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Abstract

Background: More than 20% of the world’s population is at risk for infection by filarial nematodes and >180
million people worldwide are already infected. Along with infection comes significant morbidity that has a
socioeconomic impact. The eight filarial nematodes that infect humans are Wuchereria bancrofti, Brugia malayi,
Brugia timori, Onchocerca volvulus, Loa loa, Mansonella perstans, Mansonella streptocerca, and Mansonella ozzardi, of
which three have published draft genome sequences. Since all have humans as the definitive host, standard
avenues of research that rely on culturing and genetics have often not been possible. Therefore, genome
sequencing provides an important window into understanding the biology of these parasites. The need for large
amounts of high quality genomic DNA from homozygous, inbred lines; the availability of only short sequence reads
from next-generation sequencing platforms at a reasonable expense; and the lack of random large insert libraries
has limited our ability to generate high quality genome sequences for these parasites. However, the Pacific
Biosciences single molecule, real-time sequencing platform holds great promise in reducing input amounts and
generating sufficiently long sequences that bypass the need for large insert paired libraries.

Results: Here, we report on efforts to generate a more complete genome assembly for L. loa using genetically
heterogeneous DNA isolated from a single clinical sample and sequenced on the Pacific Biosciences platform. To
obtain the best assembly, numerous assemblers and sequencing datasets were analyzed, combined, and compared.
Quiver-informed trimming of an assembly of only Pacific Biosciences reads by HGAP2 was selected as the final assembly
of 96.4 Mbp in 2,250 contigs. This results in ~9% more of the genome in ~85% fewer contigs from ~80% less starting
material at a fraction of the cost of previous Roche 454-based sequencing efforts.

Conclusions: The result is the most complete filarial nematode assembly produced thus far and demonstrates the
utility of single molecule sequencing on the Pacific Biosciences platform for genetically heterogeneous metazoan
genomes.
Background
More than 180 million people are infected with vector-
borne filarial nematodes worldwide with >20% of the
world’s population at risk for infection. Eight species of
filarial nematodes are known to infect humans including
Wuchereria bancrofti, Brugia malayi, Brugia timori,
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Onchocerca volvulus, Loa loa, Mansonella perstans,
Mansonella streptocerca, and Mansonella ozzardi. Of
these eight, only the first five cause substantial pathology
and have been the focus of whole genome sequencing
efforts thus far [1,2].
Humans are the definitive hosts for all of the medically-

relevant filarial nematodes; only B. malayi naturally infects
other vertebrates. Thus, for most filariae, it is impossible to
maintain the life cycle in the laboratory, and clinical sam-
ples must be used for research. Even for those filarial nema-
todes that infect non-human vertebrates, the life cycle is
difficult to maintain in the laboratory since it requires both
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the vertebrate and invertebrate hosts. For that reason, a
zoonotic isolate of B. malayi [3] is the only filarial parasite
of medical importance that is routinely used for research
purposes. Therefore, the availability of high quality genome
sequences from other filarial nematodes provides an
alternate starting point to explore the biology of these
organisms.
There have been numerous challenges in sequencing

filarial nematode genomes. Clinical specimens have to
be obtained from remote areas where the infection is
endemic. Such samples often contain a limited quantity
of nucleic acids of varying quality, complicating library
construction. These samples also contain a population of
genetically heterogeneous genomes with polymorphisms
that complicate assembly. Furthermore, the genomes are
large and have been difficult to assemble, owing to numer-
ous repeats, low complexity sequences, and a nucleotide
content of 30% GC [1,2]. Previous difficulties in assem-
bling B. malayi were attributed [1] to the repeat content
of the genome, which was estimated at ~15% [1,4]. Like-
wise, ~9% of the L. loa genome was estimated to be in re-
peats [2]. An analysis of the B. malayi genome suggested
that the sequences in gaps had a higher AT content [1]. In
B. malayi, a large amount of sequence integrated into the
nematode nuclear genome from its obligate mutualist
Wolbachia endosymbiont relatively recently such that it
has not diverged significantly [5,6], which further compli-
cates assembly, resulting in numerous collapsed repeats
and corresponding gaps in the assembly [5]. Unlike other
human filarial parasites, L. loa does not have Wolbachia
endosymbionts [7] and has very minimal amounts of
Wolbachia DNA integrated in its nuclear chromosome
[2]. This alleviates one of the issues described above
that has complicated filarial genome assemblies.
L. loa is the causative agent of loiasis (“African eye

worm”) and is transmitted by Chrysops spp. (deerflies).
Historically, L. loa has not been the best-studied of the
medically relevant filarial nematodes [2], partly because
infected individuals in endemic areas are typically clinically
asymptomatic [8]. However, in 1995, mass drug administra-
tion (MDA) campaigns began that were aimed at interrupt-
ing transmission of lymphatic filariasis and onchocerciasis.
MDA campaigns that used ivermectin to target oncho-
cerciasis in areas where the population was co-infected
with L. loa had an increased incidence of severe adverse
events including encephalopathy and death [9]. Therefore,
the L. loa genome has clinical importance as well as provid-
ing a backdrop for developing better molecular diagnostics
to ensure success of the global programs to eliminate
lymphatic filariasis and onchocerciasis.
The introduction of the Pacific Biosciences platform in

2011 provided an opportunity to leverage its significantly
longer reads to improve the L. loa genome sequence
and assembly and to generate a more complete filarial
nematode genome. The prior genome was sequenced
from material collected from a patient from Cameroon.
Here, we undertook the sequencing of a second L. loa
clinical specimen from an individual from the Central
African Republic. Both of these countries are within the
10 countries that are at the center of L. loa infection in
Africa [10], but the genomes should be polymorphic with
respect to one another. Using this sample, we describe
96.4 Mbp in 2,250 contigs, which represents ~9% more of
the genome in ~85% fewer contigs from ~80% less start-
ing material. The result is the most complete filarial
nematode assembly published thus far at a fraction of the
cost of previous efforts.

Results
Sequencing results
To improve the L. loa genome, whole genome sequencing
was undertaken using the Illumina MiSeq and Pacific
Biosciences (PacBio) RS II platforms. The previously
published L. loa genome was sequenced with Roche
454 FLX reads resulting in 91.4 Mbp in 5,773 scaffolds
divided between 3.8 Mbp of gaps and 87.5 Mbp of con-
sensus sequence in 14,332 contigs (Tables 1 and 2) [2].
We sought to improve this using the latest sequencing
strategies. We were able to obtain ~10 μg of high quality,
high molecular weight DNA from a clinical specimen con-
taining microfilariae of L. loa. The Illumina MiSeq library
that was constructed had an estimated insert size of 646 bp
and was sequenced on the MiSeq to generate 5.2 Mbp
from >8.7 million 301-bp paired end reads. The PacBio
library that was constructed had an estimated mean insert
size of 8.4 kbp and was sequenced on 25 SMRT cells
resulting in 78.85× raw sequencing coverage with 7.6
Gbp of sequence from >1.8 million reads with an estimated
maximum read length of 25 kbp, a mean read length
of ~4.1 kbp, and a median read length of ~3.6 kbp.

