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Purpose: Prior studies have demonstrated the significance of specific cis-regulatory
variants in retinal disease; however, determining the functional impact of regulatory
variants remains a major challenge. In this study, we utilized a machine learning
approach, trained on epigenomic data from the adult human retina, to systematically
quantify the predicted impact of cis-regulatory variants.

Methods: We used human retinal DNA accessibility data (ATAC-seq) to determine a
set of 18.9k high-confidence, putative cis-regulatory elements. Eighty percent of these
elementswere used to train amachine learningmodel utilizing a gapped k-mer support
vector machine–based approach. In silico saturation mutagenesis and variant scoring
was applied to predict the functional impact of all potential single nucleotide variants
within cis-regulatory elements. Impact scores were tested in a 20% hold-out dataset
and compared to allele population frequency, phylogenetic conservation, transcription
factor (TF) binding motifs, and existing massively parallel reporter assay data.

Results: We generated a model that distinguishes between human retinal regulatory
elements and negative test sequences with 95% accuracy. Among a hold-out test
set of 3.7k human retinal CREs, all possible single nucleotide variants were scored.
Variants with negative impact scores correlated with higher phylogenetic conservation
of the reference allele, disruption of predicted TF binding motifs, and massively parallel
reporter expression.

Conclusions: We demonstrated the utility of human retinal epigenomic data to train
a machine learning model for the purpose of predicting the impact of non-coding
regulatory sequence variants. Our model accurately scored sequences and predicted
putative transcription factor bindingmotifs. This approach has the potential to expedite
the characterization of pathogenic non-coding sequence variants in the context of
unexplained retinal disease.

Translational Relevance: This workflow and resulting dataset serve as a promising
genomic tool to facilitate the clinical prioritization of functionally disruptive non-coding
mutations in the retina.

Introduction

Genetic retinal disorders affect over 2 million
individuals worldwide and consist of many classes
of disease. Over 260 genes have now been associ-
ated with retinal disorders1,2; however, as many as

half of all cases cannot be explained by variants in
protein-coding genes alone.3 This suggests that risk
variants located within the non-coding genome may
contribute to retinal disease. The comparatively vast
non-coding genome harbors cis-regulatory elements
(CREs), including promoters, enhancers, silencers,
and boundary elements, that play a critical role in
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gene expression.4–7 Genome-wide association studies
(GWASs) frequently implicate non-coding regions
to disease phenotypes.6,8–11 Additionally, expression
quantitative trait locus (eQTL) analyses have associ-
ated non-coding variants with changes in retinal
gene expression.12,13 Moreover, individual case studies
have identified causal regulatory variants in retinal
disorders, including blue cone monochromacy, non-
syndromic congenital retinal non-attachment, and
aniridia with foveal hypoplasia.14–16 However, due to
the incomplete characterization of the non-coding
genome, as well as the current limitations of some
GWAS and eQTL analyses, it remains a challenge
to systematically interpret the impact of individual
variants within CREs.

CRE function is mediated by complex interac-
tions between transcription factors (TFs) and DNA
sequences17,18 to yield the appropriate transcriptional
profile for a given cell type.19 These interactions can
be characterized through assays for DNA accessibil-
ity (ATAC-seq and DNase-seq) and protein binding
(ChIP-seq, CUT&RUN, and CUT&Tag) to identify
and characterize candidate CREs in a given tissue
or cell type at a single point in time.20,21 Moreover,
changes in DNA accessibility have been quantita-
tively associated with non-coding variants in some
cell types.22 Despite recent advancements, it remains
challenging to understand the functional significance
of genetic variants within CREs in complex tissues
without further experimental or integrative computa-
tional analyses.23,24 Identifying and investigating all
potential regulatory regions and putative variants is a
monumental task that requires painstaking efforts.

