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Tisagenlecleucel is indicated for pediatric and young adult patients with relapsed/refractory

(r/r) B-cell acute lymphoblastic leukemia (B-ALL) and adult patients with r/r diffuse large

B-cell lymphoma (DLBCL). The tisagenlecleucel chimeric antigen receptor (CAR) contains a

murine single-chain variable fragment domain; we examined the effects of humoral and cel-

lular immune responses to tisagenlecleucel on clinical outcomes using 2 validated assays.

Data were pooled from the ELIANA (registered at www.clinicaltrials.gov as #NCT02435849)

and ENSIGN (#NCT02228096) trials in r/r B-ALL (N 5 143) and the JULIET trial

(#NCT02445248) in r/r DLBCL (N 5 115). Humoral responses were determined by flow cyto-

metric measurement of anti-murine CAR19 (mCAR19) antibodies in serum. Cellular responses

were determined using T-cell production of interferon-g in response to 2 different pools of

mCAR19 peptides. Pretreatment anti-mCAR19 antibodies were detected in 81% of patients

with r/r B-ALL and 94% of patients with r/r DLBCL. Posttreatment anti-mCAR19 antibodies

were higher than patient-specific baseline in 42% of r/r B-ALL and 9% of r/r DLBCL patients.

Pretreatment and posttreatment anti-mCAR19 antibodies did not affect tisagenlecleucel cellu-

lar kinetics, including maximum concentration and persistence (r2 , 0.05), clinical response

(day-28 response, duration of response, and event-free survival), and safety. T-cell responses

were consistent over time, with net responses ,1% at baseline and posttreatment time points

in a majority of patients and no effect on transgene expansion or persistence or outcomes.

Presence of baseline and/or posttreatment anti-mCAR19 antibodies or T-cell responses did

not alter the activity of tisagenlecleucel in patients with r/r B-ALL or r/r DLBCL.
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Key Points

� Pre- and
posttreatment anti-
mCAR19 antibodies
did not alter
tisagenlecleucel cellu-
lar kinetics, efficacy,
or safety in r/r B-ALL
or r/r DLBCL.

� T-cell responses to
mCAR19 peptides
did not influence
patient outcomes or
cellular expansion in
r/r B-ALL or r/r
DLBCL.
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Introduction

Chimeric antigen receptor (CAR) T-cell therapies are an important
clinical advancement for patients with advanced relapsed or refrac-
tory (r/r) B-cell malignancies. To date, little is known about the pres-
ence or potential effects of preexisting or posttreatment anti-murine
CAR19 (mCAR19) antibodies, although early analyses suggest that
neither preexisting nor posttreatment antibodies affect safety or effi-
cacy of tisagenlecleucel.1,2

Similar to other biologics, CAR T-cell therapies can cause an
immune response that may be more likely with murine-derived com-
ponents3 and that may affect efficacy or result in adverse events.3-5

Posttreatment immune responses to therapeutic antibodies have
been observed, and preexisting antibodies have been described for
a variety of biopharmaceutical agents.6,7 Characterizing the inci-
dence and prevalence of immunogenicity and their relationship to
cellular kinetics, efficacy, and safety of CAR T-cell therapies is
important because humoral and cellular immune responses have
been implicated in reducing persistence and efficacy in early CAR
T-cell therapy studies.8

Tisagenlecleucel, an anti-CD19 CAR T-cell therapy, reprograms
patient T cells to identify and eliminate CD19-expressing B cells9

and is approved to treat patients up to age 25 years with r/r B-cell
precursor acute lymphoblastic leukemia (B-ALL) and adults with r/r
diffuse large B-cell lymphoma (DLBCL).10-12 Multicenter clinical
studies have demonstrated high response rates, including 81%
overall remission rate in pediatric and young adult patients with r/r
B-ALL11 and 52% best overall response rate in adult patients with
r/r DLBCL.12

The tisagenlecleucel CAR contains a murine single-chain variable
fragment (mCAR19) antigen-binding extracellular domain that recog-
nizes CD19, and intracellular 4-1BB costimulatory and CD3-z
chain–signaling domains.9,13,14 Components of CARs (murine or
human) have potential to elicit immune responses in treated
patients.3-5 We evaluated the effects of humoral and cellular
immune responses resulting from tisagenlecleucel treatment on cel-
lular kinetics, efficacy, and safety in pediatric and young adult
patients with r/r B-ALL and adult patients with r/r DLBCL.

