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Despite the advent of targeted therapies and novel agents, allogeneic hematopoietic stem cell transplantation remains the only
curative modality in the management of hematologic disorders. The necessity to find an HLA-matched related donor is a major
obstacle that compromises the widespread application and development of this field. Matched unrelated donors and umbilical
cord blood have emerged as alternative sources of donor stem cells; however, the cost of maintaining donor registries and cord
blood banks is very high and even impractical in developing countries. Almost every patient has an HLA haploidentical relative
in the family, meaning that haploidentical donors are potential sources of stem cells, especially in situations where cord blood or
matched unrelated donors are not easily available. Due to the high rates of graft failure and graft-versus-host disease, haploidentical
transplant was not considered a feasible option up until the late 20th century, when strategies such as “megadose stem cell infusions”
and posttransplantation immunosuppression with cyclophosphamide showed the ability to overcome the HLA disparity barrier
and significantly improve the rates of engraftment and reduce the incidence and severity of graft-versus-host disease. Newer
technologies of graft manipulation have also yielded the same effects in addition to preserving the antileukemic cells in the donor
graft.

Today’s age represents a truly unprecedented time in care of
the patient with a hematologic malignancy with the advent of
several targeted therapies and novel agents. These therapies
have shown tremendous efficacy in treating several malig-
nancies, yielding impressive response rates with limited tox-
icity profiles [1]. Despite substantial activity against different
cancer types, relapse is often encountered at some point dur-
ing the clinical course of most treated patients, with durable
remissions being observed in only a certain percentage of
patients. Allogeneic hematopoietic stem cell transplantation
(allo-HSCT) is often the only treatment modality which can
offer a cure to not only malignant but also benign hemato-
logical disorders [2]. A human leukocyte antigen- (HLA-)
matched sibling donor is the preferred source of a stem cell
graft in allo-HSCT. However, only 30% of patients requiring
an allo-HSCT will have an HLA-matched sibling donor [3].
For patients not having a matched sibling donor, a matched
unrelated donor (MUD) is an alternate source of stem cells,

the probability of finding which is up to 75% among Cau-
casians. However, these chances are much lower among
non-Caucasian populations, with 40% chance in Hispanic
individuals and less than 20% among Asian and African
American individuals [3–5]. In addition, the cost of recruiting
MUDs andmaintaining donor registries is amajor drawback,
making this approach unaffordable and even impractical for
developing countries. Hence, it is important to explore other
possible stem cell sources.

Unrelated umbilical cord blood (UCB) represents
another alternate source of stem cells, one which has been
proven to be successful when performing allo-HSCT [6–10].
Key advantages include a comparatively quick donor search
and a shorter time to proceed to transplant when compared
with adult MUDs [11, 12]. This is especially important in the
context of advanced/high-risk hematologic malignancies,
where the risk of disease relapse is high and the goal is to
proceed to a transplant while the patient is still in remission

Hindawi Publishing Corporation
Advances in Hematology
Volume 2016, Article ID 1423493, 8 pages
http://dx.doi.org/10.1155/2016/1423493

http://dx.doi.org/10.1155/2016/1423493


2 Advances in Hematology

and has minimal disease burden after induction therapy [13].
In addition, UCB transplantation allows for a greater degree
of HLA mismatch, most likely due to a lower number of
activated alloreactive T lymphocytes present in cord blood
[14, 15]. This accounts for very low and acceptable rates of
graft-versus-host disease (GvHD) following UCB transplants
[8, 12, 16]. One of the obstacles to UCB transplants is the
nonavailability of a sufficient number of hematopoietic
progenitor cells in an UCB unit [12]. Although this limitation
can be overcome by using more than one unit of cord blood,
it is daunted by the high cost ofmaintaining cord blood banks
[17]. Delayed engraftment, increased time to hematopoietic
recovery, and immune reconstitution lead to substantially
increased risks of life-threatening infections and graft failure,
often offsetting the advantages of using unrelated UCB as a
stem cell source [5, 12]. Furthermore, due to a limited number
of hematopoietic progenitor cells, posttransplant immune
manipulation, such as donor lymphocyte infusions, is very
difficult, which severely limits treatment options for patients
who relapse after transplant [6, 12].

On the other hand, haploidentical related donors offer
several key advantages over MUDs and UCB. Almost all
patients have at least one haploidentical related donor in
the family and the best donor amongst all candidate family
members can be selected. Haploidentical related donors are
readily available and are highly motivated to donate to a fam-
ily member [18, 19]. Due to rapid availability of donors and
substantially lower costs, patients can proceed to transplant
fairly quickly (as early as 3 weeks) [18]. Anothermajor advan-
tage of haploidentical donors over UCB is easy access to the
stem cell source that makes donor-derived cellular therapy,
such as donor lymphocyte infusions and immune manipula-
tion, available for use after transplant, if necessary [18].