Recent developments in artificial intelligence have
popularized the use of machine learning for the holis-
tic interpretation of multimodal epigenetic sequenc-
ing data.25,26 Many different approaches have been
developed to accurately predict the inferred value
of genetic sequences, including non-coding regula-
tory regions.27–29 Such approaches have demonstrated
promise in select cell lines and tissue types and have
been used successfully to integrate epigenomic data
in the context of the human retina.30 This supports
the premise of a comprehensive, tissue-specific analy-
sis for CRE variant prioritization in the human retina.
Although a number of approaches are available to
predict sequences and variant impact, it is important
to choose a method that is appropriate for the data
used in prediction. For the purposes of training a
tissue-specific model to predict impacts on longer non-
coding sequences, approaches such as a gapped k-
mer support vector machine (GKM-SVM) can effec-
tively predict the functional impact of single nucleotide
variant impacts within CREs (deltaSVM).31–33 This

GKM-SVM approach has been applied successfully to
predict sequence values in the context of specificmouse
retinal enhancers.34–37 However, to date, it has not been
applied across a wider set of human retinal epigenomic
data to perform a comprehensive prediction of CRE
variant impact scores.

In this study, we applied GKM-SVMmodeling with
variant impact score prediction (deltaSVM) in a high-
throughput manner to predict the functional impact of
variants in human retinal CRE sequences. We gener-
ated adult human retina ATAC-seq data to determine
a high-confidence set of 18.9k putative CREs.38 We
then used GKM-SVM to train a model that specifically
distinguishes retinal CREs versus genomic background
sequences while reserving 20% of candidate CRE
sequences as a hold-out dataset for model testing. We
then performed in silico saturation mutagenesis on this
hold-out dataset to generate a database of all possible
single nucleotide variants (SNVs) for 3773 test CREs.
We compared these variants to the reference sequence
via deltaSVM, generating impact scores for each poten-
tial variant. The model revealed that predicted impact
scores correlate with allele frequencies in human
sequences and with phylogenetic conservation within
candidate CREs. Additionally, we observed distinct
negative prediction scores when a variant disrupted
the core sequence of a known retinal TF binding
motif, consistent with a putative deleterious effect. As
a further demonstration of functional relevance, this
model was able to predict the consequences of sequence
variations when compared to a mutational scan of
the mouse rhodopsin promoter,39 showing that the
model is robust even across species. Using a larger set
of putative retinal CREs, we generated a database of
variant impact scores in ocular non-coding sequences
(VISIONS) available on the University of California,
Santa Cruz (UCSC) genome browser.40 This analy-
sis could be used to identify non-coding variants with
higher disease relevance in the retina and prioritize
these alleles for functional follow-up. By addressing this
diagnostic gap, we aim to contribute to a more robust
elucidation of CRE function in the human retina.

Methods

Input Data Sources

For positive training data, we generated
ATAC sequencing datasets from eight biologi-
cal replicates of adult human retinas as previ-
ously reported (Fig. 1B).38 These data and other
related datasets have been assembled in a search-
able track hub on the UCSC genome browser
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Figure 1. Model overview and training data. (A) Schematic overview of the workflow used in this study to generate a GKM-SVM–based
model trained on human retinal ATAC-seq data and randomly selected genomic regions, and deltaSVM variant impact scores through
model ranking of in silico saturation mutagenesis of putative retinal CREs. (B) UCSC Genome Browser track positioned at the rhodopsin

→
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←
(RHO) gene visualizing the ATAC-seq dataset used to generate the positive training dataset, schematized in (A), as well as relevant ChIP-seq
data for context.38 One selected region of interest is highlighted in blue. (C) Within the highlighted region in (B) are base-pair–resolution
deltaSVM variant impact scores, separated by base-pair substitution, and summed negative scores. A region of continuous negative scores
is highlighted in blue. (C′) In the highlighted region from (C), the summed deltaSVM scores highlight the core TAATC motif of the OTX2
binding site.