Methods

Patients and clinical trial design

Data for pediatric and young adult patients with B-ALL were pooled
from 2 clinical trials: ELIANA (registered at www.clinicaltrials.gov as
#NCT02435849; data cutoff date, 1 July 2019) and ENSIGN (reg-
istered at www.clinicaltrials.gov as #NCT02228096; data cutoff
date, 24 May 2019). Data for adult patients with DLBCL are based
on 1 clinical trial: JULIET (registered at www.clinicaltrials.gov as
#NCT02445248; data cutoff date, 11 December 2018). ELIANA
and ENSIGN are single-arm, open-label, multicenter phase 2 studies
examining tisagenlecleucel in patients with r/r B-ALL who were age
3 (at screening) to 21 years (at initial diagnosis).11,15 JULIET is a
single-arm, open-label, multicenter phase 2 study of tisagenlecleucel
in adult patients with r/r DLBCL.12 Details of the trials were previ-
ously described11,12,15; patient eligibility and prior therapies are
summarized in supplemental Table 1. Trial protocols were reviewed

and approved by local institutional review boards; all enrolled
patients provided written informed consent.

Bioanalytic methods/analyses

Patient sample collection. Patient samples for immunogenic-
ity (serum for humoral and whole blood for cellular) and CAR trans-
gene analyses were collected during the ELIANA and ENSIGN
studies at enrollment; at days 14 and 28; at months 3, 6, 12, and
24 (collected at month 36 in ENSIGN only); and upon relapse in
both trials. In the JULIET study, samples were collected at enroll-
ment; at days 14 and 28; at months 3, 6, and 12; and
upon relapse.

Humoral immunogenicity assay. Humoral immunogenicity
was determined by measuring anti-mCAR19 antibodies in serum
using a validated flow cytometric assay. Briefly, anti-
mCAR19–specific antibodies were detected via antibody binding to
a Jurkat cell line expressing the tisagenlecleucel mCAR19 molecule,
using antibody binding to the same cell line without mCAR19 (non-
transduced) as a specificity control. A sample was considered anti-
mCAR191 if the signal difference between mCAR19-expressing
cells and control cells was greater than or equal to an immunogenic-
ity cut point (data supplement).16 Posttreatment anti-mCAR19 anti-
bodies were considered positive when the level was greater than
the individual patient’s baseline level (defined as 2.15783 anti-
mCAR19 antibody median fluorescence intensity [MFI] at preinfu-
sion, where 2.1578 corresponds to the cut point factor on
mCAR19 Jurkat cells).16

Cellular immunogenicity assay. T-cell responses to 2 differ-
ent pools of mCAR19 peptides were measured by intracellular
staining and subsequent flow cytometric analysis of interferon-g
(IFN-g) production (no other cytokines were assessed;
data supplement).

Clinical data analysis

Relationship between clinical parameters and immu-
nogenicity. The effect of anti-mCAR19 antibodies (humoral
immunogenicity) at baseline or posttreatment on cellular kinetics,
efficacy, and safety was assessed using summary statistics as well
as graphical and model-based analyses. Summary statistics and
graphical methods were used to assess the impact of cellular
immune responses on cellular kinetics, efficacy, and safety using net
mCAR19-specific, IFN-g–producing T-cell response.

