
Citation: Brancato, V.; Cerrone, M.;

Lavitrano, M.; Salvatore, M.;

Cavaliere, C. A Systematic Review of

the Current Status and Quality of

Radiomics for Glioma Differential

Diagnosis. Cancers 2022, 14, 2731.

https://doi.org/10.3390/

cancers14112731

Academic Editor: Peter Hau

Received: 28 April 2022

Accepted: 30 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Systematic Review

A Systematic Review of the Current Status and Quality of
Radiomics for Glioma Differential Diagnosis
Valentina Brancato 1 , Marco Cerrone 1,* , Marialuisa Lavitrano 2 , Marco Salvatore 1 and Carlo Cavaliere 1

1 IRCCS Synlab SDN, 80143 Naples, Italy; valentina.brancato@synlab.it (V.B.);
direzionescientifica.irccssdn@synlab.it (M.S.); carlo.cavaliere@synlab.it (C.C.)

2 School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy;
marialuisa.lavitrano@unimib.it

* Correspondence: marco.cerrone@synlab.it; Tel.: +39-081-2408444

Simple Summary: Gliomas can be difficult to discern clinically and radiologically from other brain
lesions (either neoplastic or non-neoplastic) since their clinical manifestations as well as preoperative
imaging features often overlap and appear misleading. Radiomics could be extremely helpful for
non-invasive glioma differential diagnosis (DDx). However, implementation in clinical practice is
still distant and concerns have been raised regarding the methodological quality of radiomic studies.
In this context, we aimed to summarize the current status and quality of radiomic studies concerning
glioma DDx in a systematic review. In total, 42 studies were selected and examined in our work. Our
study revealed that, despite promising and encouraging results, current studies on radiomics for
glioma DDx still lack the quality required to allow its introduction into clinical practice. This work
could provide new insights and help to reach a consensus on the use of the radiomic approach for
glioma DDx.

Abstract: Radiomics is a promising tool that may increase the value of imaging in differential
diagnosis (DDx) of glioma. However, implementation in clinical practice is still distant and concerns
have been raised regarding the methodological quality of radiomic studies. Therefore, we aimed
to systematically review the current status of radiomic studies concerning glioma DDx, also using
the radiomics quality score (RQS) to assess the quality of the methodology used in each study. A
systematic literature search was performed to identify original articles focused on the use of radiomics
for glioma DDx from 2015. Methodological quality was assessed using the RQS tool. Spearman’s
correlation (ρ) analysis was performed to explore whether RQS was correlated with journal metrics
and the characteristics of the studies. Finally, 42 articles were selected for the systematic qualitative
analysis. Selected articles were grouped and summarized in terms of those on DDx between glioma
and primary central nervous system lymphoma, those aiming at differentiating glioma from brain
metastases, and those based on DDx of glioma and other brain diseases. Median RQS was 8.71
out 36, with a mean RQS of all studies of 24.21%. Our study revealed that, despite promising and
encouraging results, current studies on radiomics for glioma DDx still lack the quality required to
allow its introduction into clinical practice. This work could provide new insights and help to reach a
consensus on the use of the radiomic approach for glioma DDx.

Keywords: glioma; differential diagnosis; radiomics; radiomics quality score; texture analysis

1. Introduction

Gliomas are the most common primary brain tumor, which originate in the glial cells,
including astrocytes, oligodendrocytes, and ependymal cells [1]. According to the World
Health Organization (WHO) grading system, gliomas are categorized into grades 1 to 4.
Except for pilocytic astrocytoma (WHO grade 1), all the WHO 2–4 gliomas are malignant
tumors [2].
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Although comprising less than 2% of all newly diagnosed cancers, gliomas are associ-
ated with substantial mortality and morbidity. Of these, glioblastoma multiforme (GBM) is
the most aggressive and lethal glioma and accounts for 70–75% of all gliomas [3].

Concerning clinical aspects, glioma predominantly manifests with neurological signs,
which can also be encountered in other neoplastic and nonneoplastic lesions such as brain
inflammation, abscess, lymphoma, or brain metastasis [4,5].

Brain imaging has a fundamental role in glioma management, for establishing an accu-
rate diagnosis, classification, surgical planning, and post-treatment follow-up. Commonly,
a brain computed tomography (CT) scan is the initial imaging modality used to diagnose
glioma, which presents as a hypodense lesion, possibly showing rim enhancement follow-
ing contrast agent injection. Despite providing important anatomical information, CT is
usually followed by magnetic resonance imaging (MRI), which is generally considered
superior to CT in terms of contrast resolution and can provide complementary informa-
tion [6,7]. MRI with gadolinium contrast enhancement is considered the gold standard
imaging method for assessing brain tumors. It provides information on location, mass
effect, peritumoral edema, and contrast-enhancement [7]. However, advances in imaging
techniques have allowed for a more detailed characterization of tumor characteristics and
for a deeper investigation of glioma pathophysiological aspects. Advanced MRI sequences
such as perfusion, advanced diffusion protocols [8], and susceptibility weighted imaging, as
well as positron emission tomography (PET) scans with specific radiotracer, have emerged
as valuable tools to inform clinical decision making and provide a non-invasive way to
help in glioma management [9].

Nevertheless, beyond what concerns the overlapping clinical manifestations, gliomas
can be difficult to discern radiologically from other brain lesions (either neoplastic or non-
neoplastic) since their preoperative imaging features often overlap and appear misleading.
Because certain lesions require nonoperative treatments, it is necessary to distinguish
them from gliomas, and this constitutes a serious clinical challenge affecting both surgical
planning and follow-up treatment.

For example, primary central nervous system lymphoma (PCNSL) is a common
brain lesion that has shown an increase in occurrence in recent decades as the number of
immunosuppressed and immunocompetent patients has increased. On MRI, PCNSL and
high-grade gliomas share structural overlaps and anatomical similarities, both of which
show contrast-enhancing lesions with peritumoral edema [10]. Similarly, distinguishing a
glioma from brain metastasis is another clinical challenge, not only because of the similar
symptoms of these conditions but also due to their very similar appearance on conventional
MRI sequences as solitary, highly enhancing brain tumors surrounded by a T2-hyperintense
edema [4,11].

Furthermore, despite the great spectrum of imaging available, a wide range of brain
non-neoplastic disorders can mimic a brain tumor, both clinically and radiologically, posing
a potential pitfall for physicians involved in patient care. For example, distinguishing
brain parenchyma inflammation from grade II glioma can be difficult for neuroradiologists
since both inflammation and glioma appear on conventional MRI sequences as lesions
with a mass effect. Moreover, they have similar properties on specific sequences, such
as hypointensity on T1-w, hyperintensity on T2-w, and no enhancement on postcontrast
T1-CE [4,12].

As a result, there is a continued need for more accurate pre-operative glioma differen-
tial diagnosis (DDx), which may be conducted non-invasively with more advanced imaging
techniques or through artificial intelligence methods [13,14].

In light of the above, the use of radiomics could be extremely helpful for non-invasive
glioma DDx since it uses a voxel-by-voxel approach to convert the sparse imaging data into
big data (histogram, texture, and transformed features). The concept behind radiomic is that
biomedical imaging derived from medical images (e.g., CT, MRI, and PET) contains hidden
information that can be discovered by quantitative image analyses and used to obtain
pathophysiological information so as to supplement data held by the radiologist [15,16].
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Using advanced mathematical algorithms, radiomics has advantages in exploiting
more tumor features that cannot be recognized by the naked eye [17]. The basic principle
of radiomics is that a pathological process that alters the tissue modifies the intensity and
distribution of the pixels, which will be reflected in different values of textural features
with respect to those of the normal tissue and/or tissues affected by other diseases [18].

In neuro-oncology, these features can potentially be used for DDx of newly diagnosed
cerebral lesions suggestive of brain tumors [19].

In the last decade, radiomics studies aiming at differentiating gliomas from other
intracranial diseases have substantially increased, with many demonstrating the power of
radiomic features for distinguishing between gliomas and metastases, as well as gliomas
and PCNLS, and also non-neoplastic brain diseases [12,20,21]. Nevertheless, the current use
of radiomics in glioma differentiation is rather confined to the academic literature, with no
research translating to clinical applications, thus generating doubts among clinicians about
the validity of radiomics in this field. This is owing in part to a general lack of efficient and
effective strategies for translation of imaging biomarkers into clinical practice. In response
to the great need for a qualified reporting, standardized evaluation of the performance,
reproducibility, and clinical utility of radiomics, a system of metrics to determine the
validity and completeness of radiomics studies was developed by Lambin et al. in the
form of the radiomics quality score (RQS) [15]. The RQS is a modality-independent tool
developed to assess the methodological quality of studies using radiomics. It is based on
16 items that reward and penalize the methodology and analyses of a radiomics study, thus
encouraging best scientific practice.

Given the above, the aim of our study was to summarize the current status of radiomic
studies concerning glioma DDx, evaluating the radiomics analysis conducted in previous
publications by means of the RQS. Our intention was to promote the quality of radiomics
research studies in glioma DDx, analyzing its feasibility for medical decision making, and
triggering integrated clinical and advanced imaging analyses.

2. Materials and Methods
2.1. Search Strategy and Selection Criteria

A systematic search for all published studies using radiomics for glioma DDx was
conducted. Three of the most relevant scientific electronic databases (PubMed, Web of
Science, Google Scholar) were comprehensively explored and used to build the search. Only
studies published since 2015 were selected. The last search was performed on 1 March 2022.
The search strategy included the key terms listed in Supplementary Materials. The literature
search was restricted to English-language publications and studies of human subjects.