(https://tinyurl.com/CherryLab-EyeBrowser).38 Raw
data files were aligned to the hg38 reference genome
using Burrows–Wheeler Aligner, and file format
conversions were carried out using SAMtools and
BEDtools.41–43 High-confidence peaks across biolog-
ical replicates of ATAC-seq data were called using
the MACS2 algorithm and the ENCODE irrepro-
ducible discovery rate (IDR) pipeline with a more
stringent P value than previously used.44,45 All eight
ATAC replicates were pooled, and two pseudorepli-
cate files were generated by macs2 randsample with
parameter -p 50. Peaks in biological replicate, pooled
replicate, and pseudoreplicate samples were called
over pooled input samples using MACS244 with the
parameters –nomodel -g hs -p 1e-2 –extsize 200. This
workflow generated a set of 18,866 summits of acces-
sible regions by ATAC-seq. Summits were all extended
±150 bp to generate a set of 18,866 putative CRE
regions. For the purposes of training and validating
the primary model, 80% of peaks were randomly
selected for training, and the remaining 20% were used
as hold-out data to test the model (Supplementary
Table S1).

For comparisons to non-retinal data, published
data from the Gene Expression Omnibus database
were used, including ATAC-seq datasets for retinal
pigmented epithelium (RPE),46 primary visual cortex
(PVC),47 and lung fibroblasts.48 Raw data files were
processed as with retinal data, and peaks were
called with the same parameters using the MACS2
algorithm and the IDR workflow, and summits were
extended ±150 bp. For comparisons to retinal data,
all regions overlapping with the retinal ATAC peaks
were removed using bedtools intersect. Comparisons
of deltaSVM scores to reporter assay expression
were made relative to mouse expression data of
saturation mutagenesis in RhoCRE3 from Kwasnieski
et al.39

SVMModel Training and Validation

To train an SVMmodel in a biologically meaningful
way, the positive training data described above must be
compared to an appropriate negative training set. To
generate a negative training dataset, 1,000,000 regions
were randomly selected from the hg38 genome and

extended to 301 bp. These regions were filtered against
our positive training data, using bedtools intersect to
eliminate any overlapping sequences (Supplementary
Fig. S1). From here, a negative training set of 301-
bp sequences that do not overlap the positive train-
ing regions were randomly chosen and GC-matched to
the positive set using oPOSSUM.49 After selecting the
training regions, genomic coordinates were converted
to fasta format with bedtools and used to train a model
using LS-GKM gkmtrain, developed by Lee, Beer, and
colleagues.50 The SVM was trained with the following
gkmtrain hyperparameters: L = 11, k = 7, d = 3, C =
1, t = 2, and e = 0.005 (adopted from Shigaki et al.33)
(Fig. 1A).

To validate the classification of the model, the
training data were used in a fivefold cross-validation
using the gkmtrain -x 5 -L 11 -k 7 -d 3 -C 1
-t 2 -e 0.005 to generate performance prediction
scores of all regions. Model accuracy was visual-
ized using the data in receiver operator characteris-
tic (ROC) and precision-recall curve graphs as calcu-
lated using the ROCR package.51 To assess the param-
eters and results of this primary model, an additional
control model was trained with the same param-
eters but using training data that were randomly
shuffled between positive and negative datasets. To
compare genomic region performance in the two
models, retinal and non-retinal genomic peaks were
scored using LS-GKM gkmpredict. Because GKM-
SVM scores in many samples were non-normally
distributed, significant differences between retinal and
non-retinal datawere scored byKruskal–Wallisχ2 tests
and by pairwiseWilcoxon rank-sum tests for individual
comparisons.

Vocabulary and Sequence Scoring

To build a regulatory sequence vocabulary, all possi-
ble 2,097,152 non-redundant 11-bp sequences (11-
mers) were generated using nrkmers.py from LS-GKM
and scored by the trained SVM model using gkmpre-
dict. To validate the biological relevance of the vocab-
ulary scores, scores were sorted by gkmpredict score
value. The top 1% of scored 11-mers were subset for
validation and validated against known TF binding
motifs.

https://tinyurl.com/CherryLab-EyeBrowser
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Variant Impact Scoring on In Silico
Saturation Mutagenesis