IVIG and humoral immunogenicity. IV immunoglobulin
(IVIG) is administered to some patients as treatment of hypogamma-
globulinemia resulting from B-cell aplasia, an on-target effect of tisa-
genlecleucel.11,17 IVIG is prepared using sera from multiple healthy
blood donors and likely contains alloreactive antibodies that could
be detected as positive immunogenicity in the assay. Validation of
the humoral assay included an additional step to evaluate levels of
IVIG that would result in potential false-positive detection of anti-
mCAR19 antibodies by binding to mCAR19 cells. IVIG concentra-
tions were titrated across a dynamic range (0.0391-10 mg/mL) to
evaluate binding on mCAR19 cells, using nontransduced and
mCAR19 cells.16
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Clinical response assessments

Efficacy end points included clinical response on day 28 (complete
remission [CR] plus CR with incomplete blood count recovery) in r/r
B-ALL or month-3 overall response (complete response plus partial
response) in r/r DLBCL based on the timing of protocol-defined
response assessments in the clinical trials. Clinical responses were
categorized by anti-mCAR19 status (positive or negative) and pre-
sented as box plots. In patients with r/r B-ALL, best overall response
was determined within 3 months of tisagenlecleucel infusion.11

Kaplan-Meier analyses were conducted for duration of response
(DOR), progression-free survival, and overall survival (OS). Safety end
points included cytokine release syndrome (CRS) and immune effec-
tor cell–associated neurotoxicity syndrome neurologic event grade.18

Statistical analysis

Summary statistics are provided for incidence and prevalence of
humoral and cellular immunogenicity and for tisagenlecleucel cellular
kinetic parameters as determined by quantitative polymerase chain
reaction (categorized by whether the patient was positive or nega-
tive for anti-mCAR19 antibody posttreatment). Cellular kinetic
parameters reported for tisagenlecleucel were calculated using con-
ventional methods as previously described.1 Kaplan-Meier and Cox
regressions were performed to evaluate the effect of humoral immu-
nogenicity on DOR and event-free survival/progression-free survival

end points. Waterfall plots summarize the effect of positive anti-
mCAR19 antibodies posttreatment on DOR and OS.

Data sharing statement

Novartis is committed to sharing with qualified external researchers
access to patient-level data and supporting clinical documents from
eligible studies. These requests are reviewed and approved by an
independent review panel on the basis of scientific merit. All data
provided are anonymized to respect the privacy of patients who
have participated in the trial in line with applicable laws and regula-
tions. The data availability of these trials is according to the criteria
and process described at www.clinicalstudydatarequest.com.

Results

Patient characteristics

Data from a total of 143 pediatric patients with r/r B-ALL (ELIANA,
n 5 79; ENSIGN, n 5 64) and 115 adult patients with r/r DLBCL
(JULIET) were analyzed. Patient demographics and baseline disease
characteristics were described previously.11,12,15

Incidence and prevalence

Humoral (anti-mCAR19 antibodies) immunogenicity.
Baseline samples were collected after lymphodepletion but before tisa-
genlecleucel. Anti-mCAR19 antibodies were detected in 81% of
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Figure 1. Preexisting and posttreatment anti-mCAR19 antibodies vs tisagenlecleucel expansion. Tisagenlecleucel expansion (Cmax) in pediatric and young adult

patients with r/r B-ALL by preexisting (baseline) (A) and posttreatment (postinfusion) (C) anti-mCAR19 antibodies. Patients in the ELIANA trial are indicated by blue circles,

and patients in the ENSIGN trial are indicated by red triangles. Tisagenlecleucel expansion (Cmax) in adult patients with r/r DLBCL by preexisting (baseline) (B) and posttreat-

ment (postinfusion) (D) anti-mCAR19 antibodies. Patients in the JULIET trial are indicated by blue diamonds.
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Figure 2. Pretreatment humoral immunogenicity and maximum fold change in anti-mCAR19 antibodies posttreatment by response category. Baseline anti-

mCAR19 antibody levels (A-D) and maximum fold change in posttreatment anti-mCAR19 antibody levels (E-H) (by MFI) by response category. CRi, CR with incomplete

blood count recovery; NR, no response; PR, partial response; PD, progressive disease; SD, stable disease.
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patients with r/r B-ALL and in 94% of patients with r/r DLBCL at base-
line. Previous therapy with murine or humanized monoclonal antibodies
was infrequent (10%) in patients with B-ALL (ELIANA, n 5 11 of 79;
ENSIGN, n 5 3 of 64; rituximab, n 5 7; inotuzumab, n 5 4; moxetu-
momab, n 5 2; and alemtuzumab, n 5 1). In DLBCL studies, patients
commonly received rituximab, a chimeric human/mouse monoclonal
antibody, before tisagenlecleucel infusion.12 Of note, a similar percent-
age (�90%) of preexisting anti-mCAR19 antibodies was detected in
samples from healthy volunteers during method validation.16

