient.50 Such transient phenotypic 

rescue with first-generation adenovirus vectors has been 

attributed to the immune response generated against viral 

gene products.51 Indeed, although the success of ocular gene 

therapy is credited in part to the relative immune-privileged 

status of the eye, a significant cellular immune response is 

known to be promoted by adenoviral proteins, which limits 

adenoviral-mediated transgene expression in the retina. Even 

though most of the adenoviral genome has been deleted in 

new generations of adenoviral vectors, this cellular immune 

response still represents a risk in the eye.52 Notwithstanding, 

these gene-transfer experiments with adenoviral vectors 

validated both that the disease phenotype is caused by 

mutations in MERTK and that the condition does respond to 

gene-replacement therapy.

In a later study, an AAV vector was used to transfer 

MERTK into the subretinal space of RCS rats, leading 

to restoration of phagocytic function, with a decrease in 

outer-segment debris. ERG analysis indicated transiently 

improved visual function and retinal morphology. The sur-

vival of photoreceptors was, however, prolonged for only 

12 weeks, even in the presence of continued MERTK trans-

gene expression.53 One possible explanation is that once the 

degeneration machinery is triggered, it can be delayed but not 

prevented.54 Since standard AAV-mediated transgene expres-

sion peaks at approximately 3–4 weeks posttreatment,55 

buildup of outer-segment debris may trigger photoreceptor 

degeneration before peak therapeutic activity. In addition, 

a single subretinal injection does not cover the entire area of 

the retina, and degenerating photoreceptors in distant parts 

of the retina may have a negative impact on photoreceptor 

survival in the treated area, thus further limiting the effects 

of the treatment.
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Despite the incomplete photoreceptor rescue in early 

studies employing rAAV vectors, the results support gene 

therapy as a valid therapeutic approach, as long as faster-

onset vectors are used. Indeed, when a lentiviral vector was 

used to transfer MERTK, functional improvements lasted up 

to 27 weeks, and photoreceptor-cell survival was prolonged 

for up to 30 weeks.56

The most recent attempt to transfer MERTK via gene 

therapy took advantage of an AAV vector containing Y733F 

tyrosine-to-phenylalanine substitutions. This had been shown 

to provide rapid and efficient reporter-gene expression when 

injected subretinally into adult mouse eyes.33 The rAAV-

MERTK vector led to longer and more robust functional and 

morphological rescue than previous studies.57

Autosomal-dominant RP
Only one mutated copy of the gene suffices to produce 

autosomal-dominant RP. Disease may be caused by reduction 

in the level of wild-type protein (haploinsufficiency), by a 

gain of a deleterious function (dominant negative effect), or 

by a combination of both. Dominant mutations may also lead 

to disease by causing the buildup of toxic proteins. While 

limited mechanistic insight has been gained from human 

patients, transgenic and targeted expression studies in animal 

models have been useful to distinguish among various types 

of dominant mutations. Because of the dominant nature of 

this class of disease, simple gene-replacement therapy is 

often insufficient to overcome the expression of the mutant 

allele, although haploinsufficiency disease may respond to 

gene-replacement therapy. Rather, gene therapy aimed at 

dominant diseases requires either suppression of the expres-

sion of the mutated allele or an increase in the expression of 

the wild-type allele, or both. Because there are often many 

disease-causing dominant mutations in a single gene, tar-

geted gene elimination or repair for each separate mutation 

is problematic. An alternative approach would be to promote 

cell survival, to preserve affected retinal cells and slow the 

course of degeneration.

The most common mutations associated with autosomal 

dominant RP are in either the RHO or the RDS/peripherin 

gene, which account for approximately 25% and 10% of the 

cases, respectively.58 Gene therapy approaches for each are 

presented below.