Assembly results from PacBio and Illumina data
The sequencing reads were assembled with six different
strategies: (1) Celera assembler (CA) [11] with only
Illumina MiSeq data; (2) MaSuRCA assembler [12]
with only Illumina MiSeq data; (3) CLC assembler
(CLC bio, Cambridge, MA, USA) with only Illumina
MiSeq data; (4) CA with PacBio reads corrected with
Illumina MiSeq data [13]; (5) CA with PacBio reads
corrected with Illumina MiSeq data generated here and
the Roche 454 data previously published [2], and (6)
HGAP2 with only the PacBio reads [14]. QUAST [15] was
used to compare the assemblies by aligning them to the
previously published L. loa genome (Genbank: ADBU02)
[2]. Based on total length, number of scaffolds/contigs,
largest scaffold/contig length, and scaffold/contig N50,
HGAP2 outperformed the other approaches for both
scaffolds (Table 1) and contigs (Table 2). HGAP2 only



Table 1 Assembly statistics for scaffolds

Assembler Sequencing data No. scaffolds Total length No. scaffolds
(≥1 kbp)

Total length
(> = 1 kbp)

Largest
scaffold

GC (%) N50

Newbler 454 5,774 91.4 NR NR NR 31.0 172,000

CA Illumina MiSeq 2,902 86,081,730 2,891 86,076,258 447,471 30.7 64,834

MaSurCA Illumina MiSeq 27,116 96,961,118 16,611 90,177,928 129,528 30.8 10,831

CLCBio Illumina MiSeq 72,775 104,010,594 12,719 78,215,812 115,234 29.3 7,816

CA Illumina-corrected
PacBio reads

4,436 94,016,717 4,436 94,016,717 901,957 31.0 61,260

CA Illumina- and
454-corrected
PacBio reads

4,222 100,293,095 4,222 100,293,095 905,793 30.8 89,633

HGAP2 PacBio reads 2,601 102,405,157 2,601 102,405,157 1,570,895 30.7 163,655

HGAP2 with trimming PacBio reads 2,250 96,410,008 2,183 96,369,305 1,570,872 30.8 180,288

This table provides the statistics about the scaffolds generated by various combinations of assemblers and data sets. The statistics reported include the number of
scaffolds, total length of sequence, number of scaffolds ≥ 1 kbp, the total length of scaffolds ≥ 1 kbp, the size of the largest scaffold, the percent GC, and the N50.
The previously published values for the 454-based assembly (Genbank: ADBU02) is included for comparison; NR denotes that the value was not reported.
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generates contigs, so the values for contigs and scaffolds
are identical. HGAP2’s superior performance relative to
the other methods tested was further supported by plots
of the cumulative length of the assembly as a function of
contigs sequenced (Figure 1).
Contigs and scaffolds were further examined following

positive filtering to remove contigs that did not match
the previously published L. loa genome. Such filtering
would remove contaminants as well as sequence from
the human host. Positive filtering removed a small per-
centage of contigs in all cases, but the overall assembly
statistics remained similar. The HGAP2 assembly of only
PacBio reads still outperformed all other methods examined
with the largest genome size, largest N50, and the fewest
number of contigs. Manual curation of the contigs removed
by positive filtering from the HGAP2 assembly revealed
sequences consistent with being in the L. loa genome,
meaning they did not currently have any other matches in
NT and often contained low complexity repeats. Therefore,
the HGAP2 assembly without positive filtering was selected
for further examination and validation.
Table 2 Assembly statistics for contigs

Assembler Sequencing data No. contigs To

CA Illumina MiSeq 3,785 86,

MaSurCA Illumina MiSeq 27,180 96,

CLCBio Illumina MiSeq 72,775 104

CA Illumina-corrected PacBio reads 4,436 94,

CA Illumina- and 454-corrected
PacBio reads

4,222 100

HGAP2 PacBio reads 2,601 102

HGAP2 with trimming PacBio reads 2,250 96,

This table provides the statistics about the contigs generated by various combinatio
contigs, total length of sequence, number of contigs ≥ 1 kbp, the total length of co
Validation and trimming with quiver
PacBio contigs can end with erroneous sequence that re-
sults from the joining of a single chimeric fragment,
which is frequently and easily detected in bacterial ge-
nomes that are sequenced to completion and need to be
circularized (Dunning Hotopp, personal observation).
Such regions should be detected with PacBio’s Quiver
algorithm, which finds the maximum likelihood con-
sensus de novo using the sequence as well as numerous
covariates provided by the basecaller. To examine the
extent to which poorly supported sequences at contig
ends increases the predicted genome size, we examined the
contig containing the circular L. loa mitochondria genome,
which had a 6 kbp overlap before circularization. Beyond
this overlap, there was ~450 bp and ~1200 bp of erroneous
sequence on the left and right flanks, respectively. This was
also identified with Quiver, which flagged 208 bp and
1416 bp of sequence as being poorly supported on the left
and right flanks, respectively. This indicates that Quiver
can identify and estimate erroneous extra sequences
that may be artificially inflating the genome size. With
tal length No. contigs
(≥1 kbp)

Total length
(≥1 kbp)

Largest
contig

GC (%) N50

045,090 3,670 85,991,832 362,075 30.7 49,810

959,781 16,645 90,159,179 129,528 30.8 10,719

,010,594 12,719 78,215,812 115,234 29.3 7,816

016,717 4,436 94,016,717 901,957 31.0 61,260

,293,095 4,222 100,293,095 905,793 30.8 89,633

,405,157 2,601 102,405,157 1,570,895 30.7 163,655

410,008 2,183 96,369,305 1,570,872 30.8 180,288

ns of assemblers and data sets. The statistics reported include the number of
ntigs ≥ 1 kbp, the size of the largest contig, the percent GC, and the N50.



Figure 1 Cumulative length of contigs. The cumulative length of the assemblies are plotted for all contigs. Contigs are indexed (x) from
longest to shortest. The cumulative length of the first x contigs are plotted as a function of x for the assembly using a log-transformed x-axis.
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the HGAP2 assembly, 7.89 Mbp of data were flagged by
Quiver as having lower confidence. Trimming off Quiver-
flagged regions from the ends of contigs and removing
resulting contigs <200 bp in the 102.4 Mbp HGAP2 assem-
bly yielded a 96.4 Mbp assembly. In this way, the actual
genome size may be smaller than the HGAP2 assembly size
because there are large regions with lower confidence at
contig ends, which likely scales with the number of contigs
in the assembly. All subsequent analyses were performed
on this Quiver-trimmed HGAP2 assembly, which was
deemed to be the final assembly and the most accurate
assessment of the genome size. Providing further valid-
ation of the quality of this assembly, CEGMA3 analysis
[16] identified 237 (95.6%) complete genes of the 248 core
eukaryotic genes in this assembly, while an additional 6
partial genes were identified (98%). This is slightly more
than the 236 complete and 5 partial core eukaryotic genes
found in the previous L. loa assembly.
The remaining data flagged by Quiver that was internal

to the contigs were frequently low complexity, AT-rich
trimeric and tetrameric repeat arrays. Consistent with this,
Quiver-flagged internal regions had a lower GC-content
than the rest of the genome (Figure 2).

