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Abstract: The visible and near-infrared spectroscopy (Vis/NIRS) models for sheep meat quality
evaluation using only one type of meat cut are not suitable for other types. In this study, a novel
portable Vis/NIRS system was used to simultaneously detect physicochemical properties (pH, color
L*, a*, b*, cooking loss, and shear force) for different types of sheep meat cut, including silverside, back
strap, oyster, fillet, thick flank, and tenderloin cuts. The results show that the predictive abilities for all
parameters could be effectively improved by spectral preprocessing. The coefficient of determination
(Rp

2) and residual predictive deviation (RPD) of the optimal prediction models for pH, L*, a*, b*,
cooking loss, and shear force were 0.79 and 3.50, 0.78 and 2.28, 0.68 and 2.46, 0.75 and 2.62, 0.77 and
2.19, and 0.83 and 2.81, respectively. The findings demonstrate that Vis/NIR spectroscopy is a useful
tool for predicting the physicochemical properties of different types of meat cut.

Keywords: rapid detection; meat quality; different cut types; sheep; Vis/NIR

1. Introduction

Meat is popular with consumers all over the world because it can provide abundant
amounts of valuable nutrients, such as protein, fat, mineral, vitamins, and so on [1–3].
Sheep meat is famous for being more tender and having less fat and cholesterol. The
demand for sheep meat is strong in many places around the world, and especially in
Asia and Australia [4]. With the improvement in living standards and the expansion of
international cooperation, the demand for high-quality sheep meat is increasing and its
quality has received unprecedented attention [5].

Traditional methods for detecting meat quality attributes include pH meter measure-
ment, the cooking loss method, and the shear force method, but their disadvantages are
their destructiveness, sample contamination, and complex sample preparation procedures.
As a result, these traditional methods cannot promote the rapid development of the meat
industry [6,7]. Therefore, it is important to establish a rapid, non-destructive, and simul-
taneous meat quality detection. In recent years, Raman spectroscopy and visible and
near-infrared (Vis/NIR) spectroscopy, as rapid and non-destructive detection technologies,
have been applied for determining various meat quality attributes. However, the large
amount and complexity of data obtained by Raman spectrometers and their high cost limit
their application to meat quality detection [8,9]. Vis/NIR spectroscopy has significant
advantages in terms of acceptable cost and multi-parameter simultaneous fast detection,
making it a promising tool for online meat quality detection applications [10,11]. The ef-
fective Vis/NIR spectroscopy information, produced in combination bonds and overtone
vibrations of molecular groupings including C-H, O-H, N-H, and S-H, is used for analyzing
the features and structures of specific chemical substances [12,13]. As an advanced and
efficient method, Vis/NIR spectroscopy has been applied for assessing different meat
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quality attributes by predicting chemical composition and quality parameters [14,15]. The
detection of the chemical composition of meat by Vis/NIR spectroscopy was studied using
pork, beef, lamb, and chicken [16–18]. The measurements of color (L*, a*, and b*), pH,
water-holding capability (WHC), shear force (tenderness), meat spoilage detection, and
meat quality grading and classification based on Vis/NIR spectroscopy were previously
reported [10,19,20]. However, the prediction models reported in most of the studies were
established using only one cut type, resulting in poor practical applicability to other cut
types. Different cuts of the carcass have different tissues composition; for instance, there are
obvious differences in tenderness and color between the meat parts with more connective
tissue and those with less, as well as nutrients, such as protein, fat, and carbohydrates [21].
Fowler et al. [22] explored the potential for the prediction of the intramuscular fat (IMF)
content of lamb loin and topside using NIR spectra collected on the topside in situ and con-
cluded that further research was needed to develop models for industry application based
on more appropriate calibration data. For most of the meat processors, after sheep carcass
segmentation, all meat cuts are quickly obtained and transported without distinguishing
their type on the conveyor belt for further processing and finally, they are packaged for
commercial sale. Thus, one single model for different types of cuts will reduce costs (labor
and spectrometers) and detection time, which will be beneficial for ease of use, especially
when used in the cutting room. It is unrealistic for meat processors to apply individual
models for each meat cut on the conveyor line in practice. Therefore, establishing a model
suitable for multiple cut types would be useful for meat quality detection due to its high
usability and detection speed.

To achieve the simultaneous detection of multiple parameters for meat quality, in
this study, the pH, color (L*, a*, b*), cooking loss, and shear force of different sheep meat
types were predicted as quality indices. Meat color is closely related to the generation
of biogenic amine and is regarded as an important quality for determining the purchase
intention of consumers [23]. Tenderness and water holding capacity (WHC) are two other
important physicochemical indexes of meat quality and are closely related to each other.
Both are determined by the physicochemical form and chemical composition of meat. The
WHC is usually measured by cooking loss, which affects the color, flavor, and tenderness
of the meat. A decrease in the WHC leads to decreases in meat quality, shortening of the
storage period, and increases in economic loss, so the detection of WHC is vital to the meat
industry [24].

To achieve rapid, nondestructive, and simultaneous online detection, we adopted
Vis/NIR spectroscopy to predict the physicochemical properties (pH, L*, a*, b*, cooking
loss, and shear force) of different types of commercial sheep meat cuts. Our objectives
were: (1) to develop portable Vis/NIR spectroscopy equipment for collecting spectral data;
(2) to apply different spectral data pretreatment methods for improving the robustness
of the prediction models of six cut types; and (3) to establish prediction models using
the partial least square regression (PLSR) method based on two sample set divisions for
the simultaneous detection of multiple physicochemical properties for different types of
meat cuts.