Rhodopsin RP
The first mutation described for RP was in the rhodopsin 

gene – RHO. Rhodopsin is the visual pigment in rod-

photoreceptor cells, which subserves vision under dim 

light conditions, and is involved in the essential first step 

of phototransduction. It consists of a protein moiety – an 

opsin – and a nonprotein moiety: the chromophore 11-cis-

retinal. Opsin is a seven transmembrane domain-containing 

protein of the family of G-protein-coupled receptors, 

localized predominantly in the disk membranes of rod 

outer segments. Isomerization of 11-cis-retinal to all-trans-

retinal upon absorption of a photon induces changes in 

opsin structure that promotes the activation of the G protein 

transducin, thus initiating the biochemical cascade known as 

phototransduction.59 Rhodopsin accounts for .70% of the 

total rod outer-segment protein, and more than 120 mutations 

located in all three domains of rhodopsin – intradiskal, trans-

membrane, and cytoplasmic – are associated with RP. Almost 

all mutations lead to the production of aberrant protein.60

The first rhodopsin mutation to be identified encoded a 

proline-to-histidine substitution at position 23 (P23H).61,62 

P23H rhodopsin mutants are retained in the endoplasmic 

reticulum and are unable to associate with 11-cis-retinal.63–65 

Unlike wild-type rhodopsin, mutant P23H is degraded by 

the ubiquitin–proteasome system,66 but large quantities of 

unfolded, mutant protein accumulate as ubiquitinated P23H in 

the cytoplasm.67 Similar to other dominant inherited neurode-

generative diseases, such as Parkinson’s and amyotrophic lat-

eral sclerosis, the formation of intracellular protein aggregates 

associate with cellular degeneration.68 Mice heterozygous for 

RHO have normal retinal morphology and function, showing 

that the expression of just one functional rhodopsin allele 

is sufficient for vision. However, in many cases of RP, the 

dominant gain of function of misfolded rhodopsin induces 

degeneration of photoreceptors, and in such cases, mutations 

of one allele only lead to visual impairment. A plausible 

approach for the treatment of gain-of-function mutations is 

to enhance proteosomal degradation of misfolded rhodopsin, 

but to date there have been no reports of significant success 

in animal models. An alternative procedure might be through 

targeted ribonucleic acid (RNA)-based therapy to silence the 

mutant allele, while maintaining the expression of the wild-

type allele. Gene-silencing therapies based on the selective 

destruction of a specific messenger RNA (mRNA) have been 

achieved with varying success using ribozymes, and more 

recently by RNA interference.69–71

Ribozymes are self-cleaving RNA enzymes of approxi-

mately 30 nucleotides, naturally found in lower eukaryotes, 

viruses, and some bacteria. Their secondary structure is 

composed of three stems: the central stem is the catalytic 

domain responsible for the cleavage reaction, while the two 

flanking domains provide the antisense arms required for 
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mRNA binding that leads to sequence-specific cleavage.72 

It was demonstrated that in vivo expression of an AAV-

delivered ribozyme, designed to recognize and cleave the 

unique transcript produced by the P23H RHO transgene 

in rats, specifically reduced mRNA from the mutant allele, 

slowed the degeneration of photoreceptors, and led to func-

tional preservation of the retina in the short term.73 In later 

studies, it was shown that the continued expression of the 

ribozyme markedly slowed the rate of photoreceptor degen-

eration and preserved retinal function, as assessed by ERG, 

for at least 8  months in transgenic rats.74,75 These results 

were the first evidence that gene-silencing approaches for 

disease correction can be effective for long-term therapy in 

autosomal-dominant retinal degeneration. However, design-

ing and testing such therapeutic reagents for the more than 

120 different rhodopsin mutations presently known is not 

economically or technically viable. An alternative experi-

ment was therefore designed to attack all rhodopsin mRNAs, 

wild-type and mutant, at once, with a silencing agent that 

recognizes a common target sequence while simultaneously 

delivering a replacement copy of RHO, the sequence of which 

is resistant to the action of the silencing agent.76

More recently, small interfering RNA (siRNA) has 

emerged as more robust and efficient than ribozymes for 

silencing gene expression.77 The silencing mechanism is 

based on ubiquitous cellular processes, which could arguably 

lead to more clinical success and public acceptance. RNA 

interference (RNAi) inhibits gene expression by degrading 

mRNA in a sequence-specific manner upon introduction of 

double-stranded RNA (dsRNA). This long dsRNA is cut 

into 21- to 23-mer active intermediates, the siRNAs, which 

are incorporated and unwound in the RNA-induced silenc-

ing complex (RISC).78 When loaded with a single-stranded 

siRNA, RISC binds to the complementary sequence on the 

mRNA and cleaves the latter between nucleotides 10 and 

11 of the siRNA,79 thus initiating its degradation and inhibit-

ing further gene expression.