Two reviewers, after having independently screened identified titles and abstracts,
assessed the full text of articles that evaluated the use of a radiomics approach for glioma
DDx with respect to other diseases and were not review articles. For articles meeting these
criteria with full text available, the following further selection criteria had to be fulfilled:
involvement of patients in confirmed diseases by pathology and/or surgery and/or overall
analysis combined with medical history, clinical symptoms, and various imaging data;
presence of information about imaging protocol. Studies were excluded if they aimed
at differentiating between different types of glioma (this kind of classification cannot be
considered as “DDx” since it falls within the “grading” task).

2.2. Planning and Conducting the Review

After the selection procedure, selected articles were analyzed by two reviewers, and
data useful for conducting the systematic review were collected in a predesigned sheet.
Extracted data will include the following: study characteristics (first author name, publica-
tion year, scientometric indexes, namely, Impact Factor (IF), 5-years IF, CiteScore, H-index,
first author IF with and without self-citations, study design, in particular prospective or
retrospective, number of included patients), diseases involved in the DDx task, imaging
modalities used for radiomic feature extraction, information on the ROI placement, soft-
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ware for radiomic feature extraction, number and feature type, feature selection methods (if
used), classification methods, validation methods (if used), information on whether models
were applied to a separate test or validation datasets, highest accuracy/most important
results, and main findings.

Studies were classified and analyzed according to the purpose they had, and in par-
ticular to diseases evaluated other than glioma in the DDx task. This systematic review
was conducted in accordance with the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement (see Supplementary Materials for PRISMA Check-
list) [22]. This systematic review has been registered on the Centre for Open Science’s Open
Science Framework (OSF) (osf.io/3ksa9).

2.3. Quality Assessment Using RQS Evaluation

The methodological quality of each study was evaluated by two reviewers indepen-
dently using the Radiomic Quality Score (RQS) [15]. Any disagreement was resolved by
consensus. RQS tool is composed of 16 items structured to assess various crucial steps in the
workflow of radiomics analyses. In particular, a maximum of 36 points can be assigned to
each study: up to 2 points for the first (a single item, namely “Image protocol quality”), up
to 3 points for the second (3 items, specifically on multiple segmentation strategies, the use
of phantoms, and multiple imaging time points), and up to 31 points for the third (12 items,
encompassing feature extraction, exploratory analysis design as well as model building
and validation) RQS checkpoint (refer to Supplementary Table S1 for RQS checkpoints,
items, and points for each item). The total score ranges between −8 and 36 and can be
translated into a final 0–100 RQS percentage. Two readers assessed each included study
using the RQS and any disagreement was resolved by consensus.

2.4. Statistical Analysis

Spearman’s correlation (ρ) analysis was performed to explore whether there was a
correlation between RQS and journal metrics (Impact Factor (IF) of the journal at the year
of publication, 5-Year IF, CiteScore, and H-index at the year of publication). Moreover,
Spearman’s correlation was used to explore the correlation between RQS and H-index of the
first author and the year of publication of the study (both with and without self-citations),
as well as the association with the number of patients involved in the study and the number
of radiomic features investigated. Finally, to explore whether there was a difference in RQS
according to the clinical purpose of the study, a subgroup analysis was performed using
Kruskal–Wallis. In case of significance, Wilcoxon rank-sum post hoc tests with Bonferroni
correction were carried out on each pair of groups. The significance level was set at 0.05.
All statistical analysis was performed using SPSS (version 27) (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Study Selection

A total of 491 articles were retrieved by searching scientific electronic databases. After
removal of duplicates, there were 124 articles left for investigation. By scanning the title
and abstract of these records, 53 records were excluded because they clearly did not match
the inclusion criteria (23 were off-topic, 14 were on glioma grading, 16 were review articles).
A total of 71 articles were evaluated on their full text. Of these articles, 19 records were
excluded based on the inclusion criteria (15 were off-topic, 11 were not on radiomics, 4 were
on glioma grading). An additional 12 articles were found through references of selected
articles or pre-existing review/systematic review/meta-analyses, of which 3 were included
in our study. Finally, 41 records were included for qualitative synthesis. The PRISMA flow
diagram of included studies according to the inclusion and exclusion criteria is presented
in Figure 1.
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow
diagram of included studies.

3.2. Characteristics of Included Studies

Characteristics of the 42 selected articles selected are reported in Table 1. The median
number of patients (±absolute deviation) was 107.5 ± 76.64. Study designs were 4.8%
(2/42) prospective and 95.2% (39/42) retrospective. All studies except one investigated the
power of radiomic features arising from MRI for DDx. Only two investigated radiomic
features from 18FDG-PET [23,24] and only one investigated the power of CT radiomics for
glioma DDx [25]. A total of 20 studies focused on radiomics for DDx of primary nervous
system lymphoma (PCNSL) and glioma (47.6%), with all but one involving IV glioma
grade (GBM) patients. In total, 16 studies explored the diagnostic feasibility of radiomic
features for DDx of glioma and metastases (38.1%), with all but three studies involving
IV glioma grade (GBM) patients. One study investigated the power of radiomic features
for DDx of GBM, PCNSL, and metastasis and was discussed separately (GBM vs. PCNLS
and GBM vs. MET) [26]. The remaining five studies focused on DDx of glioma and other
brain diseases (11.9%). Based on these findings, the following section was divided into
three subparagraphs, according to the other diseases involved in the included studies other
than glioma.
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Table 1. Characteristics of included studies. Abbreviations: ST = Study Type; R = Retrospective; P = Prospective; NP = Number of Patients; Seg = Segmentation;
FS = Feature Selection; CM = Classification Method; VM = Validation Method. See Supplementary Materials -Section S5- for additional abbreviations.

Authors,
Year ST Diseases NP (Type)

Modalities
Used for
Feature

Extraction
Seg

Region for
Feature

Extraction

Software
Used for
Feature

Extraction

Features
Number (Type) FS CM VM

Model
Applied to a

Separate
Dataset?

Most Important
Result Main Findings

Choi et al.,
2016 [27] R PCNSL,

GBM
42 (19 GBM,
23 PCNSL)

CE-T1WI
(IAUC), ADC S, 3D CE tumor

(no necrosis) MIPAV 3 (histogram) no multivariate
model LOOCV no AUC = 0.886

The IAUC may be a
useful parameter
together with ADC for
differentiating between
PCNSL and
atypical GBM.

Alcaide-Leon
et al., 2017

[28]
R PCNSL,

glioma
106

(35 PCNSL,
71 glioma)

CE-T1WI M, 3D CE tumor NR

153
(first-order,

second-order
texture
metrics)

SVM—
F-statistic SVM nested

10-fold CV no AUC = 0.87

SVM based on textural
features of CE-T1WI is
not inferior to expert
human evaluation in
PCNSL/glioma
differentiation.

Chen et al.,
2017 [29] P PCNSL,

GBM
96 (30 PCNSL,

66 GBM) CE-T1WI A, 3D whole tumor NR
16,384
(SIFT

features)
t-test, GA SVM LOOCV yes AUC = 0.991

SIFT method produced
more competitive PCNSL
and GBM differentiation
performance by using
conventional MRI.

Wu et al.,
2017 [30] R PCNSL,

GBM
102 (32 PCNSLs,

70 GBMs)
T2WI,

CE-T1WI
A + S for

small tumors,
3D

CE tumor and
peritumoral

edema
Matlab

NR
(Deep

learning
features)

sparse
representation-
based feature

selection method

sparse
representation
classification

LOOCV yes Acc = 98.51%

The SRR system had
superior PCNSL/GBM
differentiation
performance compared to
advanced imaging
techniques.

Artzi et al.,
2019 [31] R GBM, MET 439 (212 GBM,

227 MET) CE-T1WI S, 3D CE tumor Matlab R2017a

757
(Location,
first-order,

second-order,
morphological,

wavelet)

NCA, PCA
SVM, kNN,

DT, ensemble
classifiers, BoF

5-fold CV yes AUC = 0.85

GBM/MET
differentiation showed a
high success rate based
on postcontrast T1W.
GBM/MET subtypes
classification may
require additional
MRI sequences.

Kang et al.,
2018 [32] R PCNSL,

GBM
196 (119 GBM,

77 PCNSL)
CE-T1WI,

ADC S, 3D CE tumor Matlab R2014b

1618
(first-order,

shape,
texture,

wavelet)

12 feature
selection
methods

KNN, NB, DT,
LDA, RF, AB,

boosting,
linear SVM,
radial basis

function SVM

10-fold CV yes AUC = 0.983

The diffusion radiomics
model yielded a better
diagnostic performance
than conventional
radiomics or single
advanced MRI in
identifying atypical
PCNSL mimicking GBM.

Kim et al.,
2018 [21] R PCNSL,

GBM
143 () 86
(78 GBM,

65 PCNSL)

T2w, FLAIR,
CE-T1WI,

DWI
S, 3D

CE tumor and
whole

(enhancing or
non-

enhancing)
tumor plus
peritumoral

edema

Matlab

127
(16 shapebased,
57 histogram-

based, and
54 texture-based)

mRMR, LASSO

3 classifiers:
logistic

classifier,
SVM, RF

10-fold CV yes

AUC = 0.979 in
the discovery

cohort and
0.956 in the
validation

cohort

Radiomics features
derived from
multi-parametric MRI
can be used to
differentiate PCNSL from
glioblastoma effectively.

Kunimatsu
et al., 2018

[33]
R PCNSL,

GBM
60 (16 PCNSL,

44 GBM) CE-T1WI S, 2D CE tumor R
67 (first-order,
second-order

features)
ICC, t-test PCA no no NR

Among MRI-based
textures, first-order
entropy, median,
GLRLM-based run length
non-uniformity, and run
percentage are
considered to enhance
differences between GBM
and PCNSL.
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Table 1. Cont.