Differences in assembly content
In order to assess the genome content differences be-
tween the prior 454-based assembly and the current
Quiver-trimmed HGAP2 assembly, we identified the
gaps in both assemblies using NUCMER separately
with the MUMREFERENCE and the MAXMATCH options
followed by a subsequent BLAST search against the
same database (Figure 3). The subsequent BLAST search
was needed because NUCMER identified some sequences
up to 18 kbp in length as missing in the reference that
were actually present in the reference. The results using
MAXMATCH and MUMREFERENCE with a subsequent
BLASTN search were congruent (Figure 3).
For the current HGAP2-assembled sequence, 2,307-2,718

unique sequences spanning 580–791 kbp were identi-
fied as not present in the prior 454-based assembly using
NUCMER with MAXMATCH or MUMREFERENCE
followed by a subsequent BLASTN against the prior
454-based assembly (e-value < 0.000001). Of these, hundreds
were low complexity sequences that were not likely resolved
with the 454-based sequencing.
As mentioned previously, the 454-based assembly had

a significant number of N-filled gaps. Not surprisingly
then, of the 8,468-8,643 “sequences” found only in the
454 assembly but not the PacBio assembly that span
4.28-4.45 Mbp, the vast majority contain Ns. Of the
578–700 sequences without Ns, 307–425 had a match with
BLASTN (e-value < 0.000001) in the HGAP2 assembly. Of
those remaining 271–275 sequences spanning 120–123
kbp, 9 have matches in NT to the GRCh37 release of the



Figure 3 Assembly differences. The differences between the HGAP2 assembly presented here and the prior 454-based assembly are examined
using NUCMER and BLASTN. The larger number of sequences uniquely in the HGAP2 assembly and the larger number of low complexity sequences
suggests that the PacBio sequence data resolves more of the genome by spanning low complexity repeats. Some regions were identified in
the 454-based assembly that were in the Illumina MiSeq assembly, suggesting that the sequences are missing from the HGAP2 assembly.

Figure 2 GC coverage of high and low confidence areas. Histograms of the %GC for all contigs and all internal regions flagged by Quiver are
presented. Many of the internal regions that are poorly supported are AT-rich relative to the entire set of contigs.
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human genome reference (e-value < 0.000001), 23–35
are low complexity, and the remainder have no signifi-
cant homology to anything except L. loa and other
nematodes in NT.
These results suggest that both the prior assembly of

454 data and the current assembly of PacBio data had
unique regions not covered by the other assembly. These
could be due either to gaps in the sequencing and assembly,
biological variation, or both. Of the 271–275 sequences in
the 454-based assembly but not the HGAP2 assembly,
150–161 spanning 101–107 kbp had a match to the
Illumina MiSeq assembly (e-value e-15). This suggests
those sequences are merely missing from the HGAP2
assembly, since the DNA source was the same for the
Illumina MiSeq and HGAP2 assemblies. These sequences
were not identified in the HGAP2 assembly prior to
Quiver-based trimming indicating that the sequences were
not erroneously removed during trimming. The larger
number of sequences uniquely in the HGAP2 assembly as
well as the larger number of low complexity sequences
suggests that, as expected, the PacBio sequence resolved
more of the genome by spanning low complexity repeats.
Nine contigs with significant homology to human se-

quences could be identified in the prior 454-based assembly
and have now been removed from the genome deposited at
NCBI (Desjardins, personal communication). No sequences
with homology to human sequences were identified in the
PacBio assembly presented here. More specifically, no se-
quence in the Quiver-trimmed HGAP2 assembly was iden-
tified with >95% identity across 100 bp of sequence using
BLASTN and the GRCh38 release of the human genome.

Validation with Illumina data
In order to further validate the Quiver-trimmed HGAP2
assembly, we mapped all of the Illumina MiSeq reads to
it. The Illumina sequence data was derived from the same
DNA sample as the PacBio data, so we expect similarities.
Approximately 307 kbp of the assembly had 0× coverage in
Illumina reads (Figure 4), which was evenly split between
positions in the internal regions that were flagged by
Quiver (154,504 positions) and positions in regions that
were not flagged by Quiver (152,446 positions). If posi-
tions with ≤2× coverage are examined, three times the
number of positions are identified in regions not flagged
by Quiver (1,281,258 positions) than those flagged by
Quiver (395,098 bp). However, considering that <2% of
positions were flagged by Quiver relative to those not
flagged by Quiver in the assembly, this demonstrates a
congruence between internal regions flagged by Quiver
and coverage as assessed by the Illumina mapping.
The peak in coverage for the Illumina data was at 51×

coverage (Figures 4 and 5). In addition to this major peak,
two additional peaks were identified at 200× and 450×
(Figure 5), which could reflect collapsed repeats in the
assembly. An examination of the regions with >350×
coverage revealed that the contig with the most posi-
tions in this coverage range contained the complete
mitochondrial genome. This result likely reflects the
numerous mitochondrial genomes sequenced for every
one nuclear genome sequenced. The next two contigs
in rank abundance of positions with >350× coverage
contained a L. loa interspersed repeat and the rRNA. A
similar examination of the three contigs with the most
positions at 180-250× coverage revealed contigs also
containing L. loa repeats. There are two possible expla-
nations for this result. This may reflect the continued
presence of collapsed repeats in the assembly despite
the long sequence reads. Alternatively, the result may
stem from some regions being better corrected than
other regions. For identical or nearly identical repeats,
Illumina reads will map better to a corrected repeat
than an uncorrected repeat. In this way, the true cover-
age may be inadequately divided between some high
coverage areas and low coverage areas.
The NUCMER searches described above demonstrate

that the PacBio sequences can better resolve repeats.
Therefore, as expected, the HGAP2 assembly had the low-
est maximum coverage value (~1,100×, or 22× the median
coverage) of all assemblies while the assemblies that relied
on only MiSeq data have the highest maximum coverage
(~15,000×, or 300× the median coverage) (Figure 5). The
HGAP2 assembly is also the only assembly to have notice-
able peaks in the coverage distribution reflecting collapsed
repeats including the mitochondria and rRNA as discussed
above. It is less clear why these coverage peaks are not vis-
ible in the coverage distributions for the other assemblies.
It may be that the repeats are not as well resolved. In par-
ticular, if they are unequally fragmented in the assembly,
the Illumina sequence reads will be unequally distributed
when mapping with BWA.
Several metrics were also calculated on the alignments

using PICARD including the number of discordant read
pairs (Table 3). The number of discordant read pairs was
similar between all the assemblies and ranged between
0.02-0.2% of the total reads. The similarity of the results
across Illumina-only and PacBio-only assemblies may in-
dicate that the discordance measured reflects sequencing
errors as opposed to assembly errors.

