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Recent advances in the description of the tumor microenvironment of acute myeloid
leukemia, including the comprehensive analysis of the leukemic stem cell niche and clonal
evolution, indicate that inflammation may play a major role in many aspects of acute
myeloid leukemia (AML) such as disease progression, chemoresistance, and
myelosuppression. Studies on the mechanisms of resistance to chemotherapy or
tyrosine kinase inhibitors along with high-throughput drug screening have underpinned
the potential role of glucocorticoids in this disease classically described as steroid-
resistant in contrast to acute lymphoblastic leukemia. Moreover, some mutated
oncogenes such as RUNX1, NPM1, or SRSF2 transcriptionally modulate cell state in a
manner that primes leukemic cells for glucocorticoid sensitivity. In clinical practice,
inflammatory markers such as serum ferritin or IL-6 have a strong prognostic impact
and may directly affect disease progression, whereas interesting preliminary data
suggested that dexamethasone may improve the outcome for AML patients with a high
white blood cell count, which paves the way to develop prospective clinical trials that
evaluate the role of glucocorticoids in AML.

Keywords: acute myeloid leukemia, inflammation, glucocorticoids, dexamethasone, RUNX1, FLT3, leukemic stem
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INTRODUCTION

Acute myeloid leukemia (AML) is a myeloid malignancy induced by the oncogenic transformation
of hematopoietic progenitors in the bone marrow leading to the destruction of blood tissue
responsible for acute pancytopenia, severe bleeding, and infection (1). For over 40 years, intensive
treatment of AML has been based on a combination of cytarabine and an anthracycline as induction
chemotherapy, followed by intermediate to high-dose cytarabine consolidation and possibly
allogeneic stem cell transplantation aimed at curing the disease. On the other hand, older
patients or those deemed unfit for high intensity treatment received low-dose cytarabine or more
recently, hypomethylating agents, both of which induce few complete responses and no hope for
cure (2). While it used to be commonly acknowledged that there was no progress in the treatment of
AML compared to other hematological malignancies, recently there has been a major effort to
understand the disease and to develop novel promising drugs that specifically target recurrent gene
mutations, apoptotic pathways, and cell surface antigens or by reformulating classical cytotoxic
agents. Midostaurin, gemtuzumab ozogamycin, glasdegib, venetoclax, ivosidenib, enasidenib,
gilteritinib and CPX-351 were approved by the Food and Drug Administration for AML patients
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Récher Inflammation in AML
in less than 2 years between 2017 and 2018, which brings hope
for this highly fatal disease and many opportunities for clinical
research (3, 4).

In the era of next-generation sequencing, considerable
progress has been made in understanding leukemogenesis, the
genetic diversity of AML, gene-gene interactions, clonal
evolution, and the assessment of treatment responses (5–11).
Several functional categories of recurrent gene mutations that
affect transcription factors, cell signalization, nucleophosmin,
epigenetics, DNA methylation, and RNA splicing or the
cohesin complex interact to produce the main hallmarks of
cancer and transform hematopoietic progenitors into AML
cells. While much attention has been focused on these
molecular alterations in recent years, another cancer hallmark,
tumor-promoting inflammation, has on the contrary, received
little attention in the field of AML (12). However, clinical findings,
previous data as well as recent advances in the description of the
tumor microenvironment of AML, including a comprehensive
analysis of the leukemic stem cell niche, indicate that
inflammation may play a role in many aspects of AML such as
disease progression, chemoresistance, and myelosuppression or
leukostasis syndrome (13). In this review, we highlight emerging
data on the clinical and preclinical impact of inflammation in
AML and the first attempts to modulate this phenomenon with
anti-inflammatory drugs such as dexamethasone.
CLINICAL PRACTICE

The Inflammatory Response in AML
Patients Treated With Intensive
Chemotherapy
In routine clinical practice it is not uncommon to observe fever
induced by chemotherapy in AML patients (14). The so-called
cytarabine syndrome, which includes fever, myalgia, bone pain,
maculopapular rash, conjunctivitis, malaise, and occasionally
pericarditis, has long been described (15). Steroids can help to
prevent or treat this syndrome. Fever is induced by endogenous
pyrogens such as the interleukins IL1-a, IL-1b, IL-6, and TNF-a
involved in the inflammatory response. It has been shown that
high-dose cytarabine treatment induces a release of TNF-alpha
followed by the sequential release of other proinflammatory
cytokines (16, 17). This is consistent with the findings in a
series of unselected AML patients treated by intensive induction
chemotherapy with 3–5 days of anthracyclines and 7 days of
cytarabine where inflammatory markers including serum
ferritin and CRP levels were significantly increased at day 8 (as
much as a 3.5-fold increase compared to baseline) (18). These
data indicate that intensive chemotherapy, whether with 3 + 7
induction or high-dose cytarabine consolidation, often induces an
inflammatory response in AML patients. The physiopathological
consequences of this response remain unclear. In this context,
inflammation may be further aggravated by infection during
chemotherapy-induced myelosuppression or hyperinflammatory
states such as hyperferritinemic syndrome or hemophagocytic
lymphohistiocytosis, an immune dysregulation characterized by
Frontiers in Oncology | www.frontiersin.org 2
severe organ damage induced by an exacerbated inflammatory
response and uncontrolled T-cell and macrophage activation.
Secondary hemophagocytic lymphohistiocytosis typically occurs
in association with severe infections or malignancies (19, 20). In a
large series of AML patients treated by intensive chemotherapy,
~10% of the patients were noted to have fever, very high
serum ferritin levels and bone marrow hemophagocytosis
accompanied by hepatomegaly, pulmonary or neurological
symptoms, liver abnormalities, a lower platelet count, higher
levels of C-reactive protein and prolonged pancytopenia. The
possibility of an infectious etiology that functions as a trigger for
hyperinflammation, including bacterial, fungal, or Herpesviridae
infections, was documented in 75% of the cases. In this study,
hemophagocytic lymphohistiocytosis was associated with poor
overall survival, which suggests that inflammation may impact
prognosis in AML patients (21). With the current SARS-CoV-2
pandemic, hyperferritinemic syndromes and the pathogenic role
of ferritin in critically ill patients are receiving considerable
attention in terms of prognosis, clinical management, and
therapeutic intervention (22–24).