Cellular immunogenicity. For a majority of patients with r/r
B-ALL and patients with r/r DLBCL, both CD41 and CD81 T-cell
responses to mCAR19 peptides (pools 1 and 2) were consistent
and remained low over time, with net responses of ,1% at baseline
and posttreatment (supplemental Table 2). A total of 142 of 143
patients with r/r B-ALL and 107 of 115 patients with r/r DLBCL
had T-cell responses ,1% to the mCAR19 peptides.

To determine if T-cell response affected cellular kinetics or clinical
outcomes, the T-cell responses in a subgroup of B-ALL patients in
the 90th percentile for T-cell response were compared with those
responses in the overall population. For B-ALL, 14 of 137 patients
were in the 90th percentile for T-cell response at baseline. No nota-
ble differences in response category, CRS grade, maximum

posttreatment transgene level, persistence, or DOR were observed
for patients with the highest T-cell responses (supplemental Table
3; supplemental Figures 1-3). Similarly, no notable differences were
observed among patients in the 90th percentile for highest maxi-
mum fold change in T-cell response from baseline in posttreatment
samples (data not shown).

Cellular kinetics

The relationship between the presence of preexisting anti-mCAR19
antibodies and the maximum concentration (Cmax) after tisagenle-
cleucel administration was not significant in patients with r/r B-ALL
(r2 , 0.001) or patients with r/r DLBCL (r2 5 0.005; Figure 1).
Transgene exposure within the first 28 days (area under the curve
from day 0 to 28 [AUC0-28d]) was also unaffected by preexisting
humoral responses in r/r B-ALL and r/r DLBCL. We also evaluated
whether tisagenlecleucel infusion resulted in posttreatment increase
in anti-mCAR19 antibodies. Posttreatment increase in anti-mCAR19
antibodies was defined as increase in anti-mCAR19 antibodies
above a patient-specific baseline sample. Overall, 42% of patients
with r/r B-ALL and 9% of patients with r/r DLBCL experienced post-
treatment increases in anti-mCAR19 antibodies. Importantly, the
observed posttreatment increases in anti-mCAR19 antibodies did
not affect tisagenlecleucel persistence or expansion (AUC0-28d) in
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Figure 3. Effects of anti-mCAR19 antibodies on duration of response in pediatric and young adult patients with B-ALL. Duration of response among patients

who were positive (blue bars) and negative (orange bars) for posttreatment anti-mCAR19 antibodies that increased above baseline levels. Censoring reasons are indicated

by the symbols in the legend. Patients in the 90th percentile for anti-mCAR antibody MFI are shown (green circles). HSCT, hematopoietic stem cell transplantation.
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patients with r/r B-ALL. There were insufficient r/r DLBCL patients
with posttreatment increases in anti-mCAR19 antibodies above
baseline levels to formally evaluate any potential correlation between
anti-mCAR19 antibody levels and clinical end points.

DLBCL-specific considerations

In JULIET (n 5 111), most patients (98%) received prior rituximab
therapy, ranging from .1 year before (15%) to within 1 month of
tisagenlecleucel infusion (14%). Although rituximab exposure did
not seem to increase the incidence of preexisting anti-mCAR19 anti-
bodies compared with no prior exposure, only 2 patients had not
received prior rituximab therapy (supplemental Table 4).