Heterogeneity
Since there is no animal host for L. loa and the sample
was taken directly from a patient, there was no intentional
inbreeding of the nematode to generate a homozygous
line. Thus, we expect to identify polymorphic positions
within this DNA sample. To examine the single nucleotide
polymorphism (SNP) heterogeneity, a SNP was defined as
a position with >20× Illumina MiSeq coverage that had
SNPs supported by >3 reads that reflected substitution



Figure 4 Sequencing coverage distribution of high and low coverage areas. Histograms of the coverage at each position following
mapping of the Illumina MiSeq reads to the Quiver-trimmed HGAP2 assembly are plotted for those positions that Quiver identifies as
well-supported and those that are poorly-supported. Many of the remaining poorly supported internal positions have low coverage.
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mutations as identified by SAMTOOLS and no indication
of the presence of an insertion or deletion (indel). There
are 83,737,752 such positions that have >20× coverage
and no indel. Of those, 206,137 positions, or 0.2% of the
positions, have >3 reads supporting the same alternate
polymorphism. The HGAP2 consensus call was most
frequently consistent with the majority of Illumina reads.
However, there were regions where 100% of the Illumina
reads mapping to the HGAP2 assembly supported an
alternative call (Figure 6) despite both libraries being
constructed from the same DNA. The regions that
were identified as poorly supported using Quiver had a
similar distribution of polymorphisms as the regions
that were identified as supported (Figure 6) suggesting
that support, as assessed by Quiver, was not the sole
source of this error. One ~6 kbp contig contained the
most such positions, with 25 positions across an ~1.1
kbp stretch where 100% of the mapped Illumina reads
disagreed with the HGAP2 consensus call. This 1.1 kbp
region can be identified in four separate contigs in the
previously published genome [2] suggesting that repeats
are one source of this problem. Further supporting that
repeats may be one source of this error, some of the 100%
heterogenous positions have higher coverage than average
suggesting that they may be collapsed repeats (Figure 7).
Such SNP heterogeneity as a function of coverage is very
similar across all of the assemblies, with the exception of
the MaSurCA assembly of only Illumina reads, which had
a higher number of positions with 50-85% heterogeneity
(Figure 8). Of note, we did not optimize any of the assem-
blies, so it is possible that MaSurCA could perform better
with optimization. With regard to positions that were 100%
discordant between the consensus base and the Illumina
reads, MaSurCA had the fewest with only 86 such positions
and CLCBio had the most with 3,501, followed by CA
assembly of Illumina- and 454-corrected PacBio reads with
1,612 and CA assembly of Illumina-corrected PacBio
reads with 1,455. Both trimmed and untrimmed HGAP2
assemblies had 107 such positions. Therefore, all of the
assemblies had such positions and HGAP2 did not per-
form significantly worse than the other assemblers. The
Illumina-reads mapped against the Illumina-only assembly
with CA had 98 such positions, which is similar to the 107
such positions found in the HGAP2 assembly.

Discussion
PacBio sequencing of a metazoan population
Genome sequencing platforms are improving at a rapid
pace, providing access to more and better genomes at a
reduced cost. An era of short reads with small insert sizes



Figure 5 Sequencing coverage distribution. A histogram of the coverage at each position following mapping of the Illumina MiSeq reads to
all assemblies are plotted with log-transformed axes. Regions with abnormally little coverage exist, as well as those with excess coverage, for all
assemblies. The peak in coverage for the Illumina data was at 51× coverage. In addition to this major peak, two additional peaks were identified
at 200× and 450× in the HGAP2 assembly, reflecting collapsed repeats in the assembly including the mitochondrial genome, a L. loa interspersed
repeat, and the rRNA.
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enabled re-sequencing efforts for model organisms and
humans with large genomes. However, de novo sequencing
of large genomes from non-model organisms languished.
Capillary-based sequencing remained cost prohibitive, but
until recently, newer technologies did not offer the combin-
ation of read length and insert size needed to de novo as-
semble large genomes. However, single-molecule, real-time
sequencing using the PacBio RS II generates long sequence
reads and provides an opportunity to generate new,
Table 3 Mapping metrics for assemblies

Assembler Sequencing data FR r

CA Illumina MiSeq 7,163

MaSurCA Illumina MiSeq 7,315

CLCBio Illumina MiSeq 6,917

CA Illumina-corrected PacBio reads 7,292

CA Illumina- and 454-corrected PacBio reads 7,459

HGAP2 PacBio reads 7,544

HGAP2 with trimming PacBio reads 7,564

This table provides the statistics about the mapping of all of the Illumina read pairs
and data sets as assessed by PICARD. The statistics reported include the number of
insert ± on absolute deviation, and the mean insert size ± one absolute deviation.
high-quality genome sequences from non-model organisms
with large genomes, as well as improve the assemblies
of those that have been sequenced previously.
Many of the improvements realized by PacBio have

already been applied to bacterial genomes. The platform
was used for rapid sequencing of disease outbreak strains
including the Haitian cholera outbreak in 2010 [17] and
the German E. coli outbreak in 2011 [18]. Subsequently,
numerous bacterial genomes have been sequenced, many
eads RF reads Tandem Median insert
Size ± Abs. Dev.

Mean insert
Size ± St. Dev.

,609 690 739 470 ± 45 480 ± 72

,963 340 137 469 ± 44 478 ± 71

,178 103 29 466 ± 44 475 ± 72

,995 694 298 470 ± 44 479 ± 71

,123 600 288 470 ± 44 480 ± 71

,255 696 826 471 ± 45 480 ± 71

,549 697 827 471 ± 45 480 ± 71

against all of the contigs generated by various combinations of assemblers
FR reads, the number of RF reads, the number of tandem reads, the median