Authors,
Year ST Diseases NP (Type)

Modalities
Used for
Feature

Extraction
Seg

Region for
Feature

Extraction

Software
Used for
Feature

Extraction

Features
Number (Type) FS CM VM

Model
Applied to a

Separate
Dataset?

Most Important
Result Main Findings

Nakagawa
et al., 2018

[34]
R PCNSL,

GBM
70 (45 GBM,
25 PCNSL)

T2, rCBV,
CE-T1WIs,

ADC
M, 2D whole tumor LIFEx

48 (12 for
each sequence)

(histograms and
texture

parameters)

not
performed

LR,
multivariate

XGBoost
10-fold CV no AUC = 0.98

mpMRI radiomics model
outperformed
conventional cut-off
method and the board
certified radiologists in
distinguishing GBM
from PCNSL.

Suh et al.,
2018 [35] R PCNSL,

GBM
77 (54 PCNSL,

23 non-necrotic
atypical GBM)

post-contrast
T1- and

T2-weighted,
and FLAIR;
ADC (10th
percentile)

S, 3D
CE tumor,

NE tumour
tissue and

edema
PyRadiomics

6366 (shape,
volume,

first-order,
texture, and

wavelet)

t-test,
recursive
feature

elimination
RF nested CV no AUC = 0.921

The radiomics model
yields a better diagnostic
performance than human
radiologists and
ADC values.

Xiao et al.,
2018 [36] R PCNSL,

GBM
82 (22 PCNSL,

60 GBM)
T1WI,

CE-T1WI M, 3D
CE tumor and
intratumoral

cysts
PyRadiomics

105 (92
texture

features and
13 geometric

features)

Weka
CfsSubsetEval

ROC
analysis; NB,
SVM, LR, RF

10-fold CV no
AUC = 0.90

for NB;
Acc = 0.92
for SVM

MRI-based 3D texture
analysis has potential
utility for preoperative
GBM/PCNSL
discrimination.

Bao et al.,
2018 [37] R GBM,

PCNSL
20 (9 PCNSL,

11 GBM) rCBV, ADC S, 3D
CE tumor

(no cysts and
necrosis)

nordicICE 11
(histogram) no Multivariate

LR no no AUC = 0.97

Whole-tumor histogram
analysis of nCBV and
ADC was able to
differentiate between
GBM and PCNSL.

Chen et al.,
2019 [38] R GBM, MET 134 (77 gbm,

58 MET) CE-T1WI M, 3D CE tumor LIFEx
43 (shape,
first-order,

texture)

five selection
methods: RF,

LASSO, XGBoost,
GBDT

LDA, SVM,
RF, KNN,

Gaussian NB,
LR.

4-fold yes AUC = 0.80

Radiomic-based machine
learning has potential to
be utilized in
differentiating GBM
from MET.

Dong et al.,
2019 [39] R GBM, MET 120 (60 GBM,

60 MET)
T1W, T2W,
CE-T1WI M, 3D

peri-
enhancing

oedema
PyRadiomics

321 (shape,
first-order,

texture)

ICC, Boruta
algorithm

DT, SVM, NN,
NB, KNN 10-fold CV yes

AUC from 0.70
to 0.76, for the

training dataset,
and from 0.56 to

0.64 for the
validation data

set

Combined use of
classifiers could confer
extra benefits for
GBM/MET
differentiation.

Kong et al.,
2019 [23] R PCNSL,

GBM
77 (24 lymphoma,

53 GBM)

SUV map,
SUVncc map,
SUVnbm map

M, 3D whole tumor PyRadiomics
107 (shape,
first-order,

texture)
ICC ROC

analysis 10-fold CV no AUC = 0.998

18F-FDG-PET-based
radiomics is a reliable
noninvasive method to
distinguish PCNSL
from GBM.

Kumimatsu
et al., 2019

[40]
R PCNSL,

GBM
76 (55 GBM,
21 PCNSL) CE-T1WI S, 2D CE tumor R 67 (texture) ICC, PCA KNN, DT,

LDA, SVM 6-fold CV yes
AUC = 0.99 on

training set;
Acc = 75% on

test data

Radiomics MRI may
provide complementary
diagnostic information
on routine brain MRI.

Petrujkic
et al., 2019

[41]
R GBM, MET 55 (30 GBMs and

25 solitary MET)
T2W, SWI,
CE-T1WI M, 3D CE tumor ImageJ

14 (Euclidian,
fractal,
texture

(GLCM))
no ROC

analysis no no AUC = 0.908

Texture features are more
significant than
fractal-based features in
GBM/MET
differentiation.

Qian et al.,
2019 [42] R GBM, MET

412 (242 GBM,
170 solitary
brain MET)

T1W, T2W,
CE-T1WI M, 3D CE tumor PyRadiomics

1303 (shape,
first-order,

texture, square,
square root,
logarithm,

exponential,
LoG, wavelet)

12 methods (filter,
wrapper,

embedded
methods).

7
supervised
machine-
learning

algorithms

5-fold CV yes
AUC ≥ 0.95 in
the training set;
AUC = 0.90 in

the test set

Radiomic
machine-learning
technology could help in
differentiating GBM from
MET preoperatively.
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Table 1. Cont.

Authors,
Year ST Diseases NP (Type)

Modalities
Used for
Feature

Extraction
Seg

Region for
Feature

Extraction

Software
Used for
Feature

Extraction

Features
Number (Type) FS CM VM

Model
Applied to a

Separate
Dataset?

Most Important
Result Main Findings

Wang et al.,
2019 [43] R PCNSL,

GBM
109 (28 PCNSL,

81 GBM) T2W M, 2D

CE tumor
(no

hemorrhage,
necrosis, cysts,

non-
enhancement)

ImageJ 5 (texture) no
binary
logistic

regression
no no AUC = 0.917

The texture features of
T2WI and conventional
imaging findings may be
used to distinguish GBM
from PCNSL.

Yun et al.,
2019 [44] R PCNSL,

GBM
195 (119 GBM,

76 PCNSL) CE-T1WI S, 3D CE tumor Matlab
936 (first-

order, texture,
wavelet)

Metric 1: mRMR,
CFS, backward

elimination;
Metric 2: MLP

network

Metric 1: SVM,
the boosted
generalized
linear mixed

model,
regularized
RF; Metric 2:

MLP
network

Metric 1:
10 fold CV
Metric 2:

10 fold CV
yes AUC > 0.82

A combination of
radiomic features and
MLP network classifier
serves a high-performing
and generalizable model
for PCNSL/GBM DDx.

Bae et al.,
2020 [45] R GBM, MET 248 (159 GBM,

89 MET)

CE mask on
CE-T1WI,

CE mask on
T2WI, and

PT mask on
T2WI

S, 3D

CE tumors,
non-

enhancing T2
hyperintense

tumors

PyRadiomics
265 (first-

order,
texture)

five methods for
feature

selection

KNN, NB, RF,
AdaBoost,

L-SVM, SVM
using radial

basis function
kernel, LDA;
Multi input

DNN

10-fold CV yes AUC = 0.95

The results demonstrated
that deep learning using
radiomic features can be
useful for distinguishing
GBM/MET.

Dastmalchian
et al., 2020

[46]
P GLIOMAS,

MET
31 (17 GBM,

6 LGG, 8 MET)
T1 and T2

maps M, 2D

CE tumors
and

peritumoral
white matter

Matlab
39 (texture

(GLCM,
GLRLM))

Spearman
correlation

filter,
Wilcoxon

ROC
analysis no no

AUC = 0.952
(LGG vs. MET);

AUC = 0.877
(GBM vs. MET)

Texture analysis of
MRF-derived maps can
improve our ability to
differentiate glioma
from GBM.

Chen et al.,
2020 [47] R GBM,

PCNSL
138 (76 GBM,
62 PCNSL) CE-T1WI A, 3D whole tumor lifeX

43 (histogram,
shape,

texture)

distance
correlation, RF,

LASSO, XGBoost,
GBDT

LDA, SVM,
LR

validation
set, 100 train-

validation
repetition

times

yes AUC = 0.98

Radiomics-based
machine-learning
algorithms potentially
have promising
performances in
differentiating GBM
from PCNSL.

Dong et al.,
2020 [48] R EP, MB 51 (24 EPs,

27 MB) CE-T1W, ADC S, 3D CE tumors 3D Slicer
188 (shape,
first-order,

texture)

t-test,
multivariable LR,

univariate
analysis

screening

kNN,
AdaBoost, RF,

SVM
10-fold CV no AUC = 0.91

The combination of
radiomics and
machine-learning
approach on 3D
multimodal MRI could
well distinguish EP
and MB.

Oritz-Ramon
et al., 2020

[20]
R GBM, MET 100 (50 MET,

50 GBM) T1w M, 2D CE tumors Matlab

88 (histogram,
texture, and
local binary

patterns)

ICC, MWW, MIC,
Relief-F

RF, SVM,
KNN, NB,

MLP
nested CV no AUC = 0.896

The proposed radiomics
MRI approach is able to
discriminate between
GBM and BM.

Xia et al.,
2020 [49] R PCNSL,

GBM
240 (129 GBM,
111 PCNSL)

FLAIR, DWI,
CE-T1WI,

ADC
M, 3D

Tumor tissue
and

peritumoral
edema

PyRadiomics

851 (shape,
first-order,

texture,
wavelet)

ICC,
Spearman
correlation
filter, Mrmr,

LASSO

LASSO 10-fold CV yes AUC = 0.943

The model combining
MP-MRI and radiologists’
diagnoses had superior
performance to the
radiologists alone.