Serum Ferritin in AML: More Than
a Prognostic Marker
The role of cytokines and inflammatory pathways in AML was
recently reviewed in other studies (13, 25, 26). Special attention
was paid to IL-1 and IL-6 which have been associated with a poor
prognosis, chemoresistance, and myelosuppression in AML (27–
30). Here, we focus on recent data regarding the impact of ferritin
in AML. In fact, independently of hyperinflammatory
syndromes, it has also been observed that most AML patients
have elevated serum ferritin levels at diagnosis, even younger
patients with de novo AML who in general have had no red blood
cell transfusion at the time of diagnosis (18, 31). This suggests
that the increase in ferritin is most likely due to an underlying
inflammatory condition rather than iron overload or liver
damage. A recent study of a cohort of 525 AML patients
treated with intensive chemotherapy showed that a higher
ferritin level was significantly associated with age, higher CRP
levels, leukocytosis, FAB M4/M5 subtypes, NPM1, and FLT3-
ITD mutations (18). More importantly, serum ferritin was a risk
factor for a poor response to treatment, early death, the incidence
of relapse and survival endpoints independently of cytogenetics,
molecular alterations or allogeneic stem cell transplantation. The
median OS was 41.0 months in patients with serum ferritin ≤900
µg/l (3-fold the UNL) compared to 14.4 months in patients with
>900 µg/l. Other studies have reported a poor prognostic impact
of ferritin in AML patients (31–33). It is also noteworthy that in
most cases CRP levels are usually elevated at diagnosis, but CRP
had no prognostic impact in patients treated with intensive
chemotherapy when serum ferritin was in a multivariate model
(31, 33).

The fact that there is a significant association between serum
ferritin levels and a poorer response to induction chemotherapy
as well as a higher incidence of relapse would suggest that in
addition to this statistical correlation ferritin also plays a role in
chemoresistance. Overexpression of H-ferritin contributes to
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Récher Inflammation in AML
lymphomagenesis and has been involved in resistance to
chemotherapy agents, including doxorubicin, which induces
oxidative stress (34–36). In AML, ferritin protein expression in
patient samples was correlated with a response to cytarabine in
vitro (18). Furthermore, high ferritin levels before allogeneic
stem cell transplantation have been associated with a higher risk
of relapse and lower overall survival (37). With regards to the risk
of relapse, this association remains unexplained and is not
necessarily related to iron overload in patients who are
transfused during induction and consolidation. Rather, these
recent data could indicate that pre-transplantation ferritin levels
are a surrogate marker of residual disease before transplantation.

If ferritin does play a role in disease progression and treatment
resistance, what are the potential mechanisms for this? Ferritin is a
450 kDa protein that consists of 24 subunits of H-ferritin and L-
ferritin encoded by the FTH1 (ferritin heavy chain 1) and FTL
(ferritin light chain) genes (38). Ferritin is a multi-functional
protein that regulates several biological processes at both extra
and intracellular levels that could be relevant in AML biology
including cell proliferation, immunosuppression, angiogenesis,
and chemoresistance (39). Inflammatory cytokines including IL-
1b, IL-6, TNF-a, and growth factors such as insulin-like growth
factor (IGF-1), which are responsible for ferritin expression
through NF-kB activation, are frequently overexpressed in AML
and play a crucial role in the leukemic stem cell niche (13, 29, 40,
41). In addition, extracellular ferritin could also act as a pro-
inflammatory cytokine and induces NF-kB signaling (42).
Therefore, ferritin synthesis induced by inflammatory cytokines
could also play a role in a positive feedback loop that sustains the
activation of nuclear factor-kappa B (NF-kB) in AML cells which
is critical for chemoresistance and leukemic stem cell survival (43,
44). AML transcriptomic databases reveal that FTH1 and FTL are
frequently overexpressed regardless of genetic subgroup in both
AML bulk and leukemic stem cells compared to normal
hematopoietic stem cells. In this context, it has been shown that
glioblastoma cancer stem cells are epigenetically programed to
scavenge iron more effectively than other tumor cells and require
transferrin receptor and ferritin to propagate tumors (45). Ferritin
is a growth factor for AML cells and its antioxidant activity may
decrease the efficacy of cytotoxic agents such as anthracyclines (34,
35, 46). Moreover, H-ferritin induced by TGF-b can exert a
suppressive effect on normal myelopoiesis (47). Overall, these
data suggest that ferritin may impact leukemic stem cell biology
within an inflammatory niche. Intracellular H-ferritin could
protect AML cells from chemotherapy by inducing anti-
apoptotic and anti-oxidative response while extra-cellular H-
ferritin may contribute to local inflammation and alter normal
bone marrow hematopoietic progenitors contributing to
myelosuppression related to disease evolution and chemotherapy
(48, 49).