Figure 6 Percentage of heterogeneity for SNPs in high and low confidence regions. Histograms are presented for the percent
heterogeneity of SNPs. Since the population is not intentionally inbred, mixed levels of polymorphism are expected at a variety of positions.
A SNP was defined as a position with >20× coverage that had polymorphisms supported by >3 reads. Regions that Quiver identified as being
supported and those flagged as having low support were examined separately and were found to have similar profiles. While the HGAP2
consensus typically contained the base supported by the majority of reads, there are regions where 100% of the reads mapping to the assembly
support an alternative call.
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of which are closed solely with PacBio data [19]. More
recently, PacBio sequencing has been applied to resolving
segmental duplications in primate genomes [20]. However,
to our knowledge, successful de novo sequencing of large
non-model metazoan genomes using the PacBio platform
has not yet been published.
Here, we demonstrate that the sole use of PacBio reads

yields a larger genome assembly with fewer gaps than
similar genomes generated through capillary sequencing
or 454 sequencing. For example, 9× coverage using ca-
pillary based sequencing of 1.6-3.0 kbp and 10–12 kbp
libraries as well as fosmids and BACs for B. malayi
yielded 77.5 Mbp in 8,180 scaffolds with an N50 of 94 kbp
and 17.5 Mbp in degenerate contigs [1,4]. The sequencing
for that project alone likely cost >$1 million. For L. loa,
Roche 454 FLX sequencing of shotgun libraries and a
3-kbp jumping library to a combined 20× coverage yielded
a 91.7-Mbp assembly with 5,774 scaffolds with an N50 of
172 kbp [2]. Given that 18 Roche 454 sequencing runs
were deposited at the Sequence Read Archive, the sequen-
cing alone would have cost >$50,000, and likely cost at
least twice that. In both cases, the number of gaps were
significant and the amount of sequence data in contigs
was significantly less than the aggregate size of the scaf-
folds, with 70.7 Mbp and 87.5 Mbp of sequence in 26,589
and 14,332 contigs for B. malayi and L. loa, respectively.
Assembly of PacBio data yields only contigs, since reads are
not paired, but those contigs are larger than the scaffolds
reported previously, suggesting many of the previous gaps
are now sequenced. The Quiver-trimmed HGAP2 assembly
generated here is 96.4 Mbp in 2,250 contigs and the se-
quencing cost <$12,000. The raw PacBio sequencing
coverage was 78.85× and the PacBio-corrected bases in the
assembly yielded 16.4× coverage. The resulting assembly
contains 8.9 Mbp more sequence (~9% of the total size)
in ~85% fewer contigs at a fraction of the cost, and is the
most completely assembled filarial nematode genome pub-
lished thus far. Furthermore, the most recent assembly re-
quired 80% less starting material (<10 μg of genomic DNA)
than the Roche 454-based sequencing project, which
reported using ~50 μg [2], which is an important con-
sideration for clinical samples.



Figure 7 Relationship between coverage and percent heterogeneity. A SNP was defined as a position with >20× coverage that had
polymorphisms supported by >3 reads. For each position with a SNP, the percent heterogeneity and coverage are plotted. The red line shows
the minimum bounds of the data that is defined by requiring >20× coverage and polymorphisms in three reads. As expected, some of the
100% heterogenous positions have higher coverage than average suggesting that they may be collapsed repeats. This plot does not enable any
conclusions about the frequency at which a value occurs since data points with the same values are only plotted once.
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Need for further improvements in polishing algorithms
While the result is a more complete genome, it still
contains some misassemblies and errors. Misassemblies
were identified with Quiver that could reflect real rear-
rangements as well as artifacts resulting from ligation
of genomic DNA fragments during library construction.
The library construction protocol relies on a blunt end
ligation to add adaptors to genomic DNA fragments.
Ligation occurs in an excess of adaptors, which will favor
ligation of adaptor to fragment ends. However, the in-
appropriate joining of two fragments can also occur. We
expect each such pair of ligated fragments to be unique.
As such, more sequencing coverage would ultimately
overwhelm such chimeric reads resulting in their effective
removal from assemblies except at contig ends. Therefore,
more sequence coverage would be expected to yield a
more complete genome. However, we used the entire
DNA sample available, so we could not obtain additional
sequence coverage to improve this assembly.
Additionally, we identified a number of Quiver consensus

calls poorly supported by the aligned Illumina MiSeq
data. We explored using Illumina reads to correct the
PacBio consensus using the consensus calling available
in SAMTOOLS. However, the repetitive nature of the
genome precluded such an undertaking with many regions
lacking uniquely mapping reads. Furthermore, it is unclear
whether the Illumina data or the PacBio consensus would
be more accurate given that we observed the poorly sup-
ported consensus calls in all of the assemblies generated.
To investigate this further, we excised the 100 bp

upstream and downstream of the 107 positions that
were 100% heterogeneous in the HGAP2 assembly and
compared them to the prior 454-based assembly. Most
of these sequences were present at least twice in the
genome with both polymorphisms present between
the paralogs. Therefore, the most likely source of this
error in all the assemblies is the inability of the assem-
bler to adequately resolve paralogs, which is also a
problem in the BWA-based mappings.
In HGAP2, we suspect that the error correction step

may be the source of this error. Under this scenario, some
SNPs may be erroneously corrected to match a paralog
while others are not. The result is a hybrid sequence
like those we observe in the HGAP2 assembly. In that
case, the Illumina sequences for the two paralogs will
quite possibly be unequally distributed between the two



Figure 8 Percentage of heterogeneity for SNPs in multiple assemblies. Histograms are presented for the percent heterogeneity of SNPs.
Since the population is not intentionally inbred, mixed levels of polymorphism are expected at a variety of positions. A SNP was defined as a
position with >20× coverage that had polymorphisms supported by >3 reads. While one might anticipate minimal or no positions at >50%
heterogeneity, numerous such instances are observed for all of the assemblers tested with all datasets, including the assemblies based solely on
the same Illumina data that was used for the mappings. HGAP2 performed similar to, or better than, the other assemblers examined.
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paralogs. Unfortunately, HGAP2 does not save the align-
ments used for the error correction step to investigate this
further. However, one can imagine that a Quiver-like pol-
ishing algorithm that uses multiple sequence types and
their quality values that is able to take into account each
sequence type’s inherent biases may yield the most error-
free assembly, particularly if the algorithm better focuses
on resolving paralogs, possibly through contextual based
error correction as in chromosome phasing algorithms.
This may be particularly useful for clinical samples where
DNA quantities are limited, homozygous lines are not
available, and further sequencing may not be possible.

Conclusions
Here, we demonstrate the ease of generating an economical
genome assembly using high-quality, long-read PacBio data
from genetically heterogeneous filarial nematode DNA
from a clinical sample. A comparison of the sequence data
types and assembly reveals that HGAP2 assembly of PacBio
data alone yields the most complete genome of the assem-
bly methods tested. Applying this strategy to further sam-
ples, as well as to other medically important metazoans, is
likely to be fruitful. The differences between this assembly
of L. loa and the one that was published previously, likely
reflect differences in the L. loa populations sequenced, at
least in part. Therefore, we look forward to the analysis of
this more complete genome sequence in order to improve
our understanding of loiasis and the genomic diversity
of L. loa. Future directions include examining the two
genomes and the encoded proteins more systematically
and understanding population variation and selection.
In addition, these two robust assemblies could be as-
sembled to create a more complete non-redundant
consensus reference L. loa genome, using the methods
established for the generating the non-redundant con-
sensus human genome.