Zhou et al.,
2020 [50] R MB, EP, PA 288 (111 MB,

70 EP, 107 PA)
CE-T1WI,

T2WI, DWI,
ADC maps

S, 3D

CE and
non-CE tumor

and
peritumoral

edema

Matlab
3087 (shape,
first-order,

texture)

multiclass
classification:
TPOT; binary
classification:
13 different

feature-selection
methods

multiclass
classification:
TPOT; binary
classification:
10 machine

learning
classifiers

5-fold CV yes AUC =
0.84–0.94

Automatic machine
learning based on routine
MRI classified pediatric
posterior fossa tumors
with high accuracy
compared with manual
expert pipeline
optimization and
qualitative expert
MRI review.
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Table 1. Cont.

Authors,
Year ST Diseases NP (Type)

Modalities
Used for
Feature

Extraction
Seg

Region for
Feature

Extraction

Software
Used for
Feature

Extraction

Features
Number (Type) FS CM VM

Model
Applied to a

Separate
Dataset?

Most Important
Result Main Findings

Csutak et al.,
2020 [51] R GLIOMAS,

MET
42 (16 HGGs,

26 MET) T2WI S, 3D peritumoral
region MaZda NS Fisher,

POE + ACC

univariate
analysis

(t-test), ROC
analysis,
multiple

regression

no no

75–87.5% sen,
53.85–88.46%

spec
(univariate);
100% sens,
66.7% spec

(multivariate)

Texture analysis can
provide a quantitative
description of the
peritumoral zone
encountered in solitary
brain tumors.

Xia et al.,
2021 [52] R GBM,

PCNSL
289 (136 PCNSL,

153 GBM)
CE-T1WI,

FLAIR, ADC M, 3D whole tumor PyRadiomics 851 (NS) mRMR, LASSO Logistic
regression 5-fold CV yes AUC = 0.865

A CNN model can
differentiate PCNSL from
GBM without tumor
delineation, and
comparable to the
radiomics models
and radiologists

Bathla et al.,
2021 [53] R GBM,

PCNSL
94 (34 PCNSL,

60 GBM)
CE-T1WI,

FLAIR, ADC S, 3D
CE tumor and
surrounding

edema
PyRadiomics

107 (shape,
first-order,

texture)

linear
combination

filter, high
correlation
filter, PCA

12
classifiers

(linear,
non-linear,

and
ensemble)

5-fold
repeated CV no AUC = 0.98

Radiomics-based
diagnostic performance
of various machine
learning models for
differentiating
glioblastoma and PCNSL
varies considerably.

Priya et al.,
2021 [26] R

GBM,
PCNSL,

MET

253 (120 MET,
40 PCNSL,

93 GBM

T1W, T2W,
FLAIR, ADC
map, T1-CE

S, 3D

whole tumor,
CE tumor,
necrosis,

peritumoral
edema

PyRadiomics
3.0

107 (shape,
first-order,

texture)

linear
combination
filter, a high
correlation
filter, PCA

12 classifiers
(linear,

non-linear,
and ensemble)

5-fold
repeated CV no

AUC = 0.91
for mpMRI,

AUC = 0.90 for
T1-CE

T1-CE is the single best
sequence with
comparable performance
to that of MP-MRI.

De Causans
et al., 2021

[54]
R GBM, MET 143 (71 GBM,

72 BM)
post-contrast

T1-CE S, 3D
CE tumor and

necrotic
region

PyRadiomics
2.1.2

100 (shape,
first-order,

texture)

9 feature
scaling

methods
16 classifiers stratified

5-fold CV yes
AUC = 0.92 in

the training CV
set, AUC = 0.85

in the test set

The proposed diagnostic
support system helps in
differentiating solitary
BM from GBM with high
diagnosis performance
and generalizability.

Zhang et al.,
2021 [24] R GBM, MET 100 (50 GBM,

50 MET)
CE-T1WI,

T2WI, ADC,
18F-FDG PET

S, 3D
CE tumor and

perifocal
edema

PyRadiomics

4424 (shape,
first-order,

texture, LoG,
wavelet)

t-test, PCA partial least
squares 5-fold CV yes

AUC = 0.98 in
TS and 0.93

in VS

An integrated radiomics
model incorporating
DWI and F-FDG PET
improved performances
of GBM/MET
differentiation.

Han et al.,
2021 [55] R GBM, MET 350 (182 GBM,

168 MET) CE-T1WI M, 3D CE tumor PyRadiomics
v3.0

841 (shape,
first-order,

texture)

CMIM, MR R,
DISR, Fisher,

relief, MCFS, RFS
LR, SVM, DT,

RF 5-fold CV yes AUC = 0.764

The combination models
incorporating the
radiomics signature and
clinical-radiological
characteristics were
superior to the
clinical-radiological
models in differentiating
between GBM and MET.

Han et al.,
2021 [12] R

GLIOMA,
INFLAM-
MATION

57 (39 grade II
glioma,

18 inflammation)
T1W and T2W M, 3D whole tumor MATLAB

2014b

45 (shape,
global,

texture)

two-sample
t-test, LASSO

linear
regression 10-fold CV yes

AUC =
0.98–0.988 in

primary cohort
and 0.950, 0.925

in validation
cohort

The radiomics signature
helps to differentiate
inflammation from grade
II glioma and improved
performance compared
with experienced
radiologists.
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Table 1. Cont.

Authors,
Year ST Diseases NP (Type)

Modalities
Used for
Feature

Extraction
Seg

Region for
Feature

Extraction

Software
Used for
Feature

Extraction

Features
Number (Type) FS CM VM

Model
Applied to a

Separate
Dataset?

Most Important
Result Main Findings

Priya et al.,
2021 [56] R GBM, MET 120 (60 GBM,

60 MET)
T1W, T2W,

FLAIR, ADC,
CE-T1WI

S, 3D

CE tumor +
necrosis,

surrounding
edema

PyRadiomics
107 (shape,
first-order,

texture)

linear
combinations
filter, a high

correlation filter,
PCA

20 different
models

grouped into:
linear

classifiers,
non-linear

classifiers, and
ensemble
classifiers

5-fold CV no AUC = 0.951

Radiomics based
machine learning can
classify GBM and IMD
with excellent diagnostic
performance. The
performance of mpMRI
and single FLAIR or
combined T1-CE and
FLAIR sequence
is comparable.

Priya et al.,
2021 [57] R PCNSL,

GBM
97 GBM and
46 PCNSL

T1W, T2W,
FLAIR, ADC,

CE-T1WI
M, 3D CE tumor +

necrosis TexRAD
72 (histogram

first-order (LoG
filtered))

full-features,
correlation, PCA

12 models
grouped into:

linear
classifiers,
non-linear

classifiers, and
ensemble
classifiers

5-fold CV no

LASSO model
with correlation

filter as
selection
method:

AUC = 0.914

T1-CE derived first-order
texture analysis can
differentiate between
GBM and PCNSL
with good
diagnostic performance.

Sartoretti
et al., 2021

[58]
R GLIOMAS,

MET
48 (21 gliomas,

27 MET) APTw M; 3D whole tumor PyRadiomics

110 (first-order
features; shape

features;
texture

features)

ICC,
correlation-based
(CfsSubsetEval

by Weka)

Multilayer
perceptron
classifier,
Random

Forest

10-fold CV yes AUC = 0.797

The use of radiomics for
APTw imaging is feasible
and the differentiation of
primary glial brain
tumors from metastases
is achievable with a high
degree of accuracy.

Su et al., 2021
[59] R GBM, MET

225
(157 GBM,

98 solitary brain
MET)

CE-T1WI M; 3D CE tumor AK software

396 (first-order
features; shape

features;
texture

features)

ICC, Mmrmr,
LASSO

logistic
regression 10-fold CV yes

AUC of 0.82
and 0.81 in the
training and
validation
cohort to

distinguish
between GBM

and solitary
brain MET

The radiomics model
might be a useful
supporting tool for
the preoperative
differentiation of GBM
from solitary brain MET,
which could aid
pretreatment decision
making.

Xiao et al.,
2021 [60] R

GBM,
BRAIN

ABSCESS
118 (86 nGBM,
32 BRAIN AB)

CE-T1WI,
T2 FLAIR S, 3D Peritumoral

edema, tumor PyRadiomics

1004 (shape,
first-order,

texture, LoG,
wavelet)

LASSO, PCA logistic
regression, RF

5-fold CV
with 1000
iterations

yes AUC = 0.97

The radiomic features
combined with the
peritumoral edema/
tumor volume ratio
provided the prediction
model with the greatest
diagnostic performance.

Bo et al., 2021
[61] R

CYSTIC
GLIOMA,

BRAIN
ABSCESS

188
(102 BRAIN
ABSCESS,
86 CYSTIC
GLIOMA)

T1WI and
T2WI M, 3D whole tumor PyRadiomics

1000 DTL + 105
radiomic

(first-order
features; shape

features;
texture

features)

Spearman’s rank
correlation, MI

LR, RFC,
KNN, and

SVM
nested

5-fold CV yes
AUC = 0.86 in
TS and 0.85 in

VS

The combination of HCR
and DTL features can
lead to impressive
performance for
distinguishing brain
abscess from GBM.

Marginean
et al., 2022

[25]
R HGGs,

MET
36

(HGGs, n = 17;
MET, n = 19)

CT S, 3D Peritumoral
zone maZda

275 (GLRLM,
wavelet GLCM,

histogram,
absolute

gradient, auto-
regressive

model)

POE + ACC and
Fisher

coefficients,
Mann–

Whitney

Univariate
and

multivariate
regression
analysis

no no AUC = 0.992

The CT-based TA can be
a useful tool for
differentiating between
HGG and MET.
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3.3. Radiomics for DDx of Glioma and PCNSL

In total, 21 studies focused on radiomics for DDx of PCNSL and glioma, with all but
one [28] involving GBM. Among them, all but one extracted radiomic features from MRI
sequences, while the remaining one focused on radiomic features extracted from PET [23].