Another point for discussion is the cellular origin of ferritin in
AML, although it is thought to reside in the mononuclear
phagocyte system and in hepatocytes in non-malignant
conditions (50–52). Macrophages activated by an aberrant
inflammatory response are likely to be the main source of
serum ferritin overproduction in AML patients (50). However,
Frontiers in Oncology | www.frontiersin.org 3
a significant association was found between ferritin levels and
hyperleukocytosis (tumor burden). AML cells express higher
intracellular ferritin protein levels than normal peripheral blood
mononuclear cells. In a previous study, leukemic cells from
patients with acute monocytic leukemia (AML FAB M5)
showed the highest ferritin levels (53). Furthermore, ferritin
was detected in the supernatant of AML cell lines incubated
in serum free media for 24 h, which suggests that AML cells
may release ferritin in extra-cellular media. In addition,
anthracyclines such as doxorubicin and daunorubicin may
directly interact with the iron response element hairpin loops
in the 5′-UTR of ferritin H- and L-chain mRNAs which could be
a direct link between drug exposure and ferritin production (54).
Doxorubicin has been shown to produce a significant increase in
the plasma concentration of transferrin, ferritin, and iron in
experimental models (55). Therefore, leukemic cells could
contribute to serum ferritin production in AML patients. This
hypothesis has also been suggested in previous studies (56, 57).

Accumulating evidence suggest that in AML increased serum
ferritin levels are due to both a dysregulated inflammatory
response and disease burden, and may have a direct impact on
disease progression and response to therapy. Therefore,
pharmacological modulation of this pathway could be a new
therapeutic target in AML (Figure 1).

Dexamethasone in Hyperleukocytic AML
Glucocorticoids such as dexamethasone are anti-inflammatory
drugs widely used in acute lymphoblastic leukemia (ALL) and
other lymphoid malignancies (58). There are only some clinical
data that indicate potential action of glucocorticoids in AML.
Turkish investigators previously reported their long-term
experience with high-dose methylprednisolone in pediatric AML
(59). Based on preclinical data showing that methylprednisolone
induces AML cell differentiation and apoptosis while stimulating
normal myelopoiesis, and on clinical observations of the
remarkable antileukemic effect of high-dose methylprednisolone,
they investigated the activity of short-term high-dose
methylprednisolone treatment (20–30 mg/kg/day not exceeding
1 g/day) in childhood AML (60, 61). They were able to show that
methylprednisolone when used according to this schedule as a
single agent did induce leukemic cell differentiation and apoptosis
in patients. Furthermore, methylprednisolone as pretreatment
before high-dose chemotherapy reduced the duration and
severity of neutropenia (62). However, no prospective
randomized clinical trials were subsequently conducted to
confirm these promising data and to generally establish
glucocorticoids in the treatment of childhood AML.

In adult AML, dexamethasone has long been used to prevent or
treat a severe inflammatory condition known as differentiation
syndrome in patients with acute promyelocytic leukemia (APL)
treated with all trans-retinoic acid (ATRA) and/or arsenic
trioxide, or more recently in AML patients treated with IDH or
FLT3 inhibitors (63, 64). In fact, in APL, dexamethasone (10 mg/
12 h for at least 3 days) was systematically added to “3+7” + ATRA
induction chemotherapy in prevention of the differentiation
syndrome in all patients with a white blood cell count (WBC)
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>10 G/L. Therefore, there is an established clinical experience of
the use of glucocorticoids in the context of chemotherapy-induced
myelosuppression in AML patients and no harmful adverse
events, especially with regard to fungal invasive infections, were
reported (63, 65, 66).

Approximately 20% of AML patients present with a high WBC
count (>50 G/L) at diagnosis (67). This is a high-risk situation in
which the probability of severe complications and early death is
increased because of leukemic organ infiltration, severe
hemorrhage, tumor lysis syndrome, or disseminated intravascular
coagulopathy. Hyperleukocytosis is also associated with leukostasis
syndrome in the lung or brain, which can lead to acute respiratory
distress syndrome or stroke. Leukostasis induces endothelial injury
and activation via microvascular invasion, hyperviscosity,
leukocytic microthrombi, and oxygen consumption. Mediators of
inflammation induced by leukemic blasts and endothelial cells
play a central role in the pathogenesis of leukostasis (68). Studies on
Frontiers in Oncology | www.frontiersin.org 4
the molecular mechanisms of leukostasis and leukemic cell
invasion have shown that leukemic blasts use integrins and
selectins to attach to cytokine-activated endothelium and directly
activate endothelial cells by secreting inflammatory cytokines
such as TNF-a, IL-1b, and IL-6, which induce the conditions
necessary for their adhesion to vascular endothelium, migration to
tissues, proliferation, and chemoresistance (68, 69). Because
glucocorticoids exert a potent inhibitory effect on cytokine
production, dexamethasone has been suggested for use in
patients with AML FAB M5 and acute lung injury or acute
respiratory distress syndrome who are admitted to the intensive
care unit. Compared to historical controls, dexamethasone-treated
patients had a significantly lower mortality rate (66). A subsequent
study in adult patients admitted to the intensive care unit with
respiratory events at the earliest phase of AML also showed that
dexamethasone therapy was a factor independently associated with
lower mortality on day 28 in the multivariate analysis (70).
FIGURE 1 | Mechanisms underlying hyperferritinemia in acute myeloid leukemia (AML) and the role of ferritin in AML physiopathology. Elevated serum ferritin levels
are due to a dysregulated inflammatory response, chemotherapy, disease burden, and the release by leukemic cells. This is further sustained by iron overload due to
red blood cell transfusion during induction and consolidation treatment. Extracellular and intracellular activities of ferritin may induce resistance to chemotherapy,
myelosuppression and disease progression resulting in a poor outcome.
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Moreover, a recent retrospective study that compared
hyperleukocytic patients treated with intensive chemotherapy
with or without a short course of dexamethasone (DEXAML-00)
showed that routine addition of dexamethasone to induction
chemotherapy was associated with a significant improvement in
the main survival endpoints. In fact, a multivariate analysis showed
that dexamethasone was significantly and independently associated
with a lower incidence of relapse as well as an improvement in
disease-free survival, event-free survival, and overall survival
(Figure 2) (71).
BENCH RESEARCH