Effects of anti-mCAR19 antibodies on

efficacy outcomes

Preexisting and posttreatment anti-mCAR19 antibodies did not
affect the day-28 response (CR plus CR with incomplete blood
count recovery) in patients with r/r B-ALL or month-3 response
(complete response plus partial response) in patients with r/r
DLBCL (Figure 2). In B-ALL, the overall response rate based on
day-28 response was 11 (85%) of 13 for patients within the 90th
percentile of MFI for anti-mCAR19 antibodies detected at any time
point after tisagenlecleucel infusion and 94 (77%) of 122 for the
remainder of the population. Best overall response rates in patients
with r/r B-ALL were similar in the 90th percentile MFI compared
with the remainder of the population (10 [77%] of 13 and 90
[74%] of 122, respectively). In addition, DOR and OS in patients
with r/r B-ALL who received tisagenlecleucel were unaffected by

preexisting and posttreatment anti-mCAR19 antibodies (Figure 3;
supplemental Figure 3). The presence of preexisting and posttreat-
ment anti-mCAR19 antibodies did not affect tisagenlecleucel maxi-
mal expansion (Cmax) or persistence (Figure 4).

Effects of anti-mCAR19 antibodies on

safety outcomes

Safety events (CRS or neurologic events) were not affected by pre-
existing or posttreatment anti-mCAR19 antibodies detected in
patients with r/r B-ALL or patients with r/r DLBCL (supplemental
Figure 4). Levels of anti-mCAR19 antibodies were similar across all
grades of CRS and neurologic events. Patients with B-cell aplasia
cannot mount a humoral immune response and are more suscepti-
ble to infections; we therefore examined whether there was any
association between the presence or lack of anti-mCAR19 antibod-
ies and infection. The incidence of anti-mCAR19 antibodies
detected posttreatment was evaluated in patients who developed
infections within 8 weeks postinfusion. Overall, 43% (34 of 79) of
patients in ELIANA,11 41% (26 of 64) of patients in ENSIGN,15

and 37% (43 of 115) of patients in JULIET12 experienced posttreat-
ment infections within 8 weeks postinfusion. However, there was no
association between mCAR19 antibody levels and infection during
this same 8-week period after infusion.

Hypogammaglobulinemia, B-cell aplasia, and

immunogenicity

Model-based (Kaplan-Meier) analyses were performed to evaluate
the impact of anti-mCAR19 antibody level on time to B-cell
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recovery. Baseline and maximum fold change of anti-mCAR19 anti-
bodies did not show any apparent relationship with duration of
B-cell aplasia (supplemental Figure 5). In addition, patients who
received IVIG to overcome hypogammaglobulinemia showed no sta-
tistically significant differences in immunogenicity compared with
patients who did not receive IVIG. It is important to note that most
patients with DLBCL had received prior rituximab therapy, which
can cause long-term B-cell aplasia, and most patients (79%) had
B-cell aplasia at baseline.12 In fact, only 6 patients with DLBCL
experienced B-cell recovery to within the normal range (80-616
cells per mL).19 Among patients with B-ALL, B-cell aplasia was pre-
sent in 25 (18%) of 141 at baseline. After tisagenlecleucel infusion,
patients with sustained B-cell aplasia had higher AUC0-28d and
Cmax and longer median tisagenlecleucel maximal persistence than
patients who experienced B-cell recovery in ,6 months after infu-
sion (supplemental Table 5).

Cellular immunogenicity. Anti-mCAR19 CD41 and CD81

T-cell responses were measured by IFN-g production in response
to exposure to mCAR19 peptides. Overall, net T-cell responses to
2 pools of mCAR19 peptides were ,1% in patients with r/r

B-ALL (Figure 5). CD41 T-cell responses did not affect tisagenle-
cleucel transgene expansion or persistence (Figure 5A-B) or
patient outcomes (Figure 5C-D). Similarly, CD81 T-cell responses
to mCAR19 peptide pools did not affect tisagenlecleucel trans-
gene expansion, persistence, or patient outcomes (data not
shown). For most patients with r/r B-ALL and patients with r/r
DLBCL, CD41 and CD81 T-cell responses to pool-1 mCAR19
peptides were consistent over time, with net responses of ,1%
at baseline and posttreatment (Figure 6). Similar responses to
pool-2 mCAR19 peptides were observed (data not shown). In
addition, cellular kinetic profiles were similar between patients in
the 90th percentile for T-cell response and the overall patient pop-
ulation (supplemental Figures 1 and 2).