Among MRI radiomic studies, 6 extracted radiomic features from CE-T1w images.
Kunimatsu et al. performed two complementary studies [33,40]. In the first [33], they simply
performed image feature extraction and selection and limited the analysis to a principal
component analysis to find the predominant features in evaluating the differences between
GBM and PCNSL. The training and cross-validation was performed in a subsequent
study [40] and found an AUC from 0.87 to 0.99 for the training set and of 0.75 for the
testing set.

Xiao et al. [36] compared different supervised classifiers based on T1-CE radiomic
features and found that naive Bayes classifier had an AUC of 0.90 for preoperative dis-
crimination of GBM and PCNSL. Similar studies were performed by Priya et al. and
Chen et al. [47,57], who found similarly high AUC values for different combinations of
classifier models and feature selection techniques. Chen et al. [29] proposed a method
based on Scale Invariant Feature Transform features and found that an SVM model based
on SIFT features yielded an AUC superior to 0.99 for GBM vs. PCNSL classification task.

Promising results in DDx between PCNSL and high-grade gliomas were also found
by Alcaide-Leon et al. [28], who found that SVM classification based on textural features
of T1w-CE is not inferior to expert human evaluation in the differentiation of PCNSL
and high-grade gliomas, with similar results in terms of AUC. Notably, their study also
involved grade III gliomas other than GBM.

Other studies built prediction models based on radiomic features extracted from
multiparametric MRI. In particular, Kim et al. [21] found that a logistic regression-based
classifier built starting from CE-T1, T2, and ADC features yielded an AUC superior to
0.95 to distinguish between GBM and PCNSL. Similar classification performances were
reached by mpMRI-based classifiers built in studies by Xia et al. and Bathla et al. [49,53].
Interestingly, Pryia et al. found that T1-CE had comparable performance to that of mpMRI-
based methods. However, these results were obtained from a three-class problem that
also included a group of patients with metastasis. Promising results were also found by
Suh et al. [35] in an mpMRI-based radiomic study involving features extracted from CE-T1,
T2w, and FLAIR. They found that a random forest classifier built using these features
outperformed both ADC values and visual analysis by human radiologists. Findings by
Nakagawa et al. [34] were in line with those of Kim et al. However, differently from the
previous one, features were extracted from T2, rCBV, CE-T1WIs, and ADC.

Xia et al. [52] found that the combination of CE-T1w and ADC radiomic features
showed high diagnostic performances (AUC = 0.94). Moreover, the integration of this
model with radiologists’ diagnoses outperformed performances of the radiologists alone.
Similar results were obtained by Choi et al. [27], who found that the initial area under the
curve derived from CE-T1w could be useful in combination with ADC for differentiating
between PCNSL and atypical GBM.

Two studies were performed by the same group [21,44] and were also based on
radiomic features extracted from CE-T1w and ADC. In the older one, they evaluated
different feature selection methods and machine learning models and found that the
combination of recursive feature elimination and a random forest classifier revealed an
AUC of 0.984 in the internal and AUC 0.94 in the external validation set. In the more
recent study, they utilized a lower number of radiomics features (n = 936 with respect to
n = 1618 of the previous one) and applied four different classification metrics, of which
two based on radiomic features were extracted from CE-T1w and ADC. Metrics 1 and
2 used radiomic features, and feature selection and classification were optimized with
SVM, GLM, or random forest (metric 1) or multilayer perceptron (MLP) network. They
found that a deep learning-based MLP network classifier with radiomic features showed
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the highest performance in differentiating PCNSL from GBM. These results were in line
with considerations of Wu et al. [30], who also proposed a radiomic approach based on
deep learning and considering CE-T1WI and T2w as MRI sequences. In particular, they
proposed a sparse representation-based radiomics system for classifying GBM from PCNSL
and found that this approach outperformed traditional radiomics methods.

Among MRI-based studies, Wang et al. and Bao et al. [37] were the only two that
did not involve radiomic features extracted from CE-T1. Wang et al. [43] focused only on
T2w and found that texture features from T2w could be used for differentiating GBM from
PCNSL. However, it should be noted that they considered only 5 textural features. Bao et al.
found that the combination of whole-tumor-based histogram features from normalized
cerebral blood volume (nCBV) and ADC for contrast-enhancing lesions could be useful for
GBM/PCNSL differentiation.

Kong et al. [23] explored a 18F-FDG-PET-based radiomics approach to distinguish
PCNSL from GBM. They extracted features from a standardized uptake value (SUV) map,
an SUV map calibrated with the normal contralateral cortex (ncc) activity (SUV/ncc map),
and an SUV map calibrated with the normal brain mean (nbm) activity (SUV/nbm map).
They found that the most discriminative power was achieved by SUV first-order and
textural features.

3.4. Radiomics for DDx of Glioma and Metastases

A total of 16 studies explored the diagnostic feasibility of radiomic features for DDx
of glioma and metastases. All but two of them extracted radiomic features from MRI
sequences, while one evaluated features from CT [25] and one extracted features from
PET [24]. In all but three studies [25,46,58], the glioma group consisted of patients with
grade IV glioma (GBM). Six studies extracted radiomic features from contrast-enhanced
T1-weighted MRI scans [20,31,38,54,55,59]. Among them, the largest patient sample was
investigated by Artzi et al. [31] (439 patients), who aimed at differentiating GBM and
MET subtypes using radiomics analysis based on conventional post-contrast T1w. They
tested four different types of machine learning algorithms (both supervised and unsuper-
vised), revealing that SVM was the best (AUC = 0.98). They suggest that classification
between glioblastoma and brain metastasis subtypes may require additional MRI sequences
with other tissue contrasts. Similar study settings and results can be found in studies by
Chen et al. [38], Han et al. [55], and De Causans et al. [54], in which diagnostic models were
built based on multiple selection methods and classification algorithms for differentiating
GBM from MET. Su et al. [59] aimed to differentiate GBM from primary brain metastases,
finding that a radiomics model based on logistic regression might be a useful supporting
tool for the preoperative differentiation of GBM from solitary brain MET due to an AUC
superior to 80%. Ortiz-Ramon et al. proposed a radiomics MRI approach able to discrim-
inate between GBM and MET with AUC > 80%. Unlike the previous three studies, they
used radiomic features extracted from 2D ROIs.

Dong et al. [39], Qian et al. [42], and Bae et al. [45] investigated multiple classifiers for
differentiating between solitary brain MET and GBM by extracting radiomic features from
T1w, T2w, and T1-CE. Dong et al. [39] found that features derived from the peri-enhancing
oedema region had moderate value in differentiating supratentorial single brain MET from
GBM. Qian et al. [42] found more promising results, showing that the clinical performance
of the classifier based on SVM and LASSO (>95%) was superior to neuroradiologists’
performances. Bae et al. [45] also investigated multiple feature selection methods and
classifiers for differentiating between single brain metastases and GBM. Interestingly, they
also compared results from traditional machine learning radiomic approaches with a deep
neural network approach. The latter performed better than the best-performing traditional
machine learning classifiers or human readers and demonstrated good generalizability in
the external validation.

Petrujkić et al. [41] aimed to differentiate GBM and solitary brain metastases of dif-
ferent origin by means of quantitative parameters of fractal and GLCM texture features
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from T2W, SWI, and CET1 images and found that texture features are more significant than
fractal-based features for GBM solitary MET.

A recent study by Priya et al. [56] also cross-compared multiple radiomics-based
machine learning models using features extracted from mpMRI (T1W, T2W, T1-CE, ADC,
FLAIR) for DDx of intracranial metastatic disease from GBM and found that FLAIR was
the best individual sequence (LASSO-full feature set, AUC 0.951), while for combined
T1-CE/FLAIR sequence, adaBoost-full feature set was the best performer (AUC 0.951).

Among studies investigating the value of MRI radiomics features in differentiating
brain metastases from both high- and low-grade gliomas (unlike the previously discussed
9 studies involving only GBM), Dastmalchian et al. [46] found that texture features from
MRI fingerprinting T1 and T2 maps were able to differentiate brain MET from high- and
low-grade glial brain tumors. Notably, they did not build any multivariable model but
performed ROC analysis on each feature. Similar results were obtained by Csutak et al.,
who found that texture parameters from T2w were able to distinguish high-grade gliomas
from MET. Notably, they investigated texture analysis of the peritumoral zone [51]. Su et al.
evaluated the utility of radiomics for Amide Proton Transfer weighted imaging for the
same purpose and in a similar patient cohort. Their classification model based on the
random forest classifier achieved an AUC superior to 70%.

Among studies involving other modalities than MRI, Zhang et al. [24] found that an
integrated radiomics model incorporating DWI and 18F-FDG PET improved the perfor-
mance of differentiating GBM from solitary brain metastases. Promising performances
(AUC = 0.992) were also obtained from models built using CT-based textural features to
differentiate patients with high-grade gliomas from those with solitary brain metastases.
However, the patient sample was relatively small (36 patients).

3.5. Radiomics for DDx of Glioma and Other Brain Diseases

Five studies focused on DDx of glioma and other brain tumors, of which two involved
paediatric populations. In particular, Dong et al. [48] aimed to investigate the effectiveness
of radiomics and machine-learning techniques based on mpMRI in distinguishing the
glioma subtype ependymoma from medulloblastoma. They explored different combina-
tions of feature selection and machine learning techniques starting from features extracted
from postcontrast T1w images and ADC maps, finding that multivariable logistic regression
feature selection combined with the random forest classifier yielded an AUC = 91% for the
classification of EP from MB. Zhou et al. [50] aimed to assess the power of machine learning
radiomic-based models for differentiating paediatric posterior fossa tumors and involved a
larger population of 288 patients. Unlike Dong et al. [48], they extracted features from T2w
images, and included patients with the glioma subtype pilocytic astrocytoma, except those
with EP and MB in their cohort. Their machine-learning automatic approach revealed an
AUC = 94% with an accuracy of 85% for differentiation between MB and non-MB (namely
glioma group) and was superior to performances of non-automatic pipeline and qualitative
expert MRI review. The third study involved adult patients and aimed to assess the value
of MR-based radiomic features arising from T1w and T2w in differentiating brain inflam-
mation from grade II glioma [12]. Their findings were promising, with models’ AUCs
superior to 92% and their performances superior to those from experienced radiologists.
Finally, the remaining two studies investigated the ability of radiomics to differentiate
between gliomas (in particular, necrotic glioblastomas [60] and cystic gliomas [61]) and
brain abscess.