The Mechanism of Action
of Glucocorticoids
Glucocorticoid drugs act through different targets and
mechanisms to control inflammation (72). After crossing the
Frontiers in Oncology | www.frontiersin.org 5
cell membrane, glucocorticoids bind to the cytoplasmic
glucocorticoid receptor (GR) and induce dissociation of
molecular chaperones, including heat shock proteins and
immunophilins, from the GR (73). The ligand-bound GR
displays non genomic cytoplasmic activities that interfere
with cell signal transduction pathways such as PI3-kinases,
MAP-kinases as well as T-cell receptor signaling. Of course,
the main mechanisms of action of GR are in the nucleus (74).
First, as a homodimer, ligand-bound GR binds to DNA and acts
as a transcription factor inducing the expression of anti-
inflammatory response genes. Second, as a monomer, GR may
physically interact with transcription factors such as AP-1 and
NF-kB, thereby inhibiting their pro-inflammatory activities (75).

Challenges in Using Glucocorticoids
in AML
Unlike ALL, AML blasts are not usually sensitive to pharmacologic
doses of glucocorticoids (76). In vitro, it has been shown that
glucocorticoids induced cell proliferation in some pediatric AML
FIGURE 2 | The main results of the DEXAML-00 retrospective study in hyperleukocytic acute myeloid leukemia (AML) patients. Graphical abstract by Haematologica
showing the endpoints of a retrospective, monocentric study comparing the addition of dexamethasone to standard induction chemotherapy in AML patients with
hyperleukocytosis defined as a white blood cell count ≥50 × 109/L. From 2010 to 2015, 60 patients received dexamethasone (10 mg/12 h, days 1–3) and were
compared to 100 patients who did not received dexamethasone from 2004 to 2009. In multivariate analysis, dexamethasone was associated with a significant
improvement of disease-free, event-free and overall survival.
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Récher Inflammation in AML
samples (77). Moreover, a recent study focusing on both BCR-
ABL positive ALL and chronic myelocytic leukemia cells
demonstrated that strong differences in energetic metabolism
driven by B-cell lineage transcription factors explain the
difference in glucocorticoids sensitivity between lymphoid and
myeloid cells (78). The B-lymphoid transcription factors, PAX5
and IKZF1, which are crucial for early B cell development and
repressed in myeloid cells, induce a transcriptional program
leading to a state of chronic energy deprivation by restricting
glucose uptake. This establishes a metabolic barrier to the
leukemogenesis of ALL. This transcriptional program is also
associated with up regulation of glucose uptake inhibitors
expression including NR3C1 thereby contributing to ALL
sensitivity to glucocorticoids. Moreover, mechanisms of
resistance to glucocorticoids that has been extensively studdied
in ALL may also occur in AML cells including alterations in
uptake and efflux by multidrug transporters, GR expression or in
downstream apoptotic response (79, 80). Indeed, the regulation of
expression of BCL2 family proteins such as the proapoptotic BIM
and the anti-apoptotic BCL2 orMCL1 is key to determine the level
of glucocorticoid sensitivity (81).

In clinic, glucocorticoids may increase the risk of bacterial or
invasive fungal infections by worsening the immunosuppression
of AML patients during intensive chemotherapy. Therefore,
these drugs have received little attention in the field. However,
we discuss below recent emerging preclinical data suggesting that
glucocorticoids may have a positive therapeutic impact in certain
settings in AML.

The Action of Glucocorticoids
in Chemoresistance
The unexpected impact of dexamethasone observed on the
cumulative incidence of relapse suggests a potential antileukemic
activity on chemoresistant AML cells (71). In a recent preclinical
study, AML cell lines were rendered resistant to cytarabine through
chronic exposure to increasing drug concentrations then subjected
to genomic and transcriptomic profiling as well as high-throughput
testing with 250 clinical oncology compounds (82). It was shown
that the acquisition of cytarabine resistance was associated with
increased sensitivity to glucocorticoids. Similarly, paired samples
from AML patients, while unresponsive at diagnosis, became
sensitive to glucocorticoids including dexamethasone,
methylprednisolone, and prednisolone at relapse after exposure to
a cytarabine-based chemotherapy regimen. In this study,
glucocorticoid activity was mainly observed in wild type FLT3
samples whereas mutated FLT3-ITD samples appeared resistant.
Resistance to cytarabine was associated with deletion of the DCK
gene that encodes deoxycytidine kinase, the rate-limiting enzyme in
the metabolic activation of cytarabine. Moreover, upregulation of
GR protein expression was also observed in cytarabine-resistant
AML cells and contribute to the acquisition of glucocorticoid
sensitivity. However, it should be noted that in a rat model of
AML, dexamethasone decreased the activity of deoxycytidine kinase
(83). Meanwhile, in a similar study, the response of 2 DCK-defective
murine AML cell lines to 446 FDA approved drugs compared to
their cytarabine sensitive parental lines was examined. Once again,
Frontiers in Oncology | www.frontiersin.org 6
cytarabine-resistant cells that lacked functional deoxycytidine kinase
were sensitive to prednisolone and dexamethasone in a GR-
dependent manner (84). Overall, these studies showed that
mechanisms that lead to cytarabine resistance may be linked to
the acquisition of dexamethasone sensitivity.