Methods
Isolation of L. loa microfilariae
During a therapeutic apheresis, 5 × 105 microfilariae were
purified from a patient with loiasis infected in the Central
African Republic seen at the NIH under protocol 88-I-83
(NCT00001230) approved by the NIAID Institutional
Review Board. Written informed consent was obtained
from the patient. All protocols and consenting were in
compliance with the Helsinki Declaration for the protection
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of human subjects. Purification of the microfilariae oc-
curred following centrifugation over a ficoll-diatrizoate
density gradient followed by filtration through a 3 μM
filter. The filters were rinsed in RPMI supplemented
with antibiotics and the microfilariae that were able to
swim off were collected, rinsed, centrifuged, and stored
in liquid nitrogen until used.

Preparation of genomic DNA
The cryopreserved purified microfilariae were thawed,
and then rinsed twice in PBS and once in 1× DNase I
Buffer (Roche) before being resuspended in 200 μL of
DNase I Buffer containing 100 U of DNase I for 1 h at
37°C to remove any free human DNA. The sample was
washed twice in PBS by centrifugation at 2000 rpm for
10 min. The microfilariae were resuspended in 180 μL of
ATL buffer (Qiagen) and vortexed for 10 s. Proteinase K
(20 μL) was added, and then the sample was vortexed
for 30 s and incubated at 56°C for 1 h. The sample was
processed using a DNeasy Kit (Qiagen) following the
manufacturer’s protocol.

Illumina library construction and sequencing
A genomic DNA library was constructed for sequencing
on the Illumina platform using a modified version of the
KAPA Library preparation Kit (Kapa Biosystems, Woburn,
MA, USA). DNA was fragmented with the Covaris E210.
AMPure XT beads (Beckman Coulter Genomics, Danvers,
MA, USA) were used to purify between enzymatic reac-
tions and size select the library. The PCR amplification step
was performed with primers containing a 6-mer index
sequence. The library was sequenced on a multiplexed
301-bp paired-end run on an Illumina MiSeq, resulting
in ~8.7 million passed filter read pairs.

Pacific biosciences library construction and sequencing
Genomic DNA (~9.4 μg) was sheared using the Covaris
gTube (Woburn, MA, USA). A PacBio sequencing library
was constructed using the resulting ~5 μg of the sheared
material and prepared for sequencing using the DNA
template prep kit 2.0 (Pacific Biosciences, Menlo Park,
CA, USA). Small library fragments were removed using the
BluePippin (Sage Science, Beverly, MA, USA), resulting
in an estimated mean insert length of 8.4 kbp. The li-
brary was loaded onto 25 v2 SMRT Cells and se-
quenced with polymerase P4 and sequencing chemistry
C2 (Pacific Biosciences), resulting in a total of ~1.8 million
sequence reads and 7.6 Gbp of passed-filter data.

Assembly
The Illumina MiSeq data alone was assembled using CLC
assembler v4.1.0, Celera Assembler v7.0, and MaSuRCA,
a version of Celera Assembler that constructs merged
super-reads prior to assembly. Using the latest PBcR
(PacBio-Corrected Reads) correction algorithm, Illumina
reads were aligned alone, or in combination with the pre-
viously published Roche 454 reads [2], to long PacBio
reads and used to correct errors in the PacBio sequences.
The resulting corrected PacBio reads were assembled with
Celera Assembler v8.1. Finally, PacBio data alone was as-
sembled using HGAP2, which uses shorter PacBio reads
in a multiple alignment to correct errors in longer reads,
which are then assembled. For the HGAP2 assembly,
Quiver was used for consensus polishing. Specific parame-
ters for each assembly are provided (Additional file 1). To
generate the Quiver-trimmed HGAP2 assembly that was
identified as the final assembly, Quiver-flagged regions
at the ends of contigs were removed as well as resulting
contigs <200 bp. We would have liked to compare HGAP2
to Celera Assembler for using shorter PacBio reads to cor-
rect errors in longer reads and to assemble the corrected-
PacBio reads. To this end, we attempted a CA assembly
with the PacBio reads at least eight times using different
parameters as well as different hardware, but the assem-
bler consistently failed at the overlapping step.

Positive filtering
Following assembly, contigs were filtered using a MEGA-
BLAST screen against the previously published L. loa
genome [2] to select for contigs that align >95% over
100 bp in an effort to eliminate human contigs and other
contaminants.

Mapping Illumina data
Illumina reads were mapped against the Quiver-trimmed
HGAP2 assembly using ALN/SAMPE in BWA [21] with
default parameters. Duplicate reads were removed fol-
lowing sorting with Picard [22] using default parame-
ters. Coverage values and SNPs were calculated and
identified with MPILEUP in SAMTOOLS [23] using
default parameters.

Identifying differences between genomes
NUCMER [24] searches with both MAXMATCH and
MUMREFERENCE were used to find differences between
the prior 454-based assembly and the current PacBio-based
assembly. After we identified numerous issues that resulted
in misidentifying gaps, the “-c 120 -l 40” options were used
to minimize clustering of unique anchors due to the high
similarity of the HGAP2 assembly and the 454-based as-
sembly. This requires a minimum cluster length of 120
(default = 65) and a minimum length of a maximal exact
match of 40 (default = 20). The coordinates of matches
were used to extract the sequences in nucmer-identified
gaps. These sequences were searched against the reference
assembly with BLASTN. Sequences without a BLAST
match were extracted and searched against both NT and
the CA Illumina assembly.
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Structural and functional annotation of Loa loa
Repeat masking was performed with RepeatMasker 4.0.5
[25,26] using a library of characterized Nematoda repeats
and a de novo one generated with RepeatModeler. L. loa
transcriptome sequencing reads (>5 M spots, 872 M bases)
[2] were downloaded from NCBI SRA (http://www.ncbi.
nlm.nih.gov/sra/SRX130438), trimmed with Trimmomatic
[27], and assembled with Trinity [28] using both ab initio
and genome-guided approaches. An initial set of ab initio
GeneMark-ES (GMES) [29] gene predictions was iteratively
improved by incorporating these Trinity assemblies that
were aligned to the genome using PASA [30] with BLAT
and GMAP and with the TransDecoder option to estimate
full length cDNAs. Complete GMES models with full
length RNA-seq support were clustered with UCLUST
[31] to remove 70% similar sequences and then
searched against the NCBI non-redundant proteins using
BLASTP [32]. Models matching non-L. loa proteins
with e-values <1e-20 were retained for training with
SNAP [33], Augustus [34], and GlimmerHMM [35].
After training, gene finders were run on genomic scaffolds.
Augustus was run twice, once using RNA-seq intron
hints mapped with Bowtie2/Tophat2 [36,37] and once
without hints, and non-overlapping models were combined.
GeneID [38] was run using an existing parameter file.
Protein alignments to L. loa genome were generated with
AAT [39] against SwissProt and NCBI non-redundant data-
base. EvidenceModeler (EVM) [40] was run using as inputs
PASA alignments of Trinity RNA-seq assemblies, ab initio
predictions, protein alignments, and repeat hints, all with
manually assigned weights (RNA-seq > protein > ab initio).
A second run of EVM was performed using only (a) equally
weighted gene predictions from the five ab initio predic-
tors and (b) heavily weighted gene predictions from the
reference L. loaV3 annotation (http://www.broadinstitute.
org/annotation/genome/filarial_worms) mapped to the
genome with Exonerate [41] at 90% identity. Models
from the second EVM run that were not overlapping
models from the first were combined with the first to
generate a full gene prediction set. Functional annota-
tion was performed by querying predicted proteins
with HMMER3 against a custom HMM collection that
includes TIGRFams and PFam and searching against
SwissProt with NCBI. These steps, in conjunction
with custom-built databases of annotation assertions,
provide assignments of gene product names, EC
numbers, GO terms and gene symbols. Proteins sig-
nificantly overlapping repeats were removed from the
final annotation set. Lastly, predictions of non-coding
RNAs generated with tRNAscan-SE [42] and RNAmmer
[43] were added to the final set. Although CEGMA
[16] was not used in structural annotation, CEGMA
models were predicted in order to assess completeness
of genome assembly.
Availability of supporting data
The raw sequencing reads are deposited in the Sequence
Read Archive SRA: SRP041627 (http://www.ncbi.nlm.nih.
gov/sra/?term=SRP041627). The final Quiver-trimmed
HGAP2 assembly is available in Genbank (Genbank:
JPEI01000000).