Discussion

These analyses represent the first comprehensive assessment of
the effect of humoral and cellular immunogenicity and clinical end
points for patients treated with tisagenlecleucel. We observed no
clinically meaningful effect of preexisting or posttreatment immuno-
genicity (humoral or cellular) on the expansion or persistence of
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tisagenlecleucel, patient response, or safety. Low levels of preexist-
ing anti-mCAR19 antibodies were highly prevalent, consistent with
the prevalence of preexisting anti-mCAR19 antibodies detected in
healthy volunteer sera used during method validation. As the field of
CAR T-cell therapy evolves, optimization of immunogenicity assays
should focus on identifying and quantifying functionally relevant anti-
CAR antibodies. Preexisting antibodies that bind to biotherapeutic
drugs have been detected in drug-naive individuals for a variety of
biotherapeutic modalities, including single-chain variable fragments
(scFvs), Fabs, (Fab9)2, nanobodies, and immunoglobulin G.20 In this
case, our analyses show that these preexisting antibodies do not
affect safety or efficacy; however, these data and interpretation
apply only to tisagenlecleucel as examined in the clinical trial patient
populations reported herein and should not be generalized to other
CAR T-cell therapies or other patient populations.

Patients with prior exposure to murine antibodies could have preex-
isting or newly developing human anti-mouse immunoglobulin, which
has been observed with antibody biotherapeutics.21,22 This could
account for the slightly higher incidence of baseline anti-mCAR19
antibodies in patients with r/r DLBCL, of whom all but 2 had prior
exposure to murine antibodies. However, prior exposure to rituximab
did not affect the immunogenicity rate and did not increase the risk
for cross-reactivity beyond that seen in patients with r/r B-ALL, sug-
gesting that any anti-mouse antibodies generated by prior exposure
to rituximab did not cross-react with mCAR19 or were short lived
because of rituximab-induced B-cell aplasia.

Preexisting antibodies that bind to single-chain antibody therapeu-
tics have been reported (eg, for anti-DR5 nanobody TAS26623 and
anti-TNFR1 VH domain antibody24). Anti-immunoglobulin autoanti-
bodies are known to be involved in the pathogenesis of some
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diseases and infections.25-30 Our analyses strongly discount the
possibility that components of the natural antibody repertoire could
also bind to the tisagenlecleucel CAR and exert clinical consequen-
ces. Indeed, we found no evidence that the presence of preexisting
anti-mCAR19 antibodies or increases in posttreatment anti-mCAR19
antibodies affected the cellular kinetics, efficacy, or safety of tisagen-
lecleucel. This suggests that the anti-mCAR19 antibodies did not
neutralize the activity of tisagenlecleucel therapy; however, a formal
neutralizing antibody assessment was not conducted in this study. A
neutralizing antibody assessment may allow further characterization
of the anti-mCAR19 antibodies; however, this is not part of standard
antidrug antibody assessment for CAR T-cell therapies and may be
something to consider in the future on a case-by-case basis.

In this study, a higher proportion of patients with r/r B-ALL had post-
treatment anti-mCAR19 antibodies compared with patients with r/r
DLBCL. This may be due to greater use of IVIG to manage hypogam-
maglobulinemia in the r/r B-ALL population and the subsequent
detection of anti-mCAR19 antibodies from IVIG preparations. The
increase in posttreatment antibodies could be misinterpreted as
boosted or induced immune response. Another reason for the differ-
ence in posttreatment antibodies between pediatric and adult patients
could be due to rituximab exposure in most patients with r/r DLBCL,
making them less able to mount a B cell–mediated response. Addi-
tional investigations or analyses in this area are needed to understand
the role of immunogenicity in immunosuppressed patients.