Chemoresistance is also mediated by interactions between
AML cells and their microenvironment (85–87). It has been
recently demonstrated that an inflammatory and immune
interferon-g signature is associated with chemoresistance (88).
In liquid culture, short term dexamethasone treatment with or
without cytarabine or doxorubicin showed no synergy or
additive effect in genetically diverse AML cell lines. However,
in a co-culture system, one week of dexamethasone exposure
significantly enhanced cytarabine activity in most AML cell lines,
which indicates that glucocorticoids may interfere with soluble
factors or cellular interactions involved in microenvironment-
induced resistance (71, 89). Furthermore, using a patient-derived
xenograft (PDX) model of cytarabine resistance, it was shown
that the transcriptome of residual AML cells that were resistant
to cytarabine treatment in vivo was highly enriched in genes
involved in inflammatory and immune response, including the
NF-kB network (71, 90). This gene signature of in vivo
chemoresistance also displayed significant interactions with the
dexamethasone gene signature for FCGR1A, IL6ST, BIRC3,HGF,
IL2RA, HDC, RHAG, STAT4, CALCRL, CD200, and CSF1 genes.
Similarly, examination of a publicly available transcriptomic data
set established from AML patients in first relapse and data
mining algorithm revealed that the dexamethasone signature
was also enriched within AML cells collected at relapse (71, 91).
Moreover, in PDX models the dexamethasone-cytarabine
combination induced a stronger therapeutic response
compared to cytarabine alone. Overall, these data strongly
suggest that the impact of dexamethasone with intensive
chemotherapy that is observed in clinical practice could result
from the targeting of inflammatory chemoresistant AML cells.

The Action of Glucocorticoids on
Leukemic Stem Cells
Leukemic long-term culture initiating cells (L-LTC-IC) are a
reliable functional readout to monitor the activity of leukemia-
initiating/stem cells (LICs), an AML subpopulation thought to be
at the origin of relapse (89, 92). Using an optimized niche-like
co-culture system capable of maintaining LICs ex vivo,
dexamethasone reduced L-LTC-IC frequency and induced
cellular differentiation (71). Furthermore, another recent study
that combined the computational analysis of leukemic stem cell
gene expression signatures with in vitro drug screening identified
glucocorticoids as potent drugs that specifically target leukemic
stem cells. In fact, glucocorticoids eliminated leukemic stem cell
through differentiation induction, whereas they had no anti-
leukemic activity against leukemic bulk (93). As described above,
dexamethasone displays both cytoplasmic and nuclear activities
that interfere with signal transducers or transcription factors
such as PI3-kinase/Akt, activating protein-1 (AP-1), and NF-kB,
which are all involved in leukemic stem-cell biology (73, 94, 95).
It has been demonstrated that inflammatory cytokines can
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induce both NF-kB and AP-1 to support leukemic stem-cell
survival in a synergistic manner (44). Therefore, by suppressing
cytokine release and targeting specific intracellular pathways,
dexamethasone may interfere with leukemic stem cell behavior
and make them more susceptible to chemotherapy-induced cell
death. Of course, the mechanisms of action underpinning
dexamethasone activity in AML are likely to be multiple as
leukemic stem cells are subject to different levels of regulation
that are either cell autonomous or driven by interactions with the
microenvironment (41, 96).
The Action of Glucocorticoids in
AML Subgroups
RUNX1-RUNX1T1
AML with t(8;21) translocation is induced by the oncogenic
activity of the RUNX1-RUNX1T1 fusion gene generated by
chromosomal translocation and represents approximatively 10%
of AML. The RUNX1-RUNX1T1 oncoprotein acts as a dominant
negative regulator of RUNX1 transcriptional activity thereby
repressing the expression of RUNX1-dependant genes involved
in myeloid differentiation (97, 98). RUNX1-RUNX1T1 also
promotes self-renewal of leukemic stem cells (99). In a
chemogenomic screening of a small molecule library, two classes
of compounds (glucocorticoids and dihydrofolate reductase
inhibitors) were found to abrogate the RUNX1-RUNX1T1 gene
expression signature (100). Methylprednisolone and
dexamethasone used at nanomolar concentrations induced cell
differentiation and apoptosis in the Kasumi-1 cell line and the
U937 cell line engineered to express RUNX1-RUNX1T1 but not in
other AML cell lines that do not express the oncoprotein.
Glucocorticoid treatment was associated with a significant
reduction in RUNX1-RUNX1T1 protein expression which was
reverted by proteasome inhibitors, suggesting that glucocorticoids
promote proteasome-mediated RUNX1-RUNX1T1 protein
degradation. Of note, methylprednisolone treatment was
associated with a down regulation of BCL-2 expression in this
study and other investigators also found that dexamethasone
down regulated BCL-XL in the U937 cell line, which indicates
that glucocorticoids may alter key anti-apoptotic molecules in
myeloid cells (101). A more recent study also showed that
glucocorticoid drugs can mimic RUNX1-RUNX1T1 knock-down
and induce both the inhibition of RUNX1-RUNX1T1-mediated
gene expression and the stimulation of transcriptional activity of
wild type RUNX1 allele. Dexamethasone inhibited self-renewal
of LICs and induced significant differentiation and apoptosis of
RUNX1-RUNX1T1 AML cells (102). Moreover, dexamethasone
used as a single agent inhibited tumor growth and prolonged
the survival of mice engrafted with the Kasumi-1 cell line.
Investigators proposed a mechanism of action by which
glucocorticoids increased the amount of ligand-bound
glucocorticoid receptors in the nucleus as well as their binding
to DNA and RUNX1-target gene promoters. Interaction between
glucocorticoid receptors and RUNX1 (but not RUNX1-
RUNX1T1) increased RUNX1 binding to its target genes and
decreased RUNX1-RUNX1T1 binding. The unbound RUNX1-
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RUNX1T1 might be subjected to proteasome-mediated
degradation, resulting in a reduced level of oncoproteins in the
nucleus. This leads to a significant change in gene expression with
RUNX1 dominance over RUNX1-RUNX1T1 promoting RUNX1-
mediated hematopoietic differentiation and inhibition of RUNX1-
RUNX1T1-mediated stem cell maintenance. In addition, a
combination of dexamethasone with cytarabine or doxorubicin
was synergistic in this AML cell line, which suggests that
combining dexamethasone with “3+7” induction and then with
high-dose cytarabine during the consolidation phase could be a
treatment option to be explored in patients with t(8;21)/RUNX1-
RUNX1T1 AML (100, 102). It is also noteworthy that
dexamethasone activity was stronger than prednisolone or
hydrocortisone activity (102, 103).
RUNX1 Mutations
AML with mutated RUNX1 (RUNX1mut AML) is a provisional
entity that accounts for 10% of the newly diagnosed patients and
is associated with a poor prognosis (104–107). In fact, RUNX1mut