3.6. Quality Assessment with RQS

The details of the RQS of all included studies are provided in Supplementary Table S3.
The average RQS total score was 8.71 ± 5.67, with the corresponding percentage of
24.21 ± 15.56%, ranging from 0.0 to 52.78% (Figure 2). Concerning the first RQS checkpoint
(item 1), all studies provided a comprehensive documentation of imaging protocol, with
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only two of them scoring the maximum amount of points arising from the usage of a
public protocol.

Cancers 2022, 14, x FOR PEER REVIEW  16  of  22 
 

 

with only two of them scoring the maximum amount of points arising from the usage of 

a public protocol. 

 

Figure 2. Results of RQS assessment. Histogram plot of row counts of included studies according to 

RQS percentage (on the left). Pie chart of the mean RQS of included studies. 

Concerning  the second RQS checkpoint  (items  from 2  to 4), more  than half of  the 

studies (57.1%, 24/42) employed multiple segmentation (mainly arising from segmenta‐

tion by different radiologists), but only five studies satisfied the item of “imaging at mul‐

tiple time points” and only 3 articles satisfied that of “phantom study”. Regarding items 

included  in  the  third RQS checkpoint  (items  from 5  to 16), all but  four studies  (90.5%) 

applied feature reduction techniques. Only four studies (9.52%) performed multivariable 

analysis with non‐radiomics features. Only 2 out of 42 included articles (4.76%) were able 

to detect and discuss biological correlates and only 15 (35.7%) provided a cut‐off analysis. 

All but one of the studies reported discrimination statistics and their statistical sig‐

nificance, of which all but  three applied  resampling  techniques. Conversely, only 2/42 

studies reported calibration statistics, and none of them applied resampling techniques. 

In  total,  35.7% of  the  studies  (15/42) did not  include  a validation of  their  results. 

Among studies validating their results, only five validated analyses using an external val‐

idation cohort and one used two external validation cohorts. Moreover, 8/42 studies com‐

pared radiomics models with the specific gold standard and about half of the included 

studies (21/42) discussed the clinical utility of the developed model by means of decision 

curve analysis. 

Finally, no study included a cost‐effectiveness analysis and 11 made code and data 

publicly available. 

3.7. Statistical Analysis 

There was a significant positive correlation between RQS and journal Impact Factor 

(ρ = 0.35, p = 0.022), number of patients involved (ρ = 0.44, p = 0.003), and number of radi‐

omics features (ρ = 0.51, p = 0.0009) extracted in the study. On the other hand, weak posi‐

tive but not significant correlations were found between RQS and 5‐year IF, HI of the jour‐

nal, and of the first author with and without self‐citations (ρ = 0.25, ρ = 0.25, ρ = 0.20, and 

ρ = 0.22, respectively). No statistically significant differences were found between RQS of 

studies with different aims. Refer to Supplementary Table S2 for details of scientometric 

indexes of the included studies.   

   

Figure 2. Results of RQS assessment. Histogram plot of row counts of included studies according to
RQS percentage (on the left). Pie chart of the mean RQS of included studies.

Concerning the second RQS checkpoint (items from 2 to 4), more than half of the
studies (57.1%, 24/42) employed multiple segmentation (mainly arising from segmentation
by different radiologists), but only five studies satisfied the item of “imaging at multiple
time points” and only 3 articles satisfied that of “phantom study”. Regarding items included
in the third RQS checkpoint (items from 5 to 16), all but four studies (90.5%) applied feature
reduction techniques. Only four studies (9.52%) performed multivariable analysis with
non-radiomics features. Only 2 out of 42 included articles (4.76%) were able to detect and
discuss biological correlates and only 15 (35.7%) provided a cut-off analysis.

All but one of the studies reported discrimination statistics and their statistical signifi-
cance, of which all but three applied resampling techniques. Conversely, only 2/42 studies
reported calibration statistics, and none of them applied resampling techniques.

In total, 35.7% of the studies (15/42) did not include a validation of their results.
Among studies validating their results, only five validated analyses using an external
validation cohort and one used two external validation cohorts. Moreover, 8/42 studies
compared radiomics models with the specific gold standard and about half of the included
studies (21/42) discussed the clinical utility of the developed model by means of decision
curve analysis.

Finally, no study included a cost-effectiveness analysis and 11 made code and data
publicly available.

3.7. Statistical Analysis

There was a significant positive correlation between RQS and journal Impact Factor
(ρ = 0.35, p = 0.022), number of patients involved (ρ = 0.44, p = 0.003), and number of
radiomics features (ρ = 0.51, p = 0.0009) extracted in the study. On the other hand, weak
positive but not significant correlations were found between RQS and 5-year IF, HI of the
journal, and of the first author with and without self-citations (ρ = 0.25, ρ = 0.25, ρ = 0.20,
and ρ = 0.22, respectively). No statistically significant differences were found between RQS
of studies with different aims. Refer to Supplementary Table S2 for details of scientometric
indexes of the included studies.

4. Discussion

In this systematic review, we aimed to explore whether radiomics could provide
information about the DDx of gliomas, summarizing the current status of the literature
research and evaluating the quality of included studies using the RQS tool. The reasons



Cancers 2022, 14, 2731 15 of 20

that led us to perform the study are both the urgent need for clinicians to assess alternative
noninvasive differential diagnostic tools to ensure an accurate preoperative assessment
of intracranial masses (since the lack of a clear diagnosis may therefore lead to invasive
procedures that may be inappropriate for the primary disease treatment and could also
aggravate a patient’s condition) and the potential power of radiomics for DDx of newly
diagnosed cerebral lesions suggestive of brain tumors.

A total of 42 studies from 2015 onwards were examined. Almost all studies involved
machine learning techniques for radiomic analysis, of which two involved unsupervised
DNN techniques. Among studies involving supervised machine learning, 24 investigated
multiple models combined with multiple feature selection methods and evaluated the
combination providing the best result in terms of accuracy.

Despite promising results obtained from each of them (with best AUCs ranging from
0.7 to 0.99), our study revealed that those studies were far from providing definitive
conclusions for clinical implementation and widespread use of radiomics for glioma DDx.

Most of the selected studies explored radiomic approaches for DDx of glioma (mainly
GBM) and PCNSL (48%) or GBM and metastases (38%).

Almost all studies investigated radiomic approaches based on MRI. In particular,
CE-T1WI sequence was the most investigated since it is the first-line MRI sequence for
glioma assessment. Only two studies investigated the ability of PET radiomic features
to differentiate gliomas from metastases [24] and glioma from PCNSL [23], and only one
study was on CT [25].

The results of RQS have brought out the main positive and negative aspects related to
the radiomic workflow followed in each selected study. Mean RQS was 8.71 out 36, with
a mean percentage RQS of 24.21%, and this was in line with previously published data
regarding prostate, breast, lung, renal, and brain cancer [62–65]. The lack of a rigorous
procedure related to radiomics workflow largely contributed to the low RQS scores of the
included studies.

Concerning RQS checkpoint 1, image protocol was well documented in all studies.
Moreover, no studies involved public image protocols which allow reproducibility and
replicability. The results of RQS items included in RQS checkpoint 2, more than half of the
studies performed multiple segmentations to limit the extent of bias arising from segmenta-
tion variability. It is worth noting that the ROI type (2D/3D) and the segmentation method
(manual, semi-automatic, automatic) is not uniform across studies. Furthermore, manual
or semi-automated image segmentation with manual correction were used in almost all
studies, and this limits included studies since it is well known that manual segmenta-
tion is time-consuming and both manual and semi-automated segmentation introduce
a considerable observation bias and affect studies in terms of intra- and inter-observer
variations concerning ROI/VOI delineation [18]. It should also be considered that the area
considered for feature extraction was extremely variable across studies. It is worth noting
that some studies targeted the enhancing tumor (with or without the inclusion of necrosis
and intratumoral cysts) [27,36,54], while others targeted the peritumoral zone [25,51,60].

Notably, no studies determined inter-scanner and inter-vendor variability and col-
lected images at multiple timepoints. On a positive note, considering the third RQS
checkpoint, all studies except four performed feature reduction. It is a positive aspect since
excessive dimensionality of features negatively affects model performance and could lead
to overfitting [66].

Another relevant finding emerging from our study was that only two of the included
studies were prospectively designed. This constitutes an important limiting factor in
radiomic research since a well-designed prospective study can reduce and minimize the
potential confounding factors, representing a higher level of evidence for the quality validity
(this is the reason why prospective studies are given the highest weighting in the RQS tool
(7 points), accounting for around 20% of the full scale).

It is significant that almost half of the reviewed papers did not include a validation of
their results, and this negatively affects the risk of false-positive results that prevent the
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translation of radiomics to clinical practice. On a positive note, among the remaining studies
not performing validation with an independent cohort, almost all opted for performing
the cross-validation.

Most studies lacked any kind of openness, either in sharing datasets, segmentations, or
codes, and this constitutes a significant limitation in terms of verification and reproducibility
of the reported findings [67,68].