2. Materials and Methods
2.1. Preparation of Meat Samples

According to the standard of cutting technical specifications for sheep meat (NY/T
1564-2007), the meat samples used in this experiment were collected from six types of meat
cut (silverside, back strap, oyster, fillet, thick flank, and tenderloin cuts) of small-tailed
Han sheep carcass in an abattoir. Small-tailed Han sheep is a famous sheep breed in
China for its tender and fragrant meat and high percentage of clean meat and is known as
the world’s “super sheep”, which is very popular with consumers. To expand the range
of sample data and ensure the applicability of the models, the representative carcasses
with different body sizes were selected for wide compositional variability. Every day, five
carcasses were segmented by operators after chilling at 4 ◦C for 24 h, then the 30 samples
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(6 cut types × 5 carcasses) were collected and taken for Vis/NIR spectral data acquisition
and quality parameter determination on the same day. The whole sample collection lasted
5 days with a total of 150 samples. Before the acquisition of spectral data, the samples were
packed in self-sealed bags and maintained at 4 ◦C in a refrigerator to maintain stable color
and pH. As the spectral information of connective tissue and fat are obviously distinct from
that of lean meat, the external and visible fat and connective tissue of each sample were
removed using a scalpel to eliminate their adverse effects on modeling ability. The meat
samples with larger irregular shapes were further smoothed by cutting the surface to avoid
the influence of irregular shapes on spectral information. All samples except the tenderloin
cut were trimmed to about 5 cm × 5 cm × 3 cm. Because of the special shape being difficult
to cut into cubes, about 100 g of the tenderloin cut was taken as the tested sample. After
collecting and measuring the spectra, pH, and color, the sample was immediately placed
in a refrigerator maintained at 4 ◦C until all samples were measured. The samples were
then removed to measure the cooking loss and shear force. The specific procedure of each
measurement is introduced in the following sections.

2.2. Portable Vis/NIRS System and Spectra Acquisition

The portable Vis/NIR spectroscopy system was developed to collect spectra data.
Figure 1 depicts a diagram of this system. Briefly, this portable Vis/NIR spectroscopy
system was composed of a spectral data collection unit, a light source unit, and a computer.
The spectral data collection unit consisted of a Vis/NIR spectrometer (AvaSpec-ULS2048CL-
EVO-RS, Avantes Inc., Amsterdam, Netherlands), an optical probe, an optical fiber, and a
USB 3.0 communication cable. The optical probe was a self-developed ring with 14 fibers
in the middle, surrounded by hundreds of fibers, and a detection window of 30 mm.
The spectral range of this Vis/NIR spectrometer was 200 to 1100 nm with a resolution of
0.06 nm, a sampling interval of 0.6 nm, and a signal-to-noise ratio (SNR) of 300:1, which
ensured the superiority and reliability of the spectrometer. A tungsten halogen lamp with
20 W stable power was used as the light source.
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Figure 1. Schematic diagram of Vis/NIR spectroscopy system. This figure shows the experimental equipment for the
quality detection of sheep meat cuts using Vis/NIR spectroscopy.

Before spectra collection, the light source was preheated for nearly 30 min and the
spectral information was then measured. The software used for collecting spectra was
self-designed according to the software development kit (SDK) of the spectrometer supplier.
The optimal parameters of spectra collection were set up using operation software, includ-
ing a smoothness of 5 and an integral time of 100 ms. Each spectrum obtained was averaged
using the 5 times spectra scans, which required only 0.5 s. The appropriate integration
time was set to ensure the reflectivity of the standard whiteboard achieved approximately
80% of the maximum limit of detection. This Vis/NIR system was then adjusted using the
reflection mode after the black and white corrections to decrease the adverse effects of the
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outside environment on the spectra’s accuracy. The samples to be tested were first placed
on a flat table, then the optical detection probe was placed vertically on the sample surface
for spectra acquisition. When collecting the spectra, the incoming light was perpendicular
to the meat fiber direction for all muscle types. Finally, five different points on each sample
were selected randomly to collect spectral data, and the average value was used as the final
spectral reflectance of this sample.

2.3. pH Measurements

After collecting the spectra for each sample, the pH was immediately measured on
samples using almost the same position where the spectral data were collected. To avoid
pH changes caused by too long sample exposure, four portable digital pH meters (Testo
205, Testo A.G., Baden wurtenberg, Germany) were used to measure pH as soon as possible.
The pH values were measured using traditional methods on the basis of industry standards.
The probe of the portable digital pH meter was inserted directly into the meat about 1.5 cm
deep from the meat surface after calibration with pH standard buffers. The values averaged
from four different points were taken as the final measured pH values.

2.4. Color Measurements

The meat color parameters (lightness (L*), redness (a*), and yellowness (b*)) were
measured by a colorimeter (CM-600D, Konica Minolta Investment Ltd., Tokyo, Japan). This
colorimeter was set to: the L*, a*, b* system, illuminant to D65 (including ultraviolet), the
standard colorimetric observer to a 2◦ visual angle, an aperture size of 8 mm, and measure-
ment time of 1 s. Before measurements, the colorimeter needed to be calibrated using the
white and black references. The colorimeter automatically measured four different points
of each sample four times and output the average value, which avoids measurement errors.
The average values were used as the final measured values.

2.5. Cooking Loss Measurements

To obtain samples with as uniform a size as possible to ensure the comparability of
cooking loss values, the samples except for tenderloin cuts were first trimmed into cubes
with a weight of about 100 g, then weighed to 0.01 g accurately. We placed the sample
into a cooking bag and let the air out. Then, we placed the sample into a thermostat water
bath (HH-4, Jintan ronghua Instrument Manufacturing Co., Ltd., Changzhou, China) and
was cooked for 30 min at 70 ◦C. The boiled sample was cooled to 4 ◦C, then we wiped off
the surface moisture and weighed the sample. The formula for cooking loss calculation is
as follows:

X = (m1 − m2)/m1 × 100% (1)

where X is the cooking loss of the sample (%), m1 is the weight of the tested sample before
cooking (g), m2 is the weight of the tested sample after cooking (g).

2.6. Shear Force Measurements

The shear force value was measured to evaluate meat tenderness [25,26]. A CL-ML3
tenderness meter (Nanjing Mingao Instrument Equipment Co., Ltd., Nanjing, China) was
used to measure the shear force according to the literature [27]. Briefly, the measurement
range of this tenderness meter is 0 to 250 N, and the motor power for cutting samples is
20 W. Samples after cooking were cut into cubes (1 cm × 1 cm × 2 cm). The shear speed
parameter was set to 5.0 mm/s for measurement. The shear force measurements were
repeated at least 5 times and the average values were used as the final determination results.