AML is included in the high-risk group of the ELN 2017
classification. RUNX1 mutations are frequently encountered in
AML with minimal differentiation (AML-M0), normal
karyotype or noncomplex karyotype with frequent association
with trisomy 13. RUNX1 mutations are mutually exclusive of
recurrent translocations in AML and co-occur with ASXL1
mutations and other gene mutations including epigenetic
modifiers (IDH2, KMT2A, EZH2), spliceosome complex
(SRSF2, SF3B1) and STAG2, PHF6, and BCOR (107). The
RUNX1 mutation–associated gene and microRNA expression
signatures revealed that the most strongly upregulated genes
were related to hematopoietic stem/progenitor cells and/or B-cell
progenitors, whereas genes normally expressed in myeloid-
committed cells including CEBPA were among the most
downregulated (108, 109). A recent study demonstrated that
the RUNX1 allele dosage may determine the RUNX1 mutation-
associated gene expression signature and identified a distinct
RUNX1mut AML subgroup with significant association with FAB
M0 morphology, trisomy 13, and ASXL1 mutations, whereas a
chemogenomic approach revealed that AML samples bearing
inactivating mutations of RUNX1 were particularly sensitive to
nanomolar concentrations of glucocorticoids (110). AML
samples with dominant negative or RUNX1-/- mutations
(lacking the wild type allele) were much more responsive to
glucocorticoids than AML sample wild type RUNX1 allele or
with missense RUNX1 mutations, which are known to have no
impact on RUNX1 function. Furthermore, down-regulation of
RUNX1 expression was associated with acquired dexamethasone
sensitivity. Glucocorticoid sensitivity was reverted by the GR
antagonist RU486 or NR3C1 knock-down, which confirms that
glucocorticoid activity in AML cells is dependent on their
interaction with the GR. It is important to note that
RUNX1mut AML samples expressed increased levels of NR3C1
compared to most AML subgroups. Another study showed a
similar acquisition of glucocorticoid sensitivity in blastic-phase
CML cells with RUNX1 mutations (111). However, at present
February 2021 | Volume 11 | Article 623952

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
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there is no clinical data showing that glucocorticoids have an
impact on RUNX1mut AML.

NPM1 Mutations
Mutations in the nucleophosmin (NPM1) gene are among the most
frequent molecular alterations in AML (~35%) and represent a
distinct entity in AML according to the 2016 WHO classification
(112, 113). When the karyotype is normal and FLT3-ITDmutation
is not associated or weakly expressed, NPM1 mutation indicates a
favorable outcome in AML according to the ELN 2017 prognosis
classification even though the co-mutational environment may
further influence this prognostic impact (6, 114). Unmutated
NPM1 protein is mainly located in the nucleolus and plays a key
role in the regulation of ribosome biogenesis, nucleolar function,
protein synthesis, and tumor suppression by activating the TP53
pathway. Mutated NPM1 loses its predominant nucleolar location
and accumulates in the cytoplasm thereby inducing leukemogenesis
through HOX gene activation (115).

OCI-AML3, a NPM1 mutated cell line, demonstrated in vitro
and in vivo sensitivity to dexamethasone compared to wild type cell
lines and primary AML samples with NPM1 mutation were also
more sensitive to dexamethasone-induced apoptosis than wild type
samples (71, 110). Although, the mechanisms of action that sustain
this particular sensitivity have not been described, in silico
exploratory analyses showed that the NPM1 mutation gene
signature was highly enriched in genes responsive to
dexamethasone, including upregulated genes such as GGT1,
CD86, NAMPT, ETS2, NFKBIA, PLA2G4A, IL1B, CD163, FPR1,
HIST1H1C, CCL1, CXCL2, PTX3, TNF, RHAG, CCL20, DEFB1,
CD300C, HOXB5, and IL6 (71).