With the previously defined 20%holdout set of 3773
regions, we scored all putative SNVs. To simulate a
deep mutational scan, we conducted in silico satura-
tion mutagenesis with a custom-made script, yield-
ing an exhaustive set of 4,542,692 computationally
generated sequences that each contained exactly one
regulatory SNV. The deltaSVM.pl script was used to
quantitatively assess these variant sequences relative
to the consensus allele by referencing the regulatory
sequence vocabulary, allowing for the calculation of
variant impact prediction scores at a single base resolu-
tion for the original and shuffled control models.50

deltaSVM Variant Impact Validation

Allele Frequency
To assess the biological relevance of deltaSVM

scores, first, scores were correlated against human
population allele counts for corresponding SNVs. For
exact allele correlation, deltaSVM SNV scores were
converted to vcf format, and corresponding SNV
frequencies in the Genome Aggregation Database
(gnomAD v3) were identified via bcftools isec.52,53
For the comparison of score trends across the 301-bp
CRE window, bedtools was used to compute base-wise
summarymetrics for variant impact scores by summing
allele counts per base and negative deltaSVM scores
per base. These summary metrics were averaged across
CREs tomap out the corresponding positional profiles.

Phylogenetic P Value Conservation Scores

Next, deltaSVM scores were compared to phylo-
genetic P values (phyloP) of conservation from the
PHAST package.54 The phyloP values across 20
mammalian species were downloaded from the UCSC
genome browser. SNVs were binned into represen-
tative groups of 2000 alleles from the top, middle,
and bottom-most deltaSVM scores for plotting of
conservation. Because phyloP scores in deltaSVM bins
were non-normally distributed, significant differences
between bins was scored by Kruskal–Wallis χ2 tests
and by pairwise Wilcoxon rank-sum tests for individ-
ual comparisons.

Transcription Factor Motif Analysis

Positive training data were scored for TF motif
enrichment using HOMER findMotifsGenome.pl and
findMotifs.pl.55 Common retinal motifs were selected
from the known motif results for analyses of model

relevancy. For the scoring of motif prevalence in
distinct sequences rather than overall enrichment in a
set, sequences were scored against the Homo Sapiens
Comprehensive Model Collection (HOCOMOCO)
v11 Core database.56 Motif prevalence in vocabulary
and deltaSVM bins against the HOCOMOCO v11
database were scored using Find Individual Motif
Occurrences (FIMO) from the MEME suite of tools
with a significance threshold of P ≤ 1 × 10–4.57 Signif-
icant changes in average deltaSVM within motifs by
base pair was scored by analysis of variance (ANOVA)
with post hoc Tukey’s test.

For the validation of motif interference in
deltaSVM scores, known motif positions were
obtained from HOMER, and positions were extended
by 25 bp using bedtools slop. The bedtools intersect
was used to identify motifs that were within regions of
interest and collect corresponding average deltaSVM
scores.

Results

Human Retinal Epigenomic Data Can Be
Used to Train a GKM-SVMModel

To generate impact score predictions for single
nucleotide variants within human retinal CREs, we
first trained a GKM-SVMmodel31 to evaluate putative
CRE sequences (Fig. 1A). As input, we started with
a set of genomic windows defined by high-confidence
ATAC-seq DNA-accessibility peaks (putative CREs).
We split this set such that 80% of ATAC regions
(∼15k candidate CREs) were used as a positive train-
ing set, and 20% (∼3.7k) were kept as a hold-out set
to test the validity of predicted impact scores (Fig. 1B,
Supplementary Fig. S1, Supplementary Table S1). Also
for input, we generated an equal-sized negative train-
ing set of GC-matched non-coding genomic sequences
(Supplementary Figs. S1B, S1C). As expected for
putative CREs and control regions, we found that
both positive and negative datasets were enriched for
intronic and intergenic regions. We also found that
the negative training dataset was depleted of promoter
regions when we removed any overlap with the positive
training data (Supplementary Fig. S1C). As a control,
we trained a separate model using the same input data
but with the positive and negative region labels shuffled
randomly to demonstrate the baseline behavior of the
model parameters.

To use our trained model to predict the impact of
CRE variants, we next generated a scored vocabulary
of all possible non-redundant 11-mer sequences. This
k-mer length was chosen because it is long enough
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to encompass most eukaryotic TF binding motifs.58
We then used the trained model to weigh each 11-
mer based on its relative similarity to the positive
training set (positive values) versus the negative train-
ing set (negative values). This scored vocabulary was
subsequently used to evaluate variant sequences in
the generation of variant impact (deltaSVM) scores
(Fig. 1A).