Additional file

Additional file 1: Recipes for genome assemblies. A word document
is provided outlining how each assembly was generated.

Abbreviations
CA: Celera assembler; Indel: Insertion or deletion; MDA: Mass drug administration;
PacBio: Pacific Biosciences; SNP: Single nucleotide polymorphism.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LJT conceived this study, coordinated the assembly and analysis methods,
and helped draft the manuscript. XL conducted all of the assemblies and
their analysis with QUAST. SB generated the genomic DNA and drafted
portions of the manuscript. MCC annotated the genome and conducted the
CEGMA analysis. AG, SO, and XZ generated the sequencing data for this
study. LS coordinated the generation of the sequencing data. CMF
conceived this study and helped draft the manuscript. TBN conceived this
study, coordinated collection of the sample, and helped draft the
manuscript. JCDH conceived and coordinated this study, conducted the
analyses of the Illumina mappings to the final assembly, and drafted the
manuscript. All authors read and approved the final manuscript.

Acknowledgements
We would like to thank Sergey Koren and Adam Phillippy from the National
Biodefense Analysis and Countermeasures Center (NBACC) for their advice
on CA assembly. This project has been funded by the National Institute of
Allergy and Infectious Diseases, National Institutes of Health, Department of
Health and Human Services under contract number HHSN272200900009C
and grant U19AI110820. As JCDH also received funding from the NIH
Director's New Innovator Award Program (1-DP2-OD007372) and SB and TN
received funding from the Division of Intramural Research (DIR) of the
National Institute of Allergy and Infectious Diseases.

Author details
1Institute for Genome Sciences, University of Maryland School of Medicine,
Baltimore, MD, USA. 2Laboratory of Parasitic Diseases, National Institute of
Allergy and Infectious Diseases, Bethesda, MD, USA. 3Department of
Microbiology and Immunology, University of Maryland School of Medicine,
Baltimore, MD, USA.

Received: 10 April 2014 Accepted: 2 September 2014
Published: 12 September 2014

References
1. Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher AL,

Guiliano DB, Miranda-Saavedra D, Angiuoli SV, Creasy T, Amedeo P, Haas B,
El-Sayed NM, Wortman JR, Feldblyum T, Tallon L, Schatz M, Shumway M,
Koo H, Salzberg SL, Schobel S, Pertea M, Pop M, White O, Barton GJ, Carlow
CK, Crawford MJ, Daub J, et al: Draft genome of the filarial nematode
parasite Brugia malayi. Science 2007, 317(5845):1756–1760.

2. Desjardins CA, Cerqueira GC, Goldberg JM, Dunning Hotopp JC, Haas BJ,
Zucker J, Ribeiro JM, Saif S, Levin JZ, Fan L, Zeng Q, Russ C, Wortman JR,
Fink DL, Birren BW, Nutman TB: Genomics of Loa loa, a Wolbachia-free
filarial parasite of humans. Nat Genet 2013, 45(5):495–500.

3. Michalski ML, Griffiths KG, Williams SA, Kaplan RM, Moorhead AR: The NIH-NIAID
Filariasis Research Reagent Resource Center. PLoS Negl Trop Dis 2011,
5(11):e1261.

http://www.ncbi.nlm.nih.gov/sra/SRX130438
http://www.ncbi.nlm.nih.gov/sra/SRX130438
http://www.broadinstitute.org/annotation/genome/filarial_worms
http://www.broadinstitute.org/annotation/genome/filarial_worms
http://www.ncbi.nlm.nih.gov/sra/?term=SRP041627
http://www.ncbi.nlm.nih.gov/sra/?term=SRP041627
http://www.biomedcentral.com/content/supplementary/1471-2164-15-788-S1.docx


Tallon et al. BMC Genomics 2014, 15:788 Page 14 of 14
http://www.biomedcentral.com/1471-2164/15/788
4. Ghedin E, Wang S, Foster JM, Slatko BE: First sequenced genome of a
parasitic nematode. Trends Parasitol 2004, 20(4):151–153.

5. Ioannidis P, Johnston KL, Riley DR, Kumar N, White JR, Olarte KT, Ott S,
Tallon LJ, Foster JM, Taylor MJ, Dunning Hotopp JC: Extensively duplicated
and transcriptionally active recent lateral gene transfer from a bacterial
Wolbachia endosymbiont to its host filarial nematode Brugia malayi.
BMC Genomics 2013, 14(1):639.

6. Dunning Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, Torres MC,
Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J,
Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH:
Widespread lateral gene transfer from intracellular bacteria to
multicellular eukaryotes. Science 2007, 317(5845):1753–1756.

7. McGarry HF, Pfarr K, Egerton G, Hoerauf A, Akue JP, Enyong P, Wanji S,
Klager SL, Bianco AE, Beeching NJ, Taylor MJ: Evidence against Wolbachia
symbiosis in Loa loa. Filaria J 2003, 2(1):9.

8. Fink DL, Kamgno J, Nutman TB: Rapid molecular assays for specific
detection and quantitation of Loa loa microfilaremia. PLoS Negl Trop Dis
2011, 5(8):e1299.

9. Gardon J, Gardon-Wendel N, Demanga N, Kamgno J, Chippaux JP,
Boussinesq M: Serious reactions after mass treatment of onchocerciasis
with ivermectin in an area endemic for Loa loa infection. Lancet 1997,
350(9070):18–22.

10. Zoure HG, Wanji S, Noma M, Amazigo UV, Diggle PJ, Tekle AH, Remme JH:
The geographic distribution of Loa loa in Africa: results of large-scale
implementation of the Rapid Assessment Procedure for Loiasis
(RAPLOA). PLoS Negl Trop Dis 2011, 5(6):e1210.

11. Denisov G, Walenz B, Halpern AL, Miller J, Axelrod N, Levy S, Sutton G:
Consensus generation and variant detection by Celera Assembler.
Bioinformatics 2008, 24(8):1035–1040.

12. Zimin AV, Marcais G, Puiu D, Roberts M, Salzberg SL, Yorke JA: The MaSuRCA
genome assembler. Bioinformatics 2013, 29(21):2669–2677.

13. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z,
Rasko DA, McCombie WR, Jarvis ED, Phillippy AM: Hybrid error correction
and de novo assembly of single-molecule sequencing reads.
Nat Biotechnol 2012, 30(7):693–700.

14. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A,
Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J: Nonhybrid,
finished microbial genome assemblies from long-read SMRT sequencing
data. Nat Methods 2013, 10(6):563–569.

15. Gurevich A, Saveliev V, Vyahhi N, Tesler G: QUAST: quality assessment tool
for genome assemblies. Bioinformatics 2013, 29(8):1072–1075.

16. Parra G, Bradnam K, Korf I: CEGMA: a pipeline to accurately annotate core
genes in eukaryotic genomes. Bioinformatics 2007, 23(9):1061–1067.

17. Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR, Bullard J,
Webster DR, Kasarskis A, Peluso P, Paxinos EE, Yamaichi Y, Calderwood SB,
Mekalanos JJ, Schadt EE, Waldor MK: The origin of the Haitian cholera
outbreak strain. N Engl J Med 2011, 364(1):33–42.

18. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, Paxinos EE,
Sebra R, Chin CS, Iliopoulos D, Klammer A, Peluso P, Lee L, Kislyuk AO,
Bullard J, Kasarskis A, Wang S, Eid J, Rank D, Redman JC, Steyert SR,
Frimodt-Moller J, Struve C, Petersen AM, Krogfelt KA, Nataro JP, Schadt EE, Waldor
MK: Origins of the E. coli strain causing an outbreak of hemolytic-uremic
syndrome in Germany. N Engl J Med 2011, 365(8):709–717.

19. Koren S, Harhay GP, Smith TP, Bono JL, Harhay DM, McVey SD, Radune D,
Bergman NH, Phillippy AM: Reducing assembly complexity of microbial
genomes with single-molecule sequencing. Genome Biol 2013, 14(9):R101.

20. Huddleston J, Ranade S, Malig M, Antonacci F, Chaisson M, Hon L, Sudmant PH,
Graves TA, Alkan C, Dennis MY, Wilson RK, Turner SW, Korlach J, Eichler EE:
Reconstructing complex regions of genomes using long-read sequencing
technology. Genome Res 2014, 24(4):688–696.

21. Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 2009, 25(14):1754–1760.

22. Picard. http://picard.sourceforge.net.
23. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,

Abecasis G, Durbin R: The Sequence Alignment/Map format and
SAMtools. Bioinformatics 2009, 25(16):2078–2079.

24. Delcher AL, Salzberg SL, Phillippy AM: Using MUMmer to identify
similar regions in large sequence sets. Curr Protoc Bioinformatics 2003,
Chapter 10:Unit 10 13.

25. Chen N: Using RepeatMasker to identify repetitive elements in genomic
sequences. Curr Protoc Bioinformatics 2004, Chapter 4:Unit 4 10.
26. Tarailo-Graovac M, Chen N: Using RepeatMasker to identify repetitive elements
in genomic sequences. Curr Protoc Bioinformatics 2009, Chapter 4:Unit 4 10.

27. Bolger AM, Lohse M, Usadel B: Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 2014, 30(15):2114–2120.

28. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J,
Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet
N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R,
Leduc RD, Friedman N, Regev A: De novo transcript sequence
reconstruction from RNA-seq using the Trinity platform for reference
generation and analysis. Nat Protoc 2013, 8(8):1494–1512.

29. Borodovsky M, Lomsadze A: Eukaryotic gene prediction using GeneMark.
hmm-E and GeneMark-ES. Curr Protoc Bioinformatics 2011, Chapter 4:Unit
4 6 1–10.

30. Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK Jr, Hannick LI, Maiti
R, Ronning CM, Rusch DB, Town CD, Salzberg SL, White O: Improving the
Arabidopsis genome annotation using maximal transcript alignment
assemblies. Nucleic Acids Res 2003, 31(19):5654–5666.

31. Edgar RC: Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 2010, 26(19):2460–2461.

32. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment
search tool. J Mol Biol 1990, 215(3):403–410.

33. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, de Bakker PI:
SNAP: a web-based tool for identification and annotation of proxy SNPs
using HapMap. Bioinformatics 2008, 24(24):2938–2939.

34. Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B: AUGUSTUS:
ab initio prediction of alternative transcripts. Nucleic Acids Res 2006,
34(Web Server issue):W435–W439.

35. Majoros WH, Pertea M, Salzberg SL: TigrScan and GlimmerHMM: two
open source ab initio eukaryotic gene-finders. Bioinformatics 2004,
20(16):2878–2879.

36. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2:
accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome Biol 2013, 14(4):R36.

37. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2.
Nat Methods 2012, 9(4):357–359.

38. Blanco E, Abril JF: Computational gene annotation in new genome
assemblies using GeneID. Methods Mol Biol 2009, 537:243–261.

39. Huang X, Adams MD, Zhou H, Kerlavage AR: A tool for analyzing and
annotating genomic sequences. Genomics 1997, 46(1):37–45.

40. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR,
Wortman JR: Automated eukaryotic gene structure annotation using
EVidenceModeler and the Program to Assemble Spliced Alignments.
Genome Biol 2008, 9(1):R7.

41. Slater GS, Birney E: Automated generation of heuristics for biological
sequence comparison. BMC Bioinformatics 2005, 6:31.

42. Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of
transfer RNA genes in genomic sequence. Nucleic Acids Res 1997,
25(5):955–964.

43. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW:
RNAmmer: consistent and rapid annotation of ribosomal RNA genes.
Nucleic Acids Res 2007, 35(9):3100–3108.

doi:10.1186/1471-2164-15-788
Cite this article as: Tallon et al.: Single molecule sequencing and
genome assembly of a clinical specimen of Loa loa, the causative agent
of loiasis. BMC Genomics 2014 15:788.

http://picard.sourceforge.net/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Sequencing results
	Assembly results from PacBio and Illumina data
	Validation and trimming with quiver
	Differences in assembly content
	Validation with Illumina data
	Heterogeneity

	Discussion
	PacBio sequencing of a metazoan population
	Need for further improvements in polishing algorithms

	Conclusions
	Methods
	Isolation of L. loa microfilariae
	Preparation of genomic DNA
	Illumina library construction and sequencing
	Pacific biosciences library construction and sequencing
	Assembly
	Positive filtering
	Mapping Illumina data
	Identifying differences between genomes
	Structural and functional annotation of Loa loa
	Availability of supporting data

	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