2.7. Spectral Data Preprocessing

Spectral preprocessing methods were applied to remove the adverse effects of the
external environment, sample density, and temperature variations on the spectral in-
formation and improve the model performance [28]. As the complexity of the spectra
from different types of meat cut might negatively influence model performance, different
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spectral preprocessing methods, including multiplicative scatter correction (MSC) [29],
standard normalized variate (SNV) [30], Detrend, Savitzky–Golay (S–G) smoothing [31],
derivatives (1st Der and 2nd Der) [32] and their combinations were used for reducing
the noise in the spectral information while preserving potential spectral data related
to chemical information. The aim of the spectral preprocessing step was to develop a
methodology that provides a systematic approach for further modeling analysis. Thus,
different preprocessing combinations including S–G (5 points) + Detrend + MSC and S–G
(5 points) + Detrend + SNV were also applied to improve the model performance. The
above seven preprocessing methods were compared to determine which would effectively
improve the model’s performance.

2.8. Multivariate Data Analysis

To analyze the differences in the physicochemical properties between the different cut
types, one-way analysis of variance (ANOVA) was applied and Duncan’s multiple range
tests were implemented in SPSS statistical software (version 19.0, SPSS Inc., Chicago, IL,
USA). The statistical significance was defined as p < 0.05. Furthermore, to avoid the risk
of the prediction models being constructed from non-informative or non-specific parts
of the spectra and similar regression coefficients for different physicochemical properties,
correlation analysis between the six physicochemical properties was carried out in SPSS.
The statistical significance was defined as p < 0.05 (bilateral) and p < 0.01 (bilateral).

Partial least square regression (PLSR) is an algorithm for quantitative spectral decom-
position commonly used to construct the fundamental relationship between independent
variables (here, spectral data) and dependent variables (here, pH, L*, a*, b*, cooking loss,
and shear force values). PLSR can be used to build a linear model with numerous and
strongly colinear variables, which is not only insensitive to collinear variables but also
tolerant to large numbers of variables [33]. All spectral preprocessing and modeling proce-
dures were performed by the algorithms developed in MATLAB mathematical software
(R2014a, The Mathworks Inc., Natick, MA, USA).

The performance of the prediction models was evaluated on the basis of statistical
assessment indicators: the determination coefficients of the calibration set (Rc

2) and predic-
tion set (Rp

2), root mean square errors of the calibration set (RMSEC), and the prediction
set (RMSEP), and the residual predictive deviation (RPD). Generally, a model with larger
Rc

2 and Rp
2 values, and lower RMSEC and RMSEP values is more acceptable [34]. The

RPD was calculated as the ratio of the standard deviation of the reference quality values
in the prediction set to the RMSEP value. An RPD value lower than 2 indicates that the
model is not recommended, a value between 2.0 and 2.4 indicates that the model can be
used for rough screening, a value between 2.5 and 2.9 indicates the model can be used for
screening, a value between 3.0 and 3.4 means the model can be used for quality control,
between 3.5 and 3.9 indicates the model can be used for process control, and a value greater
than 4.0 means that the model has excellent prediction performance and can be used for
any application [35,36].

3. Results and Discussion
3.1. Quality Characteristics of Different Cut Types

Table 1 displays the variation range (from minimum to maximum), average values,
standard deviation (SD), and coefficient of variation (CV) of pH, L*, a*, b*, cooking loss,
and shear force for different types of cut (silverside, back strap, oyster, fillet, thick flank,
and tenderloin). Table 1 shows that the thick flank cut had the widest pH variation range,
with the maximum (6.34) being obviously higher than other cuts. The fillet cut had a
significantly higher pH (p < 0.05), which might be due to its greater more fat and fascial
tissue contents. The pH ranges of the six cut types were close due to the pH differences
between the different carcasses and between the different cut types were much smaller and
more stable during the whole detection period [37].
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Table 1. Descriptive statistics of the physicochemical properties characteristics for different meat cut types.

Properties Cut Type Maximum Minimum Mean SD CV (%)

pH tenderloin 6.10 5.74 5.86 c 0.09 1.53
thick flank 6.34 5.75 5.94 b 0.14 2.36

oyster 6.09 5.81 5.94 b 0.08 1.35
fillet 6.18 5.90 6.04 a 0.08 1.32

silverside 6.04 5.69 5.79 d 0.08 1.38
back strap 6.08 5.70 5.82 cd 0.09 1.55

all cuts 6.34 5.69 5.90 0.12 2.03

L* tenderloin 47.64 38.45 43.19 b 2.46 5.70
thick flank 48.80 39.87 42.76 b 2.05 4.79

oyster 47.44 39.26 43.19 b 1.90 4.40
fillet 51.03 42.21 47.43 a 2.30 4.85

silverside 42.73 36.61 39.00 d 1.72 4.41
back strap 44.70 32.21 41.55 c 2.44 5.87

all cuts 51.03 32.21 42.85 3.29 7.68

a* tenderloin 14.48 8.95 11.39 c 1.36 11.94
thick flank 14.15 10.36 11.97 bc 1.06 8.86

oyster 14.91 10.36 12.49 ab 1.17 9.37
fillet 15.86 9.59 12.39 ab 1.53 12.35

silverside 15.03 11.27 13.06 a 0.90 6.89
back strap 14.66 8.74 11.91 bc 1.43 12.01

all cuts 15.86 8.74 12.20 1.35 11.07

b* tenderloin 13.54 8.07 10.90 d 1.17 10.73
thick flank 14.53 10.05 12.40 bc 1.00 8.06

oyster 15.09 9.79 12.82 b 1.11 8.66
fillet 16.39 10.67 13.95 a 1.58 11.33

silverside 14.04 10.51 11.79 c 0.96 8.14
back strap 14.74 7.07 12.09 c 1.34 11.08