Finally, to generate individual CRE variant impact
scores, we performed base-wise in silico saturation
mutagenesis on CREs from the 20% hold-out dataset.
We then used the scored 11-mer vocabulary to predict
impact scores for every possible single nucleotide
variant within these CREs. These predicted impact
scores represent the difference between the sum of
all 11-mers that scan across a given single nucleotide
variant compared to the sum of those that scan across
the reference allele (Figs. 1A, 1C).32 A negative impact
score therefore is assigned to a variant when it causes
the sequence to become less similar to the positive
training dataset compared to the original reference
sequence. When deltaSVM scores are combined across
a genomic region (Fig. 1B), distinct features of CREs
become apparent (Fig. 1C). For example, inspecting for
contiguous, highly negative summed deltaSVM scores,
it is possible to identify well-characterized TF binding
motifs in the reference sequence, such as the TAATCC
motif favored by the K50 homeodomain transcrip-
tion factors orthodenticle homeobox 2 (OTX2) and
cone–rod homeobox (CRX) and the CCCTC-binding
factor (CTCF) bindingmotif (Fig. 1C′, Supplementary
Fig. S3).

Performance and Biological Relevance of the
Trained SVMModel

To assess the validity of this approach, we first
performed fivefold cross-validation on the original and
shuffled models. The training data were randomly
assigned to one of five outgroups, and each outgroup
was scored against a model trained excluding that
outgroup. This cross-validation allows for the specific
calculation of false positives and negatives, as well as
model precision. These measures of model accuracy
can be plotted as a ROC curve (Fig. 2A), or a
precision-recall curve (Fig. 2B). For this model’s ROC
curve, an area under the curve (AUC) of 0.951 was
achieved, indicating a highly accurate model with low
false positivity. Similarly, the precision-recall curve for
this model demonstrated an AUC = 0.956, indicating
high precision. In contrast, when positive and negative
labels were shuffled for the training data, the ROC and
precision-recall curves demonstrated baseline AUCs,

showcasing the specificity of model training gained by
the true positive and negative datasets.

To determine the tissue-specificity of our trained
models, we next used these models to compare retinal
versus non-retinal CRE sequences. We found that our
original model scored retinal-specific CREs from our
hold-out dataset much more highly than non-retinal
CRE datasets of equal size (Fig. 2C). Retinal ATAC-
seq regions demonstrated a wide variety of scores,
averaging at a GKM-SVM score of 0.870. This was
significantly higher than all other non-retinal ATAC-
seq data (P < 2e-16 in pairwise Wilcoxon rank-sum
tests, Bonferroni adjusted). RPE, being developmen-
tally related to the retina, scored most neutrally with
an average score of 0.125, as compared to the PVC at
–0.104 and fibroblasts at –0.087 (Fig. 2C). These differ-
ences were eliminated when we used the shuffled model
to score CREs (Supplementary Fig. S2A), demonstrat-
ing the specificity of our original model for evaluating
human retinal CREs.

To further assess the tissue-specific relevance of
our original model, we searched for the enrich-
ment of known transcription factor binding motifs
within the top 1% of the scored 11-mer vocabulary.
Within this group we found significant enrichment
for motifs shared by well-known retinal transcrip-
tion factors (Fig. 2D, Supplementary Table S2).
Photoreceptor-associated motifs such as homeobox
domain motifs consistent with CRX and OTX2
binding were most highly enriched, whereas more
broadly expressed retinal TFmotifs such as basic helix–
loop–helix (bHLH) motifs were also highly ranked.
This enrichment within the 11-mer vocabulary suggests
an additional level of tissue specificity in our model.