The same happened for the cost-effectiveness analysis that can evaluate a radiomics
prediction model in terms of health economics in case of its application in clinical practice,
assuming that a novel predictor should not be more expensive than currently available
predictors when accuracy is comparable and comparing the health effect of a radiomics pre-
dictor with a condition without a radiomics predictor [15]. However, this RQS point takes
second place since has standardization and radiomics models’ validation as a prerequisite.

It should be highlighted that only 20/42 studies refer to IBSI guidelines or used soft-
ware for radiomic features extraction that are IBSI-compliant (e.g., PyRadiomics). About
this topic, it is important to adhere to the standardization of the radiomics features nomen-
clature and calculation according to the IBSI to improve the reproducibility of scientific
research [69]. Future studies are needed in terms of adherence to the standardization of
radiomics features.

To our knowledge, this is the first systematic review aimed at exploring whether
radiomics could provide information about the DDx of gliomas and evaluating studies by
means of an RQS tool.

Previous studies aimed at evaluating the radiomic analysis in different studies for
different applications. Park et al. evaluated radiomics analysis in neuro-oncologic studies
according to RQS and found that the quality of reporting of radiomics studies was insuf-
ficient, with a median RQS of 11 out of 36 [65]. The results of a study by Stanzione et al.
on prostate MRI radiomics were in line with our findings and revealed an average RQS
score of 7.93 and an RQS percentage of 23% [62]. Wang et al. performed a systematic
review of radiomic studies focused on lymphoma and found a mean percentage RQS of
14.2% [70]. Notably, their study included 12 studies also evaluated in our systematic review,
in particular those on DDx of glioma and PCNSL.

Unlike most studies aimed at investigating the quality of radiomic studies by means
of RQS, we considered it appropriate to investigate the possible association between RQS
and scientometric indexes and found that publications with higher RQS were published in
journals with higher IF. However, studies with high/low RQS and low/high IF were also
found. Interestingly, we also found included studies’ quality increased with the increasing
number of included patients and the number of extracted features.

Our review of the literature has some limitations that should be acknowledged. First,
as also highlighted in previous studies, the RQS scoring system is not a gold standard
to qualify radiomics studies and still needs revisions to become a widely accepted tool
in radiology. Therefore, some aspects of the RQS scoring system such as the difficulty in
implementing imaging at multiple time points and phantom study on all scanners, as well
as the lack of specificity for a particular study aim, could lower the current literature more
than necessary [65,71]. Another limitation affecting our study is that almost all included
studies were retrospective, and they are supposed to be more bias-affected [72,73]. This
aspect, together with the absence of external validation cohorts for almost all included
studies, as well as the comparison with reference standards, prevented us from drawing
conclusions about the efficacy of radiomics for glioma DDx. Moreover, the high variability
in sample size, inclusion criteria, and methodological settings across studies prevented
us from performing a meta-analysis according to the aims of the studies. Moreover, we
did not investigate specific radiomics features shared among different studies (according
to the specific aim), given the extreme variability of imaging protocol and software for
feature extraction.
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5. Conclusions

Despite promising and encouraging results found in each of the included studies, our
study revealed that the current literature on radiomics for glioma DDx still lack the quality
required to allow its introduction into clinical practice. In particular, validation is necessary
using an external dataset, and improvements need to be made to feature reproducibility,
analysis of the clinical utility, pursuits of a higher level of evidence in study design, and
openness of science. However, their value might go beyond what was formally assessed
with the RQS tool, and further efforts are warranted to provide more solid evidence and
the basis for future investigations in this field. This work could provide new insights and
help to reach a consensus on the use of the radiomic approach for glioma DDx.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14112731/s1, Table S1: RQS checkpoints, items and points
for each item; Table S2: Journal metrics of the included studies; Table S3: Details of methodological
quality assessment by Radiomic quality score (RQS) tool.

Author Contributions: Conceptualization, C.C. and V.B.; methodology, V.B., M.C. and M.L.; software,
V.B. and M.C.; validation, V.B. and M.L.; formal analysis, V.B., M.C. and M.L.; investigation, V.B.,
M.C. and M.L.; resources, M.C. and M.L.; data curation, M.C.; writing—original draft preparation,
V.B.; writing—review and editing, V.B., C.C., and M.S.; visualization, M.L.; supervision, C.C. and
M.S.; project administration, M.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by a “Ricerca Corrente” Grant (RRC-2022-23680785) from the
Italian Ministry of Health (IRCCS SYNLAB SDN).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mesfin, F.B.; Al-Dhahir, M.A. Gliomas. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022.
2. Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.;

Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A
Summary. Acta Neuropathol. 2016, 131, 803–820. [CrossRef] [PubMed]

3. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN
Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

4. Wei, R.-L.; Wei, X.-T. Advanced Diagnosis of Glioma by Using Emerging Magnetic Resonance Sequences. Front. Oncol. 2021,
11, 694498. [CrossRef]

5. Gokden, M. If It Is Not a Glioblastoma, Then What Is It? A Differential Diagnostic Review. Adv. Anat. Pathol. 2017, 24, 379–391.
[CrossRef]

6. Jacobs, A.H.; Kracht, L.W.; Gossmann, A.; Rüger, M.A.; Thomas, A.V.; Thiel, A.; Herholz, K. Imaging in Neurooncology.
Neurotherapeutics 2005, 2, 333–347. [CrossRef]

7. Carrete, L.R.; Young, J.S.; Cha, S. Advanced Imaging Techniques for Newly Diagnosed and Recurrent Gliomas. Front. Neurosci.
2022, 16, 787755. [CrossRef]

8. Brancato, V.; Nuzzo, S.; Tramontano, L.; Condorelli, G.; Salvatore, M.; Cavaliere, C. Predicting Survival in Glioblastoma Patients
Using Diffusion MR Imaging Metrics—A Systematic Review. Cancers 2020, 12, 2858. [CrossRef]

9. Overcast, W.B.; Davis, K.M.; Ho, C.Y.; Hutchins, G.D.; Green, M.A.; Graner, B.D.; Veronesi, M.C. Advanced Imaging Techniques
for Neuro-Oncologic Tumor Diagnosis, with an Emphasis on PET-MRI Imaging of Malignant Brain Tumors. Curr. Oncol. Rep.
2021, 23, 34. [CrossRef]

10. Deckert, M.; Brunn, A.; Montesinos-Rongen, M.; Terreni, M.R.; Ponzoni, M. Primary Lymphoma of the Central Nervous
System—A Diagnostic Challenge. Hematol. Oncol. 2014, 32, 57–67. [CrossRef]

11. Fordham, A.-J.; Hacherl, C.-C.; Patel, N.; Jones, K.; Myers, B.; Abraham, M.; Gendreau, J. Differentiating Glioblastomas from
Solitary Brain Metastases: An Update on the Current Literature of Advanced Imaging Modalities. Cancers 2021, 13, 2960.
[CrossRef]

12. Han, Y.; Yang, Y.; Shi, Z.; Zhang, A.; Yan, L.; Hu, Y.; Feng, L.; Ma, J.; Wang, W.; Cui, G. Distinguishing Brain Inflammation from
Grade II Glioma in Population without Contrast Enhancement: A Radiomics Analysis Based on Conventional MRI. Eur. J. Radiol.
2021, 134, 109467. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/cancers14112731/s1
https://www.mdpi.com/article/10.3390/cancers14112731/s1
http://doi.org/10.1007/s00401-016-1545-1
http://www.ncbi.nlm.nih.gov/pubmed/27157931
http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://doi.org/10.3389/fonc.2021.694498
http://doi.org/10.1097/PAP.0000000000000170
http://doi.org/10.1602/neurorx.2.2.333
http://doi.org/10.3389/fnins.2022.787755
http://doi.org/10.3390/cancers12102858
http://doi.org/10.1007/s11912-021-01020-2
http://doi.org/10.1002/hon.2087
http://doi.org/10.3390/cancers13122960
http://doi.org/10.1016/j.ejrad.2020.109467
http://www.ncbi.nlm.nih.gov/pubmed/33307462


Cancers 2022, 14, 2731 18 of 20

13. Jekel, L.; Brim, W.R.; von Reppert, M.; Staib, L.; Cassinelli Petersen, G.; Merkaj, S.; Subramanian, H.; Zeevi, T.; Payabvash, S.;
Bousabarah, K.; et al. Machine Learning Applications for Differentiation of Glioma from Brain Metastasis—A Systematic Review.
Cancers 2022, 14, 1369. [CrossRef] [PubMed]

14. Bapuraj, J.R.; Wang, N.; Srinivasan, A.; Rao, A. Advanced Imaging and Computational Techniques for the Diagnostic and
Prognostic Assessment of Malignant Gliomas. Cancer J. 2021, 27, 344–352. [CrossRef] [PubMed]

15. Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even,
A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin. Oncol.
2017, 14, 749–762. [CrossRef] [PubMed]

16. Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard,
R.; Dekker, A.; et al. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. Eur. J.
Cancer 2012, 48, 441–446. [CrossRef] [PubMed]

17. Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The Facts and the Challenges of
Image Analysis. Eur. Radiol. Exp. 2018, 2, 36. [CrossRef]

18. van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in Medical Imaging—“How-to” Guide and
Critical Reflection. Insights Imaging 2020, 11, 91. [CrossRef]

19. Lohmann, P.; Galldiks, N.; Kocher, M.; Heinzel, A.; Filss, C.P.; Stegmayr, C.; Mottaghy, F.M.; Fink, G.R.; Jon Shah, N.; Langen, K.-J.
Radiomics in Neuro-Oncology: Basics, Workflow, and Applications. Methods 2021, 188, 112–121. [CrossRef]