all cuts 16.39 7.07 12.33 1.52 12.33

Cooking loss (%) tenderloin 29.46 15.87 22.63 a 3.29 14.54
thick flank 30.67 11.84 18.99 b 4.81 25.33

oyster 28.07 9.81 17.67 b 4.42 25.01
fillet 32.20 12.31 19.93 b 5.27 26.44

silverside 28.80 12.04 18.46 b 4.59 24.86
back strap 31.87 16.83 23.18 a 4.12 17.77

all cuts 32.20 9.81 20.13 4.85 24.09

Shear force (N) tenderloin 49.55 29.41 38.80 c 4.80 12.37
thick flank 57.67 37.56 44.49 b 5.19 11.67

oyster 50.26 34.53 42.31 bc 4.27 10.09
fillet 62.59 44.25 49.87 a 4.98 9.99

silverside 54.05 35.85 44.30 b 4.92 11.11
back strap 62.26 25.46 42.95 b 9.97 23.21

all cuts 62.59 25.46 43.90 6.93 15.79

L*, a*, and b* represent lightness, redness, and yellowness, respectively; SD, standard deviation; CV, coefficient of variation; a~d indicate
significant differences between different meat cut types (p < 0.05); the same letter represents no significant difference (p > 0.05).

The comparison results of lightness (L*) showed that there were similar variation
ranges between tenderloin, thick flank, and oyster cuts (p > 0.05), which were significantly
higher than those of the silverside and back strap cuts (p < 0.05). The results revealed that
the fillet cut had the highest lightness (p < 0.05), whereas the silverside and back strap
cuts had the lowest lightness, which is consistent with their lean meat or fat and fascial
tissue contents. From the a* results in Table 1, the silverside, oyster, and fillet cuts had
significantly higher redness (p < 0.05), and the silverside cut had the most balanced redness
distribution because of having the largest amount of lean meat. From the comparison
results of b*, the fillet cut had the highest yellowness (p < 0.05) due to the large amounts
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of residual unbalanced distributed fat and connective tissues. The tenderloin cut had the
lowest yellowness (p < 0.05) due to being all lean meat with the least fat.

The cooking loss results in Table 1 show that there were no significant differences
between thick flank, oyster, fillet, and silverside cuts (p > 0.05). The tenderloin and
back strap cuts had significantly higher WHCs (p < 0.05). From the shear force results,
the tenderloin cut obviously had the lowest average of 38.80 N, indicating the highest
tenderness, followed by oyster, then back strap, which is consistent with the trend in
cooking loss. The higher the cooking loss value, the higher the tenderness, and the lower
the shear force.

The correlations between the six physicochemical properties for all cuts of the carcass
were calculated using their mean values and are displayed in Table 2. We found no
strong correlations at the 0.01 level between these physicochemical properties except for
L* and b* of 0.654, and a* and b* of 0.567, indicating that the risk of the prediction models
being constructed from non-informative or non-specific parts of the spectra and similar
regression coefficients for different physicochemical properties was avoided to a certain
extent. To summarize, these data of physicochemical properties could be effectively used
for subsequent modeling.

Table 2. Correlations between the six physicochemical properties of the combined meat cut types.

Properties pH L* a* b* Cooking Loss Shear Force

pH 1
L* 0.406 ** 1
a* −0.188 * −0.074 1
b* 0.224 ** 0.654 ** 0.567 ** 1

Cooking loss −0.224 ** −0.169 * 0.017 −0.245 ** 1
Shear force 0.266 ** 0.139 −0.052 0.152 −0.127 1

** The correlation was significant at 0.01 level (bilateral). * The correlation was significant at 0.05 level (bilateral).

3.2. Sample Sets Division

To more intuitively compare the effect of biological variation on the prediction models,
two sample set division methods were applied. For the sample set division based on
the concentration gradient method, meat cuts from all the carcasses were arranged based
on their measured quality attribute values in accordance with the spectral data, then
the samples were divided into a calibration set and a prediction set. According to the
1/3 sample division principle, a randomly selected sample from every four samples was
included in the prediction set for validating the model; whereas the rest were included
in the calibration set for building the model. Table 3 provides the statistical results of
sample set division based on the concentration gradient method. According to the usual
1/3 principle, the calibration set contained 112 samples and the prediction set contained
38 samples. For each quality parameter, the range of the reference measurements in
the prediction set was covered by the range of the calibration set, which meant that the
distributions of the reference data from the measurement samples in the calibration and
prediction sets were almost equal, and bias in the distribution of the two sets was avoided.

For the sample set division based on carcasses, two carcasses per day for the first
two days and one carcass per day for the next three days were used as the prediction
set. All meat cuts from seven carcasses were included in the prediction set for validating
the model, and the rest were included in the calibration set. The statistical results of
sample set division based on carcasses are also shown in Table 3 to enable a more intuitive
comparison. The calibration set contained 108 samples and the prediction set contained
42 samples. By contrast, the ranges of the L*, a*, and shear force of the prediction set were
not covered by the range of the calibration set, which might have led to the instability of
the prediction models.
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Table 3. Reference measurement of quality attributes in the calibration and prediction sets based on two sample set divisions.

Properties Subsets Number Range Mean SD CV (%)

pH Calibration 112 5.69–6.34 5.90 0.13 2.20
Prediction 38 5.70–6.16 5.90 0.14 2.37

L*
Calibration 112 32.21–51.03 42.83 3.35 7.82
Prediction 38 36.80–50.40 42.92 4.11 9.58

a*
Calibration 112 8.74–15.86 12.21 1.36 11.14
Prediction 38 9.09–15.37 12.26 1.75 14.27

b*
Calibration 112 7.07–16.39 12.33 1.56 12.65
Prediction 38 9.28–15.98 12.31 1.86 15.11

Cooking loss (%) Calibration 112 9.81–32.20 20.11 4.92 24.47
Prediction 38 12.04–30.97 20.20 5.10 25.25

Shear force (N)
Calibration 112 25.46–62.59 43.95 7.06 16.06
Prediction 38 29.41–58.88 43.76 7.41 16.93

pH Calibration 108 5.69–6.33 5.91 0.13 2.20
Prediction 42 5.70–6.21 5.87 0.11 1.87