FLT3 Mutations
Mutations in the FLT3 gene are also frequent mutations in AML
that occur in up to 30% of patients (114). Two distinct FLT3
mutations that induce constitutive ligand-independent
activation of kinase are described: internal tandem duplications
(ITD) in the juxtamembrane domain and point mutations in the
tyrosine kinase domain (TKD). FLT3 mutations are associated
with an aggressive disease course especially FLT3-ITD which
predicts early relapse and a poor prognosis. Through clonal
selection under chemotherapy, a higher mutant allelic burden is
frequently observed at relapse, which indicates that AML cells
have become more addicted to FLT3 signaling. In the preclinical
setting, FLT3-mutant allelic burden and clinical status (diagnosis
versus relapse samples) are predictive of a response to FLT3
inhibitors in AML (116). Furthermore, FLT3-ITD is also an
independent factor of a poor prognosis in R/R AML (117, 118).
Recently, two class I FLT3 inhibitors that target both FLT3-ITD
and FLT3-TKD mutations were approved for the treatment of
AML with FLT3 mutation. Midostaurin was approved in
combination with intensive chemotherapy as a first line
treatment whereas gilteritinib was approved as a single agent
treatment in relapsed or refractory patients (119, 120).

A very recent study aimed at describing the mechanisms of
early acquired resistance to FLT3 inhibitors showed that AML
cells with FLT3-ITD mutations that persist after 48 h of FLT3
Frontiers in Oncology | www.frontiersin.org 8
inhibitor drug exposure (drug-tolerant persisters) up-regulated
both the inflammatory response gene and GR expression. This
resulted in synergistic activity of the combination of FLT3
inhibitors and glucocorticoids through apoptosis induction
both in vitro and in xenotransplantation mice models (121).
This very rapid and transient resistance mechanism was specific
to FLT3 mutated cells and not due to the selection of resistance-
conferring mutation or the reactivation of FLT3 signaling.
Rather, it was dependent on the up-regulation of GC receptor
expression upon FLT3i exposure and the increased BIM to
MCL1 ratio upon combination treatment. To be more specific,
BIM expression was strongly up-regulated by glucocorticoids
whereas MCL1 was down-regulated by FLT3i through GSK-
mediated activation of the proteasome pathway and MCL1
protein degradation. This preclinical study should stimulate
clinical trials in this setting since the complete response rate
with the recently approved gilteritinib is < 50%.

Spliceosome-Complex Mutations
Genes of the spliceosome-complex including SRSF2, SF3B1,U2AF1,
and ZRSR2 are frequently mutated in myeloid malignancies such as
AML, myelodysplastic syndromes (MDS) or myeloproliferative
disorders (122). In AML, they are particularly found in patients
with a history of MDS or chronic myelomonocytic leukemia
(secondary AML) (123). These mutations induce neomorphic or
gain-of-function splicing phenotypes and alter the splicing of many
genes (124). Recently, it was shown that an increase in
inflammatory cytokine production including IL-6, IL-8, TNF-a
and NF-kB activation is found in leukemic cells harboring
spliceosome mutations (125–127). Moreover, SRSF2-mutated
AML samples also expressed an increase in the level of NR3C1
and were responsive to glucocorticoid treatment (110). However,
the activity of glucocorticoids on other spliceosome-complex
mutations has not been assessed to date.
PERSPECTIVES: WILL THERE BE A
PLACE FOR DEXAMETHASONE IN
AML TREATMENT?

These recent studies indicate the role of inflammation in AML
biology. Under specific oncogenic (RUNX1, NPM1, or SRSF2
mutations and NF-kB activation in LSCs) or therapeutic
(cytarabine and FLT3 inhibitors) stress, AML displays up-
regulation of the inflammation gene response and GR expression
that induces sensitization to glucocorticoid therapeutic action
partially through the modulation of key apoptotic protein (Figure
3). Whether other oncogenes involved in AML such as IDH1/2,
TP53, KMT2A, or EVI-1 or other treatments including
hypomethylating agents or BCL2 inhibitors may also induce
inflammatory phenotypes remains to be determined. Therefore,
although the glucocorticoid unresponsiveness of AML bulk is an
established preclinical and clinical fact which to date has precluded
clinical investigations on AML unlike ALL, some AML molecular
subgroups or cell subpopulations could benefit from therapeutic
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intervention with glucocorticoids. Therefore, the French cooperative
FILO study group designed three prospective clinical trials in the
field (Figure 4).