The HLA mismatch between the haploidentical donor
and the recipient offers a potent graft-versus-tumor (GvT)
effect to completely eradicate malignant cells and offer a per-
manent cure [18]. Some studies have reported substantially
reduced relapse rates with greater degree of HLAmismatches
[20–22]. However, two immunological barriers need to be
overcome: (1) graft rejection, or host-versus-graft effect, and
(2) GvHD. In allo-HSCT studies involving myeloablative
conditioning (MAC) regimens, HLA mismatches, either at
the antigen level or at allele level, have been associated with
inferior survival and poor outcomes after allo-HSCT, with
greater degree of mismatch correlating with worse outcomes
[21, 23, 24]. Since donor-recipient HLA histocompatibility is
the most important independent predictor of outcomes after
allo-HSCT, these two barriers are more difficult to overcome
in haploidentical hematopoietic stem cell transplantation
(haplo-HSCT) than in HLA-matched allo-HSCT. Although
the lower risk of relapse due to HLA disparity supports the
existence of a GvT effect, this positive aspect of haplo-HSCT
is offset by markedly increased rates of GvHD, graft failure,
and nonrelapse mortality [23, 25].

Several attempts to perform haplo-HSCT using T lym-
phocyte replete, unmanipulated grafts have beenmade. Since
donor-derived T lymphocytes are the fundamental players in
the pathogenesis of GvHD, these attempts have been asso-
ciated with early and severe multiorgan failure and GvHD,

leading to alarming rates of transplant-related mortality
despite pharmacological GvHD prophylaxis [26]. To reduce
the risk of GvHD, a new approach of highly purified CD34+
stem cell grafts was adopted using ex vivo T lymphocyte
depletion technologies [27]. With this strategy, almost no
GvHD was observed in the recipients, despite the absence of
posttransplant immunosuppressants for GvHD prophylaxis
[28–30]. However, the small number of T lymphocytes trans-
planted using the highly purified CD34+ stem cell strategy
does not allow for an efficient transfer of adoptive immunity,
resulting in substantially delayed immune reconstitution and
frequent, often fatal, infectious complications [18, 31]. Also,
the risk of graft failure is also higher with T lymphocyte
depleted haplo-HSCT [27, 32].

There is a key difference between positive selection of
CD34+ progenitor cells and negative depletion of lym-
phocytes during graft manipulation. With CD34+ selection
strategies, almost no cells other than the CD34+ stem cells are
transplanted. On the other hand, negative depletion tech-
niques (mainly CD3+ and CD19+ negative depletion) allows
for other types of cells, such as dendritic cells, natural-killer
(NK) cells, and monocytes, to be retained in the donor graft
and transplanted with the CD34+ progenitors. Both graft
manipulation techniques result in effective removal of B and
T lymphocytes, leading to greatly reduced risks of developing
posttransplant Epstein-Barr virus related lymphoproliferative
disorders (B lymphocyte depletion) and GvHD (T lympho-
cyte depletion) [26, 33]. The detailed research and broad
application of graft manipulation has provided insight into
the biology of NK cells, lymphocytic constituents of the
innate immune system, and their immunotherapeutic poten-
tial in allo- and haplo-HSCT [34].

NK cell activity is modulated by the interaction between
killer cell immunoglobulin-like receptor (KIR) expressed on
the surface of NK cells and cognate ligands (i.e., certain HLA
alleles) to KIRs [35]. Engagement of KIRs by their corre-
sponding ligands produces inhibitory signals and prevents
NK cell activation. In the context of allo-HSCT, and especially
haplo-HSCT, NK cells in the allograft can attack malignant
cells in the recipient if there is a mismatch between the KIRs
on the donor-derived NK cells and the HLA antigens on the
recipient (andmalignant) cells [36].With somany haploiden-
tical donors available for a vast majority of patients, the ideal
donor can be picked based on theKIRhaplotype on the donor
NK cells to exploit their alloreactivity and induce powerful
GvT effects [37, 38]. Additionally, the disparity between KIRs
and HLA haplotypes does not increase the risk of developing
GvHD [39].