L* Calibration 108 32.21–50.67 42.80 3.07 7.17
Prediction 42 36.74–51.03 42.98 3.85 8.96

a* Calibration 108 8.74–15.37 12.06 1.34 11.11
Prediction 42 9.09–15.86 12.57 1.31 10.42

b* Calibration 108 7.07–16.39 12.24 1.51 12.34
Prediction 42 9.28–16.13 12.54 1.54 12.28

Cooking loss (%) Calibration 108 9.81–32.20 20.86 5.24 25.12
Prediction 42 12.31–26.59 18.48 3.32 17.97

Shear force (N) Calibration 108 26.46–62.59 43.43 7.02 16.16
Prediction 42 25.46–62.26 45.00 6.66 14.80

L*, a*, and b* represent lightness, redness, and yellowness, respectively; SD, standard deviation; CV, coefficient of variation.

3.3. Spectral Characteristics Analysis

Figure 2 shows the effects of the different spectral preprocessing methods. The wave-
length region of the original spectra was 200–1100 nm. Due to more noise at both ends of
the spectral curve, the data between 400 and 1000 nm were selected to develop the models
for predicting physicochemical properties. The spectra of all the samples show the same
change trend in Figure 2A. Furthermore, several obvious absorption peaks at 430, 550,
760, and 980 nm are positioned in the visible and near-infrared regions. Given the four
meaningful wavelengths reported in previous studies by He et al. [38] and Cozzolino and
Murray [39], the absorption peak at 430 nm in the visible region is related to the Soret
absorption bond, which is attributed to traces of the erythrocytes of hemoglobin. The peak
at 550 nm in the visible region is particularly related to the structure of meat myoglobin
and oxyhemoglobin absorption. The absorption peak of 760 nm in the near-infrared region
(700–1000 nm) is related to the absorption of deoxymyoglobin, mainly activated by the third
overtone of O−H stretching. Another absorption peak occurred at about 980 nm, related
to the 2nd overtone of the O−H stretching vibration appears, which is mainly related
to water content. Because the shear force is a physicochemical index affected by many
factors, it was difficult to find the characteristic absorption peak of a single corresponding
group. Meat tenderness is mainly related to properties such as color and water holding
capacity; therefore, the characteristic bands related to tenderness can be obtained indirectly
by analyzing the absorption characteristics of the related factors affecting tenderness [40].
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3.4. Spectral Preprocessing Analysis

Figure 2B–F shows the spectral curves after MSC, SNV, S–G smoothing, S–G smoothing
+ 1st Der, and S–G smoothing + 2nd Der preprocessing. The optimal spectral preprocessing
method could not be determined only using the effects of the preprocessed spectra. The
PLSR algorithm was employed to establish prediction models combined with the above
different spectral pretreatments. The best spectral preprocessing for each quality parameter
prediction was selected by comparing the model’s performance.

Table 4 provides the model results of the original spectra and the preprocessed spectral
data after various pretreatments for pH, L*, a*, b*, cooking loss, and shear force based
on the 1/3 sample division. The bold indicates the best model. Overall, compared with
the original spectra (no pretreatment), the predictive abilities for pH, a*, b*, and cooking
loss were improved by several spectral preprocessing methods. MSC was performed to
separate the scattering light signal from the spectrum and chemical absorption information
and separate the direct reflection spectral data from the diffuse reflection data. MSC
preprocessing reduced the scattering optical signal in the original reflection spectrum
and the direct reflection signal, as shown in Figure 2B. The SNV was used to adjust the
baseline drift and light scattering variation caused by the physicochemical structure of the
samples. SNV preprocessing eliminated the effects of baseline variation resulting from
the scattering optical signal, as shown in Figure 2C. Although there were differences in
the physicochemical properties among the samples that were characterized by different
spectra preprocessing methods to some extent, MSC produced a similar effect to SNV [41],
which resulted in the similarity of model results for all quality parameters, as well as their
preprocessing combinations (Table 4).
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Table 4. The comparison result of PLSR models established based on the concentration gradient method for the combined
meat cuts.

Properties Preprocessing Methods Number of LVs
Calibration Prediction

RPD
Rc

2 RMSEC Rp
2 RMSEP

pH Original spectra 10 0.36 0.12 0.19 0.22 0.64
MSC 9 0.82 0.04 0.69 0.06 2.33
SNV 9 0.82 0.04 0.69 0.06 2.33

S–G smoothing 12 0.45 0.11 0.22 0.20 0.70
S–G + 1st Der 9 0.48 0.10 0.42 0.32 0.44
S–G + 2nd Der 10 0.50 0.10 0.64 0.07 2.00

S–G + Detrend + MSC 9 0.89 0.03 0.79 0.04 3.50
S–G + Detrend + SNV 8 0.89 0.03 0.77 0.05 2.80

L* Original spectra 11 0.71 1.82 0.69 1.87 2.20
MSC 11 0.77 1.61 0.69 1.94 2.12
SNV 11 0.77 1.61 0.71 1.87 2.20

S–G smoothing 11 0.74 1.70 0.67 1.89 2.17
S–G + 1st Der 9 0.85 1.30 0.61 2.36 1.74
S–G + 2nd Der 8 0.68 1.79 0.57 2.92 1.41

S–G + Detrend + MSC 7 0.85 1.31 0.76 1.82 2.26
S–G + Detrend + SNV 7 0.85 1.31 0.78 1.80 2.28

a* Original spectra 10 0.65 0.81 0.46 1.00 1.75
MSC 13 0.67 0.78 0.30 0.99 1.77
SNV 12 0.67 0.78 0.30 1.25 1.40

S–G smoothing 10 0.62 0.85 0.43 1.35 1.30
S–G + 1st Der 9 0.71 0.73 0.46 1.34 1.31
S–G + 2nd Der 5 0.27 1.20 0.24 1.98 0.88