During development and validation of the antibody detection assay,
we evaluated adjusting the baseline threshold using sera from
healthy volunteers; however, that would have resulted in a very high
baseline threshold and could have resulted in false-negative results.
This issue is similar to that seen with other biologics,20 and further
characterization of preexisting humoral immunogenicity is warranted.
Other CAR immunogenicity assays have been based on the CAR
source antibody.31 In contrast, our cellular immunoglobulin assay is
designed to also detect anti-scFv domain antibodies as well as anti-
bodies to other extracellular domains of the tisagenlecleucel CAR
molecule. One recent study demonstrated that preexisting anti-scFv
antibodies exist in the majority of naive sera32; therefore, we believe
that using the intrapatient control was the most appropriate option
for determining whether exposure to tisagenlecleucel induced anti-
mCAR19 antibodies above baseline levels. However, future analy-
ses will be needed to determine whether certain regions of
mCAR19 are favored for antibody binding and if the anti-mCAR19
antibody binding sites are outside the complementarity-determining
regions of mCAR19 that bind CD19 on B cells. These and other
assay enhancements are being evaluated for future refinement of
the immunogenicity assay.

Our analysis demonstrated that T cell–mediated immunogenicity did
not influence patient outcomes or cellular expansion in pediatric or
young adult patients with r/r B-ALL or adult patients with r/r DLBCL.
Consistent levels of preexisting and posttreatment anti-mCAR19
antibodies across response categories suggest that anti-mCAR19
antibodies did not affect outcomes. T-cell responses (as determined
by IFN-g secretion) were generally low (,1%) at all postinfusion
time points, suggesting that for most patients, there was not a pro-
nounced cellular response to mCAR19; however, our data on T-cell
responses are based on IFN-g secretion, and no other cytokines
were assessed. A significant T-cell immune response against
mCAR19 was estimated to be $1% activated CD41 or CD81 T

cells, based on our experience with positive controls (data supple-
ment). The observation that most patients were below this threshold
suggests a limited cellular response to mCAR19. However, a com-
plete understanding of the role of anti-mCAR19 immunogenicity in
efficacy and safety will require future follow-up in clinical trials. Anal-
ysis of immunogenicity in ongoing and future clinical trials that allow
reinfusion of CAR T-cell therapy may also provide insight into the
potential effects of anti-CAR immune responses.

Tisagenlecleucel therapy targets both normal and malignant B cells
and may result in immune dysfunction. B-cell aplasia and hypogamma-
globulinemia may influence the incidence of anti-mCAR19 antibodies
over time, as antibodies are degraded while B cells are depleted, and
new antibodies may not be produced. In patients with DLBCL, prior
rituximab therapy often results in long-term B-cell aplasia, and most
patients in the JULIET study (79%) had B-cell aplasia at baseline.12

Therefore, it is likely that humoral immune responses in these patients
may be attenuated, even at baseline. In addition, CAR T-cell therapy
specifically targets CD19-expressing B cells, and the patients who
respond to therapy develop B-cell aplasia after CAR T-cell infusion. It
is not fully understood if tisagenlecleucel eliminates all plasma cells or
whether preexisting plasma cells may continue to release some anti-
bodies while antibody development against new antigens is blocked.
In fact, the persistence of long-lived plasma cells after CD19-targeted
CAR T-cell therapy was recently reported,33 suggesting that preexist-
ing humoral immunity may indeed remain relatively stable for months
to years after CAR T-cell therapy despite the development of B-cell
aplasia. Conversely, if the presence or development of anti-mCAR19
antibodies results in a neutralizing immune response against the
CD19-targeting CAR T cells, B-cell recovery may be observed.