Another fundamental difference between CD34+ selec-
tion and negative depletion of lymphocytes (CD3+/CD19+
depletion) is that the number of alloreactive lymphocytes
“contaminating” the donor graft is approximately ten times
higher in CD3+/CD19+ depletion. This necessitates the use
of pharmacologicalGvHDprophylaxis after transplants using
CD3+/CD19+ depleted grafts [33, 40]. However, a notable
problem with the transplantation of T lymphocyte depleted
grafts is the increased likelihood of relapse after transplan-
tation [41, 42]. A more efficient approach is the depletion of
T-cell receptor (TCR) 𝛼𝛽+ T lymphocytes and CD19+ cells
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(TCR𝛼𝛽+/CD19+ depletion) from donor grafts [43, 44]. This
approach greatly increases the efficiency of alloreactive T
lymphocyte removal (similar to that of CD34+ selection
techniques), while retaining other cells such as NK cells and
monocytes. In addition, this method also retains 𝛾𝛿+ T lym-
phocytes in the graft. 𝛾𝛿+ T lymphocytes constitute approxi-
mately 5% of circulating T lymphocytes. These cells are non-
alloreactive and exhibit potent antitumor and anti-infectious
properties [5, 44]. Since these cells are not activated by major
histocompatibility complex (MHC) interactions, they do not
react to alloantigens and hence do not contribute to GvHD
[45, 46]. This is advocated by the fact that patients exhibiting
high 𝛾𝛿+ T lymphocyte counts after allo-HSCT show better
survival with reduced incidence of relapse andGvHD [47]. In
contrast, the majority of circulating T lymphocytes (approx-
imately 95%) are 𝛼𝛽+ T lymphocytes which act against
alloantigens via MHC interactions and give rise to GvHD
after allo-HSCT [48]. The TCR𝛼𝛽+/CD19+ depletion tech-
nique allows for satisfactory removal of 𝛼𝛽+ T lymphocytes
to prevent GvHD while retaining 𝛾𝛿+ T lymphocytes to
ensure timely immune reconstitution and a robust GvT
effect, especially after haplo-HSCT [47, 49, 50]. The most
recent study [51] reporting the results of haplo-HSCT with
TCR𝛼𝛽+/CD19+ depletion in pediatric patients showed
acceptable rates of GvHD (22%). In all but one patient, GvHD
was grade 2 and responded to first-line therapy. Graft failure
was observed in 27% of patients, all of whom were suc-
cessfully retransplanted with different rescue protocols. The
overall survival of patients from this study was 96.7%, advo-
cating the efficacy of TCR𝛼𝛽+/CD19+ depletion in improving
outcomes after haplo-HSCT.

During the 1980s, outcomes of haplo-HSCTwere discour-
aging due to severe GvHD and graft failure, often approach-
ing rates as high as 90% [52, 53]. The introduction of graft
manipulation and T lymphocyte depletion brought about
notable improvements in outcomes of recipients of haplo-
HSCT by dramatically reducing the incidence of GvHD [54];
however, the high incidence of graft failure remained a major
obstacle to the application of haplo-HSCT [55, 56]. Graft fail-
ure ismediated by native cytotoxic T lymphocytes that persist
in the recipient’s system even after conditioning regimens
are administered [57]. This barrier in histocompatibility was
shown to be overcome in several animal-model studies [58]
and, subsequently, in clinical studies [57, 59, 60] by infusing
high doses of T lymphocyte depleted hematopoietic progeni-
tor cells. Additional strategies to help engraftment included
enhancing the ablative intensity of conditioning regimens
and addition of anti-T lymphocyte agents [57, 59, 61].
Unfortunately, such intensive conditioning regimens result in
extensive organ damage and toxicities which limit their use
to younger and relatively healthier patients in comparison
to individuals of older age groups [5]. Chemotherapeutic
doses and total body irradiation used inMAC regimens cause
extensive damage to host tissue and release of inflammatory
cytokines, such as tumor necrosis factor alpha (TNF𝛼) and
interferon gamma (IFN𝛾). These inflammatory mediators,
and several others, play an integral role in the pathophys-
iology of GvHD [62], which may be one of the reasons
whyMAC regimen transplants are frequently complicated by

GvHD [57, 63]. The problem with T lymphocyte depleted
grafts is delayed immune reconstitution and significant
period of immunodeficiency which predisposes to serious
and often fatal infections [28, 57, 64].