Dexamethasone in Hyperleukocytic
AML (DEXAML-00)
AML patients with a high white blood-cell count are difficult
to manage, require immediate chemotherapy induction, and
therefore are often excluded from prospective trials. In
the retrospective DEXAML-00 study in patients with
hyperleukocytic AML, the impact of dexamethasone on all
survival endpoints and the incidence of relapse, was adjusted
according to several clinical and biological factors to limit the
potential biases inherent in non-randomized studies (71). As
indicated above, dexamethasone may also be of benefit in
critically-ill AML patients (66, 70, 128, 129). Therefore, many
French centers, including ours, are accustomed to treating all
patients with a white blood cell count >50 G/L with a short
course of dexamethasone in combination with chemotherapy.
Previous studies on dexamethasone pharmacokinetics have
shown that plasma levels achieved in dosed patients with this
schedule are likely to reach therapeutic concentrations used in
preclinical AML models (130, 131). Moreover, relevant logical
Frontiers in Oncology | www.frontiersin.org 9
biological bases strengthened these retrospective clinical findings
and paved the way to further explore dexamethasone action in
other situations besides hyperleukocytic AML.
Dexamethasone With High-Dose
Cytarabine as Post-Remission Therapy
in Younger AML Patients (DEXAML-01)
Based on preclinical evidence showing increased sensitivity to
glucocorticoids in cytarabine-resistant cells and in LSC’s
assumed to be at the origin of relapse, dexamethasone is
currently being tested in a phase II-III randomized trial within
the French ALFA/FILO backbone intergroup-1 trial (BIG-1,
NCT02416388). Younger patients (18–60 years) with favorable
or intermediate risk AML, in their first complete remission
following standard induction chemotherapy, receive either
high-dose cytarabine alone (standard of care) or high-dose
cytarabine plus dexamethasone (Figure 4). The primary
objective is to improve leukemia-free survival with the addition
of dexamethasone. To date, 178 patients have been randomized
and recruitment should be completed during the first half of
2021 for a total of 220 patients. The final analysis will be
performed 18 months after the last inclusion.
FIGURE 3 | Mechanisms that induce glucocorticoid sensitivity in acute myeloid leukemia (AML). Specific oncogenic alterations (RUNX1-RUNX1T1, RUNX1, NPM1,
or SRSF2 mutations as well as NF-kB/AP-1 activation in LSCs) or therapeutic stress (cytarabine, FLT3 inhibitors) are associated with up-regulation of the
inflammatory gene response and expression of the glucocorticoid receptor which induce sensitization to glucocorticoid treatment.
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Dexamethasone With Intensive
Chemotherapy as First-Line Therapy in
Older AML Patients (DEXAML-02)
The FILO study group induction chemotherapy for newly
diagnosed AML patients older than 60 is a 3-drug regimen
including idarubicin, cytarabine, and lomustine (ICL) (132). The
Frontiers in Oncology | www.frontiersin.org 10
DEXAML-02 trial is a prospective, single arm, phase 2 trial that
evaluates the addition of dexamethasone during both induction and
consolidation (NCT03609060). The primary objective is to
determine whether adding dexamethasone to ICL induction and
IC post-remission therapy results in significant improvement of
event-free survival compared with a historical cohort of the FILO
FIGURE 4 | The design of ongoing prospective trials to evaluate dexamethasone in acute myeloid leukemia (AML). DEXAML-01: patients (18–60 years) with
favorable (fav) or intermediate (int) risk in first complete response after induction chemotherapy. DEXAML-02: patients > 60 with favorable or intermediate risk in first
line treatment. DEXAML-03: patients > 18 years with refractory or relapsed AML. CR, complete response; R, randomization; HDAC, high dose cytarabine (3 g/m²/
12 h on day 1, 3, and 5); DEX, dexamethasone.
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LAM-SA 2007 trial (132). Of note, midostaurin is added in FLT3
mutated patients. FILO was not able to conduct a randomized trial
versus placebo since the proposal was not considered a high enough
priority by the national clinical research funding agency.
Recruitment of the 120 patients ended in early 2020. Ancillary
studies on leukemic stem cells, immune subpopulations and
cytokine production subsequent to treatment are planned. The
final analysis will be performed in 2022.

Dexamethasone With Intensive Salvage
Chemotherapy or Azacitidine in Relapsed/
Refractory AML (DEXAML-03)
AML patients who fail to achieve a complete response with standard
induction therapy (refractory AML) or who relapse after achieving
remission have a very poor prognosis (133). Treatment of relapsed
or refractory (R/R) AML in patients who are candidates for
intensive salvage chemotherapy consists of reducing the leukemia
burden in order to achieve remission before allogeneic stem-cell
transplantation, which is currently the treatment with the highest
probability for cure. The prognosis is even more dismal in patients
deemed unfit for intensive chemotherapy. Non-intensive
approaches including hypomethylating agents are generally
proposed in this context (134).

As indicated above, AML samples collected at relapse are
much more sensitive to glucocorticoids than diagnosis samples
(82, 84). Moreover, preclinical studies have shown that the gene
signature of cells resistant to hypomethylating agents is also
enriched with dexamethasone response genes (135). In addition,
in ALL cell lines, azacitidine has been shown to restore GR
expression and sensitivity to dexamethasone (136). Therefore, a
randomized phase 3 clinical trial was designed to assess the
impact of dexamethasone added to either intensive
chemotherapy or azacitidine, according to the investigator’s
choice, in adult patients with R/R AML (NCT03765541). The
primary objective is to evaluate whether the addition of
Frontiers in Oncology | www.frontiersin.org 11
dexamethasone to salvage therapy significantly improves
overall survival. This study is ongoing.
CONCLUSION

Repositioning approved drugs for other indications is an
interesting subject for clinical trials by cooperating study
groups (137). Even though glucocorticoids have received little
attention in AML, the evidence in this review provides a basis for
clinical assessment of whether glucocorticoids such as
dexamethasone can one day be included in the AML treatment
armamentarium. A panel of 79 myeloid genes will be screened by
next-generation sequencing in the DEXAML studies to explore
the clinical benefit of dexamethasone in specific subgroups as
suggested by several preclinical studies. If the results of these
clinical trials are positive, they could be easily and widely
incorporated into routine practice since hematologists have
long experience with this drug in lymphoid malignancies.
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