S–G + Detrend + MSC 8 0.80 0.68 0.66 0.72 2.43
S–G + Detrend + SNV 9 0.81 0.68 0.68 0.71 2.46

b* Original spectra 7 0.58 1.02 0.52 1.46 1.27
MSC 9 0.63 0.89 0.62 1.00 1.86
SNV 10 0.64 0.90 0.62 0.99 1.88

S–G smoothing 8 0.61 0.93 0.69 0.88 2.11
S–G + 1st Der 5 0.56 1.04 0.50 1.13 1.65
S–G + 2nd Der 7 0.57 1.03 0.52 1.52 1.22

S–G + Detrend + MSC 7 0.76 0.63 0.75 0.71 2.62
S–G + Detrend + SNV 7 0.75 0.64 0.75 0.72 2.58

Cooking loss Original spectra 10 0.71 2.71 0.53 3.09 1.65
MSC 8 0.82 1.83 0.62 2.90 1.76
SNV 8 0.82 1.82 0.62 2.90 1.76

S–G smoothing 12 0.69 2.73 0.59 3.10 1.65
S–G + 1st Der 7 0.88 1.62 0.66 2.83 1.80
S–G + 2nd Der 6 0.68 2.77 0.52 3.25 1.57

S–G + Detrend + MSC 4 0.83 1.85 0.77 2.33 2.19
S–G + Detrend + SNV 4 0.83 1.78 0.76 2.34 2.18

Shear force Original spectra 10 0.74 3.44 0.42 5.89 1.26
MSC 10 0.88 2.36 0.74 3.41 2.17
SNV 10 0.88 2.36 0.73 3.41 2.17

S–G smoothing 9 0.76 3.38 0.66 3.91 1.90
S–G + 1st Der 5 0.62 4.18 0.47 5.56 1.33
S–G + 2nd Der 8 0.74 3.43 0.38 6.34 1.17

S–G + Detrend + MSC 7 0.82 2.62 0.81 2.67 2.78
S–G + Detrend + SNV 8 0.84 2.61 0.83 2.64 2.81

Rc
2, coefficient of determination of calibration set; RMSEC, the root mean squared error of calibration set; Rp

2, coefficient of determination
of prediction set; RMSEP, the root mean squared error of prediction set; LVs, latent variables; 1st Der, first derivative; 2nd Der, second
derivative; MSC, multiplicative scatter correction; SNV, standard normalized variate; S–G, Savitzky–Golay smoothing; RPD, residual
predictive deviation.
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The modeling results of all quality parameters after S–G smoothing were similar
to those using the original spectra (Table 4). The S–G smoothing eliminated the noise,
enhanced the SNR of the spectra and did not considerably change the shape of the original
spectra by calculating the mean values of the pixel gray level by the convolution algorithm,
leading to Y-axis offset. However, if too few smoothing points are selected, the window is
small and the effective information contained in the window is insufficient, which results
in a poor filtering effect [42]. Thus, the spectra after five-point S–G smoothing, shown in
Figure 2D, are similar to the original spectra in Figure 2A, which is why the modeling
results were not effectively improved. Using the derivatives as the spectral preprocessing
method would have introduced noise, so the derivatives were matched with S–G smoothing.
We employed preprocessing combinations including S–G smoothing + 1st Der and S–G
smoothing + 2nd Der (5 points).However, compared with the original spectra and other
preprocessing methods, regardless of the quality attribute, the derivatives (1st Der and
2nd Der) preprocessing methods after S–G smoothing could not effectively improve the
prediction ability of the models. After S–G smoothing + 1st Der preprocessing, several
obvious spectral peaks were observed, as shown in Figure 2E. However, the derivative
spectra might have weakened the effective quality information, although the first and the
second derivatives eliminated the baseline shift independent of wavelength and linearly
related to wavelength [43]. The poor prediction results of all physicochemical properties
after S–G smoothing + 2nd Der preprocessing might have occurred because the second
derivative spectrum produced some pseudo harmonic peaks and large amounts of noise,
as shown in Figure 2F, which had little correlation with physicochemical properties. From
Table 4, the single preprocessing method had a limited effect on improving the model,
which might be due to the complexity of spectra collected from different cuts. The Detrend
method could effectively eliminate the influence of the offset generated by the optical
sensor when acquiring data on the later calculation. Deleting a trend from the data could
effectively focus the analysis on the fluctuations of the data trend itself. In contrast,
the most appropriate spectral preprocessing methods were determined for each quality
attribute. The performance of the prediction models for pH, L*, a*, b*, cooking loss, and
shear force was improved by the preprocessing combinations S–G + Detrend + MSC and
S–G + Detrend + SNV.

3.5. Establishment of Prediction Models Based on Combined Meat Cuts

Table 4 shows the prediction models of the quality parameters for combined meat cuts
using the PLSR modeling method combined with different preprocessing methods. For pH,
both MSC and SNV preprocessing effectively improved the performance of the prediction
models. The number of optimal LVs of PLSR models was determined considering the
minimum of the cross-validation standard error, which was implemented by leave-one-out
cross-validation (LOOCV). The best determination coefficients of the calibration set (Rc

2)
and prediction set (Rp

2) after S–G + Detrend + MSC preprocessing were 0.89 and 0.79,
with RMSEC, RMSEP, and RPD of 0.03, 0.04, and 3.50, respectively, which are obviously
better than those after MSC and SNV preprocessing. The modeling result based on carcass
division is shown in Table 5, which shows that the best performance for pH prediction
was poor, with an RPD value of less than two, which meant the application ability of the
prediction model was unsatisfactory. Knight et al. [14] obtained ultimate pH (pH 24 h)
predictions for the loin and topside muscle of Australian lamb with moderate Rp

2 values
of 0.39 and 0.46, respectively. A PLS model result similar to our results was obtained: an
Rp of 0.803 and RMSEP of 0.098 by Zhang et al. [44], who used Vis/NIR spectroscopy in
the range of 350–1100 nm to predict pork pH. Balage et al. [10] also obtained similar PLSR
model results for pH with an RPD of 2.1 using Vis/NIR spectroscopy, which indicated
suitability for screening purposes when the longissimus dorsi samples from pigs were
scanned intact.
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Table 5. The comparison result of PLSR models established based on carcass division for the combined meat cuts.