20. Ortiz-Ramón, R.; Ruiz-España, S.; Mollá-Olmos, E.; Moratal, D. Glioblastomas and Brain Metastases Differentiation Following an
MRI Texture Analysis-Based Radiomics Approach. Phys. Med. 2020, 76, 44–54. [CrossRef]

21. Kim, Y.; Cho, H.; Kim, S.T.; Park, H.; Nam, D.; Kong, D.-S. Radiomics Features to Distinguish Glioblastoma from Primary Central
Nervous System Lymphoma on Multi-Parametric MRI. Neuroradiology 2018, 60, 1297–1305. [CrossRef]

22. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;
Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71.
[CrossRef]

23. Kong, Z.; Jiang, C.; Zhu, R.; Feng, S.; Wang, Y.; Li, J.; Chen, W.; Liu, P.; Zhao, D.; Ma, W.; et al. 18F-FDG-PET-Based Radiomics
Features to Distinguish Primary Central Nervous System Lymphoma from Glioblastoma. NeuroImage Clin. 2019, 23, 101912.
[CrossRef]

24. Zhang, L.; Yao, R.; Gao, J.; Tan, D.; Yang, X.; Wen, M.; Wang, J.; Xie, X.; Liao, R.; Tang, Y.; et al. An Integrated Radiomics Model
Incorporating Diffusion-Weighted Imaging and 18F-FDG PET Imaging Improves the Performance of Differentiating Glioblastoma
from Solitary Brain Metastases. Front. Oncol. 2021, 11, 732704. [CrossRef] [PubMed]

25. Mărginean, L.; S, tefan, P.A.; Lebovici, A.; Opincariu, I.; Csutak, C.; Lupean, R.A.; Coroian, P.A.; Suciu, B.A. CT in the Differentiation
of Gliomas from Brain Metastases: The Radiomics Analysis of the Peritumoral Zone. Brain Sci. 2022, 12, 109. [CrossRef] [PubMed]

26. Priya, S.; Liu, Y.; Ward, C.; Le, N.H.; Soni, N.; Pillenahalli Maheshwarappa, R.; Monga, V.; Zhang, H.; Sonka, M.; Bathla, G.
Radiomic Based Machine Learning Performance for a Three Class Problem in Neuro-Oncology: Time to Test the Waters? Cancers
2021, 13, 2568. [CrossRef] [PubMed]

27. Choi, Y.S.; Lee, H.-J.; Ahn, S.S.; Chang, J.H.; Kang, S.-G.; Kim, E.H.; Kim, S.H.; Lee, S.-K. Primary Central Nervous System
Lymphoma and Atypical Glioblastoma: Differentiation Using the Initial Area under the Curve Derived from Dynamic Contrast-
Enhanced MR and the Apparent Diffusion Coefficient. Eur. Radiol. 2017, 27, 1344–1351. [CrossRef]

28. Alcaide-Leon, P.; Dufort, P.; Geraldo, A.F.; Alshafai, L.; Maralani, P.J.; Spears, J.; Bharatha, A. Differentiation of Enhancing
Glioma and Primary Central Nervous System Lymphoma by Texture-Based Machine Learning. AJNR Am. J. Neuroradiol. 2017, 38,
1145–1150. [CrossRef]

29. Chen, Y.; Li, Z.; Wu, G.; Yu, J.; Wang, Y.; Lv, X.; Ju, X.; Chen, Z. Primary Central Nervous System Lymphoma and Glioblastoma
Differentiation Based on Conventional Magnetic Resonance Imaging by High-Throughput SIFT Features. Int. J. Neurosci. 2018,
128, 608–618. [CrossRef]

30. Wu, G.; Chen, Y.; Wang, Y.; Yu, J.; Lv, X.; Ju, X.; Shi, Z.; Chen, L.; Chen, Z. Sparse Representation-Based Radiomics for the
Diagnosis of Brain Tumors. IEEE Trans. Med. Imaging 2018, 37, 893–905. [CrossRef]

31. Artzi, M.; Bressler, I.; Ben Bashat, D. Differentiation between Glioblastoma, Brain Metastasis and Subtypes Using Radiomics
Analysis: Radiomics Classification of Brain Tumors. J. Magn. Reson. Imaging 2019, 50, 519–528. [CrossRef]

32. Kang, D.; Park, J.E.; Kim, Y.-H.; Kim, J.H.; Oh, J.Y.; Kim, J.; Kim, Y.; Kim, S.T.; Kim, H.S. Diffusion Radiomics as a Diagnostic
Model for Atypical Manifestation of Primary Central Nervous System Lymphoma: Development and Multicenter External
Validation. Neuro-Oncology 2018, 20, 1251–1261. [CrossRef] [PubMed]

33. Kunimatsu, A.; Kunimatsu, N.; Kamiya, K.; Watadani, T.; Mori, H.; Abe, O. Comparison between Glioblastoma and Primary
Central Nervous System Lymphoma Using MR Image-Based Texture Analysis. MRMS 2018, 17, 50–57. [CrossRef] [PubMed]

34. Nakagawa, M.; Nakaura, T.; Namimoto, T.; Kitajima, M.; Uetani, H.; Tateishi, M.; Oda, S.; Utsunomiya, D.; Makino, K.; Nakamura,
H.; et al. Machine Learning Based on Multi-Parametric Magnetic Resonance Imaging to Differentiate Glioblastoma Multiforme
from Primary Cerebral Nervous System Lymphoma. Eur. J. Radiol. 2018, 108, 147–154. [CrossRef] [PubMed]

35. Suh, H.B.; Choi, Y.S.; Bae, S.; Ahn, S.S.; Chang, J.H.; Kang, S.-G.; Kim, E.H.; Kim, S.H.; Lee, S.-K. Primary Central Nervous System
Lymphoma and Atypical Glioblastoma: Differentiation Using Radiomics Approach. Eur. Radiol. 2018, 28, 3832–3839. [CrossRef]
[PubMed]

http://doi.org/10.3390/cancers14061369
http://www.ncbi.nlm.nih.gov/pubmed/35326526
http://doi.org/10.1097/PPO.0000000000000545
http://www.ncbi.nlm.nih.gov/pubmed/34570448
http://doi.org/10.1038/nrclinonc.2017.141
http://www.ncbi.nlm.nih.gov/pubmed/28975929
http://doi.org/10.1016/j.ejca.2011.11.036
http://www.ncbi.nlm.nih.gov/pubmed/22257792
http://doi.org/10.1186/s41747-018-0068-z
http://doi.org/10.1186/s13244-020-00887-2
http://doi.org/10.1016/j.ymeth.2020.06.003
http://doi.org/10.1016/j.ejmp.2020.06.016
http://doi.org/10.1007/s00234-018-2091-4
http://doi.org/10.1136/bmj.n71
http://doi.org/10.1016/j.nicl.2019.101912
http://doi.org/10.3389/fonc.2021.732704
http://www.ncbi.nlm.nih.gov/pubmed/34527594
http://doi.org/10.3390/brainsci12010109
http://www.ncbi.nlm.nih.gov/pubmed/35053852
http://doi.org/10.3390/cancers13112568
http://www.ncbi.nlm.nih.gov/pubmed/34073840
http://doi.org/10.1007/s00330-016-4484-2
http://doi.org/10.3174/ajnr.A5173
http://doi.org/10.1080/00207454.2017.1408613
http://doi.org/10.1109/TMI.2017.2776967
http://doi.org/10.1002/jmri.26643
http://doi.org/10.1093/neuonc/noy021
http://www.ncbi.nlm.nih.gov/pubmed/29438500
http://doi.org/10.2463/mrms.mp.2017-0044
http://www.ncbi.nlm.nih.gov/pubmed/28638001
http://doi.org/10.1016/j.ejrad.2018.09.017
http://www.ncbi.nlm.nih.gov/pubmed/30396648
http://doi.org/10.1007/s00330-018-5368-4
http://www.ncbi.nlm.nih.gov/pubmed/29626238


Cancers 2022, 14, 2731 19 of 20

36. Xiao, D.-D.; Yan, P.-F.; Wang, Y.-X.; Osman, M.S.; Zhao, H.-Y. Glioblastoma and Primary Central Nervous System Lymphoma:
Preoperative Differentiation by Using MRI-Based 3D Texture Analysis. Clin. Neurol. Neurosurg. 2018, 173, 84–90. [CrossRef]

37. Bao, S.; Watanabe, Y.; Takahashi, H.; Tanaka, H.; Arisawa, A.; Matsuo, C.; Wu, R.; Fujimoto, Y.; Tomiyama, N. Differentiating
between Glioblastoma and Primary CNS Lymphoma Using Combined Whole-Tumor Histogram Analysis of the Normalized
Cerebral Blood Volume and the Apparent Diffusion Coefficient. MRMS 2019, 18, 53–61. [CrossRef]

38. Chen, C.; Ou, X.; Wang, J.; Guo, W.; Ma, X. Radiomics-Based Machine Learning in Differentiation Between Glioblastoma and
Metastatic Brain Tumors. Front. Oncol. 2019, 9, 806. [CrossRef]

39. Dong, F.; Li, Q.; Jiang, B.; Zhu, X.; Zeng, Q.; Huang, P.; Chen, S.; Zhang, M. Differentiation of Supratentorial Single Brain
Metastasis and Glioblastoma by Using Peri-Enhancing Oedema Region–Derived Radiomic Features and Multiple Classifiers. Eur.
Radiol. 2020, 30, 3015–3022. [CrossRef]

40. Kunimatsu, A.; Kunimatsu, N.; Yasaka, K.; Akai, H.; Kamiya, K.; Watadani, T.; Mori, H.; Abe, O. Machine Learning-Based
Texture Analysis of Contrast-Enhanced MR Imaging to Differentiate between Glioblastoma and Primary Central Nervous System
Lymphoma. MRMS 2019, 18, 44–52. [CrossRef]
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