Variant Impact Scores Correlate with
Conservation of Non-Coding Sequences

Pathological variants within human retinal CREs
are relatively rare but can disrupt visual function.2,14–16
We therefore hypothesized that, if our variant impact
scores predict variant pathogenicity, then strongly
scored variants may be rare within the normal
human population. To test this, we compared our
predicted variant impact (deltaSVM) scores to SNV
allele frequency in the Genome Aggregation Database
(GnomAD).53 When they were directly plotted against
each other, we found that most variants clustered
around the neutral deltaSVM scores and that SNVs
with higher allele frequencies were preferentially
clustered around neutral deltaSVM scores (Fig. 3A).
Conversely, alleles with a large predicted impact
(negative or positive) were relatively rare. This compar-
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Figure 2. The GKM-SVM model is accurate and retinal specific. (A) ROC curve for fivefold cross-validation of the GKM-SVM model trained
on human retinal ATAC-seq data (black) and for the model trained on shuffled positive and negative training data (light gray). AUC ATAC
= 0.951; shuffled = 0.498. (B) Precision-recall curve for fivefold cross-validation of the GKM-SVMmodel trained on human retinal ATAC-seq
data. AUC ATAC = 0.956, shuffled = 0.499. (C) Violin plot demonstrating GKM-SVM model scores for human retinal holdout data (Retinal),
retinal pigmented epithelium (RPE) ATAC-seq peaks,46 primary visual cortex (PVC) ATAC-seq peaks,47 and human fibroblast (Fibs) ATAC-seq
peaks.48 P < 2e-16 (Kruskal–Wallace). For all pairwise comparisons to retinal scores by the Wilcoxon rank-sum test, P < 2e-16 (**Bonferroni
adjusted). (D) Top enriched TF motifs from HOMER in top 1% of scored model 11-mer vocabulary.
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Figure3. ThedeltaSVMscoresmatch allele frequencies and conservation. (A) Scatterplot demonstrating the correlationbetweendeltaSVM
scores and SNVallele frequencies from theGnomADdatabase. ThedeltaSVMbins for thebottom,mid-bottom,mid-top, and top 1%of scores
are highlighted along the x-axis. (B) Violin plot of phyloP conservation scores in negative, neutral, and positive deltaSVM scores (P < 2e-16,
Kruskal–Wallace; **P < 0.0001, Wilcoxon rank-sum test, Bonferroni adjusted). (C) Changes in average deltaSVM across the average 301-bp
window of 20% outgroup CREs in the model trained on human retina ATAC-seq data and on the shuffled model (gray). (D) Sums of retinal
motif classes across the 301-bp window of 20% outgroup CREs in 15-bp bins.

ison demonstrates that common alleles in the popula-
tion are much more likely to have mid-ranging
deltaSVM scores, whereas more extreme scoring SNVs
are less common in the population. For subsequent
analyses, we binned variants by deltaSVM score. The
majority of alleles scored with a deltaSVM between
–3 and 3, with 1% of all alleles scoring less than –
4.9 and another 1% scoring more than 3.4, constitut-
ing the top and bottom 1% bins (Fig. 3A). For mid-
ranging, more common alleles, we constrained alleles
to deltaSVM scores from –2.5 to 2.5. These mid-top
and -bottom 1% score bins spanned respectively from
–2.5 to –2.3 and 2.26 to 2.5. A fifth bin was additionally

defined, spanning the most neutral deltaSVM scores
from –0.001 to 0.001 (Fig. 3A, Supplementary Table
S3).

Consistent with these trends, we would expect
deltaSVM to be negatively correlated with conser-
vation values across species. Evolutionary conserva-
tion of specific CRE sequences suggests that those
sequences are functionally important. To test this, we
binned deltaSVM scores into the most negative, most
positive, and neutral deltaSVM categories as defined
in Figure 3A and compared these categories to phylo-
genetic conservation scores from the phyloP database.
The most negatively scored SNVs (average –9.98)
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corresponded to more conserved sequences (higher
phyloP scores around an average of 0.456), whereas
more neutral (average 4.9e-06) or positively (7.39)
scored SNVs had lower conservation scores (neutral
average phyloP score = 0.119; positive average phyloP
score = 0.101; negative to neutral/positive P values <

2e-16, Bonferroni corrected) (Fig. 3B, Supplementary
Fig. S2B). SNVs with more negative predicted impacts
therefore appear to be more highly conserved, indicat-
ing their potential regulatory value in a given putative
CRE.