In the B2101J clinical trial, which was part of the original regulatory
submission for tisagenlecleucel, we observed a patient with r/r
B-ALL who rapidly lost expression of the tisagenlecleucel (CTL019)
transgene and may have developed immunity to the transgene (data
supplement). The 6-year-old boy with B-ALL first relapsed after allo-
geneic stem cell transplantation, and his disease was refractory to
subsequent salvage chemotherapy. He received lymphodepleting
chemotherapy (cytarabine and etoposide) and then received a sin-
gle infusion of CTL019 cells. At infusion, there was no evidence of
blasts in the bone marrow or minimal residual disease by flow
cytometry. Nine days after infusion, rapid transgene expansion
(53026 copies per mg at day 11) was observed, followed by rapid
transgene loss on day 18, with no measurable transgene by day 28.
Interestingly, this patient also had an approximate sixfold increase in
posttreatment anti-mCAR19 antibodies by day 28 (supplemental
Table 6), which would rank among the highest detected in the
B2101J study. The patient achieved CR on day 28 but had an iso-
lated skin relapse on day 185; he received localized radiation ther-
apy and achieved remission of the skin lesion. The patient had a
CD191 bone marrow relapse on day 374 and went on to discon-
tinue from the study on day 386. This is the only patient we have
observed to date who had rapid expansion followed by rapid loss of
the CAR transgene by day 28 and also had correspondingly high
levels of anti-mCAR19 antibodies. Although this patient experienced
CAR transgene loss, a durable CR was maintained until day 240,
suggesting there was sufficient expansion to clear the measurable
disease. In this case, it is not certain whether immunogenicity was
the direct cause of rapid CAR transgene loss or the reason for
relapse. It is hypothesized that immune-related loss of the CAR
transgene would result in early relapse or relapse shortly after CAR
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transgene loss; however, this was not the case in this particular
patient.

Currently, most CAR scFv domains, including tisagenlecleucel, are
of murine origin,10,31 and individual patient reports have suggested
that in some cases, the potential immunogenicity of CARs derived
from murine antibodies can be a safety concern.34 Evidence from
early studies suggested that humoral and cellular immune responses
to murine-based CARs could potentially limit the persistence of
CAR T cells in some patients.8 These reports involved CAR con-
structs that did not target normal B cells, unlike tisagenlecleucel.
Future studies of immune responses to other CAR T-cell therapies
that do not directly suppress the immune response (based upon the
antigen being targeted) should be useful in determining potential
immune responses to CAR T-cell therapies in general. In the future,
it will be important to understand whether the lack of an observed
effect of immunogenicity on tisagenlecleucel safety and efficacy is
due to B-cell depletion or specific characteristics of the tisagenle-
cleucel CAR or whether prior reports represent rare events. Given
that tisagenlecleucel targets both malignant and normal CD191 B
cells and therefore suppresses humoral immunity, it is not surprising
that infused patients do not mount a meaningful immune response
to tisagenlecleucel therapy. In addition, recipients of tisagenlecleucel
therapy have also received prior B cell– and T cell–directed thera-
pies, further reducing the likelihood of an immune response.

Anti-mouse immunoglobulin immune reactivity is a potential cause of
immunogenicity that may be overcome by fully human or humanized
CAR design. However, based on the results of this analysis, anti-
mCAR19 immunogenicity does not seem to affect the safety or effi-
cacy of tisagenlecleucel therapy. Still, there may be a role for human-
ized CARs for retreatment of patients who have previously been
exposed to murine CARs. An early-phase study suggests that a
humanized CAR may induce remission in patients who have
relapsed or had partial or no response to previous murine-based
CAR T-cell therapy.35 In fact, another study demonstrated immune-
mediated rejection in a few patients who did not respond to a reinfu-
sion of the same CAR T-cell therapy.36 The authors were able to
detect CAR-specific T-cell responses in the patients who did not
respond to a second infusion and found immunogenic epitopes
within the murine scFv in 1 patient.36 Interestingly, a study of a fully
human CAR T-cell therapy in patients with B-cell lymphoma reported
anti-human CAR immune responses in 3 patients, but did not
observe an effect on CAR T-cell expansion or persistence.37 Addi-
tional studies are needed to understand the potential benefits of
using humanized CARs, perhaps in patients who do not respond to
murine-based CAR T-cell therapy.

In conclusion, data from clinical trials of tisagenlecleucel in patients
with r/r B-ALL and in patients with r/r DLBCL demonstrated that the
presence of preexisting anti-mCAR19 antibodies or the develop-
ment of posttreatment anti-mCAR19 antibodies did not affect tisa-
genlecleucel cellular kinetics, efficacy, or safety. Studies examining
CAR T-cell therapy immunogenicity have been limited to date; there-
fore, it will be important to harmonize guidance for evaluating immu-
nogenicity across CAR T-cell therapies.
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