In turn, the expression of functional RHO protein coded 

by RHO genes resistant to siRNA has been demonstrated 

through transgenesis, as well as by in vivo expression of the 

replacement gene delivered by rAAV in the presence of the 

targeting RNAi molecules.80 Evidence of therapeutic benefit 

from AAV-delivered siRNA suppression and replacement 

therapies was obtained in transgenic P23H mice.76,81 These 

results were the first to show in vivo that the combination 

of suppression and replacement may treat dominantly inher-

ited RHO-linked RP despite RHO-associated mutational 

heterogeneity.

RDS pattern dystrophy
Peripherin/RDS (retinal degeneration slow) is a transmem-

brane glycoprotein that, along with an associated protein, 

retinal outer-segment membrane, is localized to the rim 

region of outer-segment disks in rods and cones.82,83 Mice 

carrying a mutation in this gene (RDS/RDS) constitute one 

of the first and best-studied models of retinal degeneration 

since its phenotype was described in 1978.84 This naturally 

occurring null mutant fails to form photoreceptor outer 

segments, whereas heterozygotes have a partial phenotype 

of short and disorganized outer segments,85 suggesting that 

the protein level from one wild-type allele is not sufficient 

to maintain outer-segment structure and retinal function. 

Although these phenotypes implicate a requirement of RDS 

for correct outer-segment disk morphogenesis and mainte-

nance of photoreceptor outer segments, its precise structural 

role is not yet completely understood.

Human RDS, cloned in 1991, encodes a putative 346-amino 

acid protein with 92% homology to the mouse protein.86 In 

the same year, RDS mutations were identified in patients with 

autosomal dominant RP.87 Thus far, over 90 human mutations 

in RDS have been identified, which result in a wide phenotypic 

spectrum of retinal dystrophies, related not only with RP but 

also with a variety of macular dystrophies, particularly pat-

tern dystrophy. A common feature of these disorders is the 

loss of macular (central retinal) photoreceptors, a phenotype 

also seen throughout the RDS–/– mouse retina. The genotypic 

and phenotypic heterogeneity make the extension of studies 

in animal models to humans uncertain. Currently, however, 

gene therapy appears to be the most promising approach for 

treating peripherin/RDS disease. Upon subretinal injection 

of an AAV vector containing RDS, homozygous null mice 

responded with increases in rhodopsin synthesis, correction of 

rod outer-segment formation, and restoration of visual func-

tion in the first 14 weeks following treatment.88,89 However, 

the treatment did not result in long-term preservation of 

photoreceptors,90 demonstrating the critical importance of 

RDS in the integrity of the photoreceptor outer segment, and 

suggesting that the mutation-independent suppression and 

replacement strategies discussed above for RHO autosomal-

dominant RP may be useful here as well.

Indeed, the concept of a double gene therapy strategy 

of siRNA-mediated suppression of RDS together with gene 

replacement through AAV vectors containing siRNA was 

validated with the demonstration of up to 50% reduction of 

RDS expression together with the simultaneous expression 

of a siRNA-resistant replacement transcript in the retina of 

mice in vivo.91
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X-linked RP
X-linked RP (XLRP) is one of the most severe forms of 

RP, characterized by early onset and rapid progression of 

vision loss, accounting for 6%–20% of all RP cases. So far 

six loci of genetic defects have been mapped in XLRP (RP2 

[MIM 312600], RP3 [MIM 312610], RP6 [MIM 312612], 

RP23 [MIM 300424], RP24 [MIM 300155], and RP34[MIM 

300605]), but only two genes were identified: RP2 and RPGR 

or RP3.92,93 Studies in zebrafish provided insight into the cel-

lular functions of both RPGR/RP3 and RP2, due to the high 

degree of functional conservations between human genes 

and their orthologues.94

Mutations in the RPGR/RP3 gene account for 70% of 

XLRP and disease manifest in male patients with no male-

to-male transmission of the phenotype. However, families 

with dominant inheritance and female carriers show disease 

symptoms of variable degree. RPGR/RP3 product is essential 

for cell viability, and localizes in the connecting cilia and basal 

bodies of rod and cone photoreceptors, with a possible role 

in protein transport and microtubule organization. Approxi-

mately 60% of all XLRP cases are associated with a mutation 

hotspot in open reading frame in ORF15 of RPGR/RP3.95,96

A potential gene therapy for RPGR/RP3 XLRP was tested 

in two canine models through subretinal injection of rAAV 

serotype 5 coding human/RP3 under human interphotorecep-

tor retinoid-binding protein or G-protein-coupled receptor 

kinase 1 promoters. Overall, the therapy was very effective, 

with preservation of photoreceptor nuclei and inner/outer 

segments. Both rod and cone photoreceptor functions were 

at higher levels in treated than in control eyes, thus providing 

proof of principle for translation to human treatment.20

In turn, disease-causing mutations in the RP2 gene 

account for approximately 15% of XLRP, and are spread 

more uniformly along the gene. Its product is believed to have 

a role in the trafficking of proteins to the plasma membrane 

and in maintaining Golgi cohesion. A majority of the muta-

tions in RP2 are localized in the cofactor C homologous 

domain, and are predicted to generate a truncated protein 

with disrupted localization.97,98 No gene therapy has yet been 

directed at this gene.