Properties Preprocessing Methods Number of LVs
Calibration Prediction

RPD
Rc

2 RMSEC Rp
2 RMSEP

pH S–G + Detrend + MSC 7 0.74 0.05 0.69 0.06 1.83
L* S–G + 2nd Der 5 0.78 1.60 0.65 1.91 2.02
a* S–G + Detrend + MSC 6 0.72 0.58 0.63 0.81 1.62
b* S–G + Detrend + MSC 8 0.70 0.81 0.71 0.83 1.86

Cooking loss S–G + Detrend + MSC 10 0.82 2.05 0.75 1.69 1.96
Shear force S–G + Detrend + SNV 8 0.89 2.23 0.71 2.98 2.23

Rc
2, coefficient of determination of calibration set; RMSEC, the root mean squared error of calibration set; Rp

2, coefficient of determination of
prediction set; RMSEP, the root mean squared error of prediction set; LVs, latent variables; 2nd Der, second derivative; MSC, multiplicative
scatter correction; SNV, standard normalized variate; S–G, Savitzky–Golay smoothing; RPD, residual predictive deviation.

As shown in Table 4, for lightness (L*) prediction, the original spectra demonstrated
satisfactory model performance with an RPD value of 2.20, but the model accuracy Rc

2

value was inferior to that after S–G + Detrend + SNV preprocessing, indicating it could be
used for rough screening. The prediction ability after S–G + Detrend + SNV preprocessing
achieved an Rc

2 as high as 0.85 with an RMSEC of 1.31, Rp
2 of 0.78, and an RMSEP of

1.80. Although S–G smoothing + 1st Der also showed the best calibration capability, its
predictive result was poor with an RPD value of 1.74, which indicated that the model
was not recommended. For the L* prediction shown in Table 5, S–G + Detrend + SNV
preprocessing obtained the best predictive ability with an RPD of 2.02, but this value is
worse than that obtained based on the concentration gradient method.

For redness (a*), the MSC and SNV effectively improved the calibration results but
increased the number of LVs and their predictive performance was relatively poor. The
huge differences between higher Rc

2 and lower Rp
2 values were indicative of overfitting,

which would lead to poor performance in practical applications. The RPD values of
the models ranged from 0.88 to 1.77, indicating that these models could not meet the
recommended 2.0 threshold for rough screening [35]. The best model performance for a*
was obtained after S–G + Detrend + SNV preprocessing with an Rc

2 of 0.81 and RMSEC
of 0.68, Rp

2 of 0.68, and RMSEP of 0.71. From Table 5, the optimal performance for a*
prediction was unsatisfactory due to the lower RPD values that were below two. After
dividing sample sets based on carcasses, the number of LVs decreased, but the best model
result after S–G + Detrend + MSC preprocessing was inferior to that obtained based on the
concentration gradient method in Table 4.

For yellowness (b*), the MSC and SNV provided extremely similar modeling re-
sults in terms of the values of Rc

2, RMSEC, Rp
2, and RMSEP. However, the MSC after

S–G + Detrend preprocessing provided a more accurate model with a stronger predictive
ability (RPD of 2.62 > 2.58). The optimal model performance for b* prediction was an Rc

2

of 0.76, RMSEC of 0.63, Rp
2 of 0.75, RMSEP of 0.71, and RPD > 2. The model was found

to be suitable for screening. Table 5 shows that the S–G + Detrend + MSC preprocessing
method produced the best model performance, but the predictive ability was lower, as
indicated by an RPD of 1.86. De Marchi et al. [45] obtained a* and b* predictions that were
suitable for screening purposes and unreliable for L* prediction on intact chicken breast
using Vis/NIR spectroscopy in the range of 350–1800 nm. Balage et al. [10] obtained PLSR
model results for L*, a*, and b* of pig longissimus dorsi samples with RPD values of 2.3,
2.2, and 2.1, respectively, which indicated suitability for screening purposes.

For the cooking loss predictions in Table 4, the predictive performance was most
effectively enhanced by S–G + Detrend + MSC and S–G + Detrend + SNV. The RPD value
of each model ranged from 1.57 to 2.19 under different spectral preprocessing methods,
probably because cooking loss is a complex attribute that does not have a direct connection
to Vis/NIR spectra. Nevertheless, the MSC after S–G + Detrend preprocessing obtained
a higher calibration accuracy and a lower LV of 4, indicating the larger reduction in the
complexity of the model. Therefore, the best model for cooking loss prediction was obtained
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after S–G + Detrend + MSC preprocessing with an Rc
2 of 0.83, RMSEC of 1.85%, Rp

2 of
0.77, and RMSEP of 2.33%. From Table 5, cooking loss prediction based on carcass division
was satisfactory, but the number of LVs was relatively higher, resulting in a complicated
model. De Marchi et al. [6] obtained a worse PLSR model for cooking loss prediction with
lower Rc

2 and RPD of 0.38 and 1.23, respectively, for intact beef samples; a worse model
result for intact chicken samples was obtained with lower Rc

2 and RPD of 0.58 and 1.57,
respectively, by De Marchi et al. [45].