Another test of the relevance of the variant scores
is the distribution of these scores across the linear
sequence of CREs. The center of retinal CREs is
typically enriched for transcription factor binding
motifs with constrained spacing; therefore, variants
closer to the center of CREs are more likely to disrupt
TF binding and be pathogenic.57 We would expect a
similar trend for our predicted impact scores where
deltaSVM values would be more strongly negative
toward the center of CREs, where there are more
likely to be functional sequences.We therefore averaged
negative deltaSVMs across all 3.7k 301-bp CRE
windows in our test dataset and compared them to the
same averages from the shuffled model and position
within CREs. When plotted, a clear trend emerged,
where deltaSVM scores decreased toward the center
of CREs, corresponding to the peak of DNA acces-
sibility (Fig. 3C). However, at the center of CREs,
the average deltaSVM score increased locally, generat-
ing a bimodal distribution of negative impact scores.
This may reflect the actual distribution of TF binding
within CREs.57 To test this, we analyzed the distribu-
tion of TF motifs and found a similar trend. Motifs
consistent with TFs such as cAMP response element-
binding protein (CREB), CRX, myocyte enhancer
factor 2D (MEF2D), neural retina leucine zipper
(NRL), OTX2, and retinoid-related orphan nuclear
receptor β (RORB) were most enriched directly
adjacent to the center of CREs (Fig. 3D, Supple-
mentary Fig. S4). When the distribution of deltaSVM
scores from the shuffled control model was plotted, no
such pattern was observed. Altogether, these results
demonstrate that deltaSVM scores generated from
our original model can accurately predict the enrich-
ment of functional DNA sequences near the center of
CREs.

Highly Negative Variant Impact Scores
Disrupt TF Binding Motifs

The correspondence of variant impact scores
with allele frequency and conservation suggests that

deltaSVM value correlates with TF binding motifs.
To evaluate this directly, we first determined the
counts of specific TF binding motifs in the most
negative, most positive, and the neutral deltaSVM
categories. In each of these categories (Fig. 3A),
the 22 bp around a given SNV were scored for
the presence of known motifs in the HOCOMOCO
human motif database.56 In the most negatively scored
category, we found many well-characterized retinal TF
motifs, such as OTX2 and CREB, represented in the
reference sequences (Figs. 4A, 4A′′; Supplementary
Fig. S5). By contrast, in the SNV sequences, there
were far fewer motifs as scored by FIMO, indicat-
ing that the variant sequences specifically disrupt the
sequence of the motif. This pattern varies in the mid-
bottom deltaSVM scoring variants. AlthoughMEF2D
motifs show a high number of motif calls, OTX2
calls by contrast are much less frequent (Fig. 4A′).
The variants scored in the top bins demonstrate the
opposite trend, with few calls for motifs of interest
in the reference sequence, with modest increases in
the variants likely due to situations where the variant
coverts a sequence into an approximation of a TF
binding motif (Figs. 4A, 4A′, 4A′′; Supplementary
Fig. S5).

To gain a better understanding of the relationship
between TF motifs within CREs and our predicted
variant impact scores, we identified all instances of
specific TFmotifs in our test dataset and centered these
on 60-bp windows. We then plotted the distribution of
deltaSVM scores across these windows. We observed
that the scores dipped dramatically around canonical
motif sequences but the flanking regions were relatively
unaffected (Figs. 4B, 4B′, 4B′′; Supplementary Fig. S6).
This indicated that our scoring strategy is uniquely
sensitive to these motifs. TF motif sequences, however,
allow for flexibility at specific positions across the
motif. We therefore sought to determine how impact
scores varied within a motif itself. At a single base-pair
resolution, we found that the significance of the core
motif of some TFs such as OTX2 is apparent (Fig. 4C,
Supplementary Fig. S6). Average deltaSVM scores for
SNVs in the core TAATCC sequence are more negative
than for SNVs in contextual positions immediately
adjacent (Fig. 4C). For other motifs, changes to key
nucleotides in a motif sequence become apparent, with
larger decreases highlighting the CTA/TAR essential
sequences of theMEF2D consensusmotif (Fig. 4C′) as
well as key bases in the CREB motif (Fig. 4C′′). These
changes in deltaSVM scores along TF binding motifs
demonstrate the specificity of these scores to isolate
crucial core