Neuroprotection in RP
Among the large number of mutations associated with RP, the 

common characteristic of the disease is the degeneration of 

rod and cone photoreceptors. Evidence both of endoplasmic 

reticulum stress, as well as execution of cell death through 

apoptosis, have been identified in photoreceptor-cell death. 

Accordingly, two gene therapy protocols have been designed 

to interfere with these events, in an attempt to preserve the 

visual cells. Even a delay in degeneration may be important 

in a combination therapy, to allow the photoreceptors time 

to recover function as the expression of the replacement 

transgene increases.

Involvement of the endoplasmic reticulum stress response 

was identified among pathological events of RP.99 Recently 

it was shown that rAAV-mediated overexpression of Bip, an 

endoplasmic reticulum chaperone, protected photoreceptors 

in the P23H RHO transgenic model of autosomal-dominant 

RP, and might be useful for other types of RP in which 

the mutation is related with the accumulation of misfolded 

proteins.100 On the other hand, resistance to apoptosis was 

achieved with rAAV-mediated delivery of the XIAP gene 

in cultured human RPE cells,101 and its overexpression pro-

longed the effects of AAV-PED6β gene therapy.102 Also, 

preservation of photoreceptors in various models of RP was 

observed following rAAV delivery of various neurotrophic 

factors, such as glial cell line-derived neurotrophic factor, 

ciliary neurotrophic factor, brain-derived neurotrophic factor, 

and insulin-like growth factor, among others.

Future perspectives
AAV-vectored gene therapy is now common in mouse mod-

els of various human retinal diseases. A few therapies have 

made their way to clinical trials, but only one has advanced 

enough to pave the way towards clinical use, namely the 

ongoing Leber congenital amaurosis 2 trials.103–109 Even 

in this case, recent data unraveled a dissociation between 

functional recovery and prevention of photoreceptor-cell 

death.108 Further aspects currently under investigation are 

related to immune responses to recombinant AAV vectors, 

especially upon readministration,105,110 as well as the relation-

ship of age of onset with window of opportunity for gene 

therapy directed at distinct forms of Leber’s congenital 

amaurosis.104,111

As more studies advance, we expect further expansion 

of the field in the next 5–10 years. Clearly, retinal gene 

therapies will need to be tailored to each patient, so as to 

optimally address the state of the degeneration at the time 

of treatment. Single gene defects, if treated early, will 

benefit the most from direct replacement of therapeutic 

genes or correction/ablation of the offending gene. For 

many such disorders, however, patient numbers are so 

small that more general neuroprotective gene therapies are 

likely to be developed first, because they hold promise for 

preventing or delaying degeneration in a wide variety of 

retinal disorders.
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For late-stage retinal dystrophies, in which photoreceptor-

mediated vision is essentially absent, prosthetic retinas, cell-

replacement therapies or gene-based modifications of inner 

retinal cells to become light receptors may be the most likely 

alternatives.112 Stem and progenitor cells can be isolated from 

a number of sources, including embryonic tissue, adult brain, 

and even retina, prompting many researchers to investigate 

the potential for using these cells to generate retinal cells for 

transplantation.113,114 However, there are several obstacles to 

be overcome before these techniques can be applied, such as 

the poor yield of differentiation of exogenous stem cells and 

the complexity of the required synaptic connections between 

transplanted and endogenous retinal cells. Exploitation of cell 

replacement will require a deeper understanding of devel-

opmental biology and the identification of key regulators of 

the various cellular differentiation pathways.

In conclusion, the advances in the understanding of the 

genetics and pathophysiology of retinal disease have now 

established the fundamentals of new gene-based therapies 

for several disorders that have not responded to conventional 

treatments, and recombinant AAV vectors are at the center of 

this progress towards the cure of retinal degenerations.
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