Nonmyeloablative conditioning (NMAC) regimens are
an attractive alternative for patients requiring an allo-HSCT
who are not considered suitable candidates for MAC regi-
mens due to advanced age, comorbidities, and/or increased
risks of therapy-related adverse effects [65]. Using NMAC
regimens also results in the decreased release of inflammatory
mediators and cytokines and may consequently reduce the
incidence and magnitude of GvHD, especially when used
for haplo-HSCT.This significantly broadens the applicability
of transplantation to patients who would otherwise be unfit
to receive a transplant using standard protocols. Earlier
studies applying haplo-HSCT with NMAC regimens showed
discouraging patient outcomes, especiallywith alarming rates
of graft failure [66, 67]. Rizzieri et al. [68] published the
first large study on haplo-HSCT with fludarabine, cyclophos-
phamide, and alemtuzumab used as the preparatory NMAC
regimen which demonstrated that the complications of
GvHDand graft failure after haplo-HSCT could be overcome,
making it a feasible treatment option in the therapy of
patients with hematologic malignancies. 75% of the patients
in this study achieved complete remission with only 10.2%
transplant-relatedmortality in the first 100 days. Engraftment
rate was high, with only 14% of patients suffering from graft
failure, while only 8% of patients developed GvHD. However,
relapse and infectious complications were major causes of
mortality in this study (49% and 22%, resp.). One plausible
reason for the high rate of relapse could be that the patients
participating in this study harbored poor-risk hematologic
malignancies which carry an inherent probability of relapse.

Cyclophosphamide is a highly immunosuppressive alky-
lating agent with an established role in anticancer chemother-
apy and HSCT [69]. Historically, cyclophosphamide is com-
monly administered as part of several conditioning regimens
prior to HSCT; however, as previously discussed, the cyto-
toxic effects of this agent lead to tissue damage and release
of inflammatory mediators and increase the risk of GvHD
[62]. Administration of cyclophosphamide between 48 and
72 hours after transplant has been shown to facilitate post-
transplant immune-tolerance; however, this tolerance is not
induced when the drug is administered at 24 or 96 hours after
transplant [70]. Cyclophosphamide exploits the high cyto-
toxic sensitivity of alloreactive T lymphocytes (both host and
donor) to DNA damage [71]; hence carefully timed admin-
istration of posttransplant cyclophosphamide inhibits GvHD
and graft rejection [72, 73]. O’Donnell et al. [69] investigated
the role of posttransplantation cyclophosphamide in patients
receiving haplo-HSCT after NMAC conditioning.The results
of their study concluded that this strategy substantially
reduced the risks of GvHD and graft rejection and was
able to produce long-lasting donor-recipient chimerism after
transplant. Subsequently, Luznik et al. [64] reported their
experiencewith using posttransplant cyclophosphamide after
NMAC haplo-HSCT. The results of their study showed
acceptable rates of graft failure (13%) and GvHD (grades
2–4: 34%, grades 3-4: 6%) with rapid achievement of
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donor-recipient chimerism after transplant. Administration
of two doses of cyclophosphamide in the 48-to-72-hour
window was associated with a lower risk of chronic GvHD
than only one dose, further advocating that posttransplant
cyclophosphamide is efficacious in inducing posttransplant
tolerance. However, relapse of primary disease was a major
cause of treatment failure and mortality (up to 51%). This
study also recruited patients with poor-risk hematologic
malignancies, which may explain the high incidence of
relapse in this study group. Patients with lymphoidmalignan-
cies were at a lower risk of experiencing relapse than those
with myeloid malignancies, indicating particular effective-
ness of cyclophosphamide in treating lymphoid hematologic
malignancies. Other studies have demonstrated similar find-
ings, corroborating that this strategy depletes alloreactive T
lymphocytes in the donor graft as well as the host immune
system, dramatically reducing the risk of both GvHD and
graft failure, which are much more difficult to control in the
setting of haplo-HSCT and are substantial impediments [69].
While there is concern that posttransplant cyclophosphamide
might damage or kill donor hematopoietic progenitors cells,
these cells have high expression of aldehyde dehydrogenase
enzymes which confer relative resistance to the cytotoxic
effects of the drug [74].

A relatively newer strategy to increase the success rates of
haplo-HSCT is the use of T regulatory cells (Tregs). Tregs are
a specialized subset of CD4+ lymphocytes with concurrent
expression ofCD25 andFOXP3 geneswhich play crucial roles
in antitumor immunity, posttransplant tolerance, and pro-
tection against autoimmunity [75–77]. In addition, they have
low expression of CD127 [78]. The adoptive transfer of these
specialized T lymphocytes limits graft and host alloreactivity,
leading to reduced risks of GvHD and graft failure [79–82].
Tregs also preserve and maintain normal lymph node and
thymus architecture from GvHD and allow for a quick post-
transplant immune recovery while having no negative effects
on the GvT responses of allo-HSCT [83]. Additional studies
have also showed that Tregs become activated and proliferate
by interaction with recipient antigen-presenting cells in the
proinflammatory milieu after administration of conditioning
regimens, attenuating alloreactive T lymphocyte activation
while allowing nonalloreactive T lymphocyte expansion to
ensure a timely immune recovery [82, 84–86].