For shear force, representing the tenderness, the satisfactory prediction models shown
in Table 4 were obtained with high Rc

2 and Rp
2 values; and low RMSE values by applying

MSC, SNV, and their combinations with S–G + Detrend. The most accurate prediction
model of shear force had a higher Rc

2 of 0.84, lower RMSEC of 2.61 N, higher Rp
2 of 0.83,

lower RMSEP of 2.64 N, and a moderate RPD value of 2.81 after S–G + Detrend + SNV
preprocessing. The large tenderness differences among the different cut types benefitted
these satisfactory results, which had a positive influence on the prediction models. The
shear force prediction shown in Table 5 achieved good performance after S–G + Detrend
+ SNV preprocessing with an Rp

2 of 0.71 and an RPD value of 2.23, but slightly inferior
performance to that based on the concentration gradient method. Huge differences in
tenderness exist between different carcasses and between different cut types from one
carcass. Sample sets division based on the concentration gradient method had a better
effect on the tenderness distributions of the two sample sets. Previous reports showed the
limited Vis/NIR spectroscopy ability in shear force prediction. Knight et al. [14] predicted
shear force on day 5 of Australian lamb and obtained lower R2 values of 0.13 and 0.12
for the loin and topside muscle, respectively. Balage et al. [10] also obtained poor PLSR
model results for WBSF with an Rc

2 of 0.48 and RPD of only 1.2, which means the model is
not recommended for practical applications. De Marchi et al. [6] obtained unsatisfactory
predictions of the WBSF for beef samples with an Rc

2 of 0.34 and RPD of 1.24, and prediction
chicken samples with an Rcv

2 and an RPD of 1.20 [45]. Different cut types with differences
in tenderness were used as experimental samples in the present study, thus enabling the
satisfactory performance of the shear force [36].

To summarize, the prediction performances for all physicochemical parameters based
on carcass division were inferior to those of dividing sample sets based on the concen-
tration gradient method because the carcass division led to the uneven distribution of
physicochemical parameters in the sample sets. If the ranges of physicochemical parame-
ters in prediction sets are not covered in the calibration sets, the robustness of prediction
models will be decreased. The comparisons based on two sample sets divisions proved
that biological variation has a strong effect on the prediction models of physicochemical
properties. The performance of the optimal PLSR models for each quality parameter is
shown in Figure 3. The closer the sample points to the straight line, the more precise the
predicted values. The PLSR model established by the original or the preprocessed spectra
is presented as a vector in practical applications, which can be multiplied by the spectral
vector to obtain the prediction results for different traits. In the follow-up application
process, we can collect one spectral curve of the sample and substitute the data into the
prediction models differently for different traits; then, the pH value, shear force, cooking
loss, and other traits of this sample can be calculated to quantitatively detect the unknown
sample quality index. Although Vis/NIR spectroscopy technology was previously studied
for different quality attribute detections of livestock and poultry meats, such as beef, pork,
mutton, chicken, and so on, the prediction model developed using only one type of meat
cut still cannot be successfully applied to other types, which seriously limits the practi-
cal applicability of Vis/NIR spectroscopy technology. The results proved that Vis/NIR
spectroscopy combined with chemometrics can be used to detect the physicochemical
properties for various sheep meat cuts. The findings illustrate that Vis/NIR spectroscopy
technology has the potential to simultaneously predict multiple physicochemical properties
for different types of sheep meat cut.



Foods 2021, 10, 1975 14 of 16

Foods 2021, 10, x FOR PEER REVIEW 14 of 17 
 

 

physicochemical parameters in the sample sets. If the ranges of physicochemical parame-
ters in prediction sets are not covered in the calibration sets, the robustness of prediction 
models will be decreased. The comparisons based on two sample sets divisions proved 
that biological variation has a strong effect on the prediction models of physicochemical 
properties. The performance of the optimal PLSR models for each quality parameter is 
shown in Figure 3. The closer the sample points to the straight line, the more precise the 
predicted values. The PLSR model established by the original or the preprocessed spectra 
is presented as a vector in practical applications, which can be multiplied by the spectral 
vector to obtain the prediction results for different traits. In the follow-up application pro-
cess, we can collect one spectral curve of the sample and substitute the data into the pre-
diction models differently for different traits; then, the pH value, shear force, cooking loss, 
and other traits of this sample can be calculated to quantitatively detect the unknown 
sample quality index. Although Vis/NIR spectroscopy technology was previously studied 
for different quality attribute detections of livestock and poultry meats, such as beef, pork, 
mutton, chicken, and so on, the prediction model developed using only one type of meat 
cut still cannot be successfully applied to other types, which seriously limits the practical 
applicability of Vis/NIR spectroscopy technology. The results proved that Vis/NIR spec-
troscopy combined with chemometrics can be used to detect the physicochemical proper-
ties for various sheep meat cuts. The findings illustrate that Vis/NIR spectroscopy tech-
nology has the potential to simultaneously predict multiple physicochemical properties 
for different types of sheep meat cut. 

 
Figure 3. The prediction performances between the measured and predicted values for (A) pH, (B) L*, (C) a*, (D) b*, (E) 
cooking loss and (F) shear force. The results show the ability to predict the physicochemical properties using Vis/NIR 
spectroscopy combined with the PLSR algorithm. The closer the sample points to the straight line, the more precise the 
predicted value, which illustrates that the prediction model is more accurate and robust. 

4. Conclusions 
In this work, we conducted a quantitative study of the physicochemical properties 

(pH, L*, a*, b*, cooking loss, and shear force) of different types of commercial meat cut 
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4. Conclusions

In this work, we conducted a quantitative study of the physicochemical properties (pH,
L*, a*, b*, cooking loss, and shear force) of different types of commercial meat cut from sheep
carcasses, including silverside, back strap, oyster, fillet, thick flank, and tenderloin cuts,
based on Vis/NIR spectroscopy along with chemometric methods. The results indicated
that the spectral preprocessing methods, to varying degrees, improved the robustness of the
prediction models, and the MSC and SNV preprocessing combinations effectively achieved
the most accurate prediction performances for different physicochemical properties. We
conclude that Vis/NIR spectroscopy combined with the PLSR model and appropriate
preprocessing methods has the ability to determine quality values for different commercial
meat cuts in a rapid, nondestructive, and simultaneous prediction manner. In the absence
of research on the quality evaluation of commercial cuts combined based on the Vis/NIRS
technique, our findings provide a theoretical foundation and valuable information for the
industrial application of Vis/NIR spectroscopy and this study will enhance its practical
applicability. Although the models for each physicochemical property obtained relatively
satisfactory prediction performance, further studies should be performed with a larger
sample set (by adding more meat cut species or a larger sample number) to include a wider
range of variation in the reference data for practical industrial implementation.
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