Di Ianni et al. [87] performed the first human study eval-
uating the adoptive transfer of Tregs on posttransplantation
outcomes in patients receiving haplo-HSCT. Early infusion
of donor-derived Tregs on day −4 of transplant, followed by
infusion of positively immunoselected CD34+ stem cells and
conventional T lymphocytes on day 0, showed prevention
of GvHD in the absence of any immunosuppressive GvHD
prophylaxis and hastened posttransplant immune recovery
and immunity against opportunistic pathogens and did not
have any negative effects on GvT effects [87]. A follow-up
study of these patients [84] showed successful engraftment in
26/28 (93%) patients. Only 2 (7.7%) of 26 evaluable patients
developed grade 2–4GvHD. Spectratyping analysis showed
the rapid development of T lymphocyte repertoire within
months after transplant. Naı̈ve and memory T lymphocyte
subpopulations showed rapid increase over the first year after

transplant, while CD4+ and CD8+ lymphocytes against
opportunistic pathogens like Aspergillus and Toxoplasma
appeared significantly earlier in comparison to historical
controls comprising standard haplo-HSCT recipients. At a
median follow-up of 21 months, 46.1% were alive and in
remission [84].

Tregs can be isolated in vitro using standard donor-
derived leukapheresis products using double negative selec-
tion with anti-CD8 and anti-CD19 monoclonal antibodies
and positive selection for CD25 [88]. Expression of the
FOXP3 gene represents the peripheral mature Tregs [89],
while low CD127 expression correlates with exhibition of
regulatory functions in this T lymphocyte subset [90]. Such
cell-based transplantation and graft modifications prove
to improve posttransplantation engraftment, allow quick
immune reconstitution, and reduce GvHD; however, the
expertise required for such cellularmanipulations limits their
clinical implementation to highly specializedmedical centers.

With regard to Tregs, posttransplant GvHD prophylaxis
may also play a role in selectively favoring the expansion
of Tregs while suppressing mature effector T lymphocytes.
Sirolimus is an immunosuppressant that demonstrates such
properties [91]. Peccatori et al. [92] performed a recent
study showing that a calcineurin inhibitor-free, sirolimus-
based GvHD prophylaxis regimen promoted selective Treg
expansion after haplo-HSCT.This strategy was well tolerated
and a robust and rapid engraftment was observed in the
majority of patients. While the incidence and severity of
acute and chronic GvHD in this study were comparable to
historical data fromMUD allo-HSCT using peripheral blood
stem cells [93, 94], they were much higher when compared
with haplo-HSCT using bone marrow as the source of donor
stemcells [64, 95, 96]. In addition, Tregs showahigher level of
resistance to the cytotoxic effects of cyclophosphamide [97].
Future studies may be performed to ascertain the specific
effects of GvHD prophylaxis in T lymphocyte dynamics to
systematize the utility of regimens based on their effects on T
lymphocyte dynamics to derive the maximum benefit, care-
fully weighing GvHD, GvT, engraftment, and immune recov-
ery after transplant.

In conclusion, allo-HSCT remains the only treatment
modality that offers a potential cure for some with hemato-
logic disorders. HLA-matched donors are not always avail-
able, which has led to establishment of UCB and MUDs as
alternative sources for stem cell transplantation. However,
the high cost of maintaining donor registries and cord blood
banks, limited size of the cord blood units, and high-risk
nature of the ablative procedure limit the expansion of these
donor sources as well. HLA haploidentical donors are an
attractive choice for stem cells since nearly every patient
has an available haploidentical donor from their family. In
modern medicine, new strategies such as “megadose stem
cell infusions” and posttransplantation immunosuppression
with cyclophosphamide have shown the ability to overcome
graft failure and GvHD, complications that occurred at over-
whelmingly high rates and severely limited the application of
haploidentical transplantation before the 21st century. Other
strategies such as NMAC regimens prior to transplant and
pretransplant graft manipulation have demonstrated similar
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survival rates when comparedwithHLA-matched allo-HSCT
with MAC regimens, but with significantly reduced toxicities
associated with HSCT and preservation of the antileukemic
properties of immune cells in the donor graft. Future prospec-
tive studies to explore the biology of the GvT effects in
this setting can provide more perspective on the advantages
and drawbacks of haplo-HSCT over “traditional” allo-HSCT,
suggest further enhancements of the process, and move this
“now-controversial” modality into the standard of care for
patients with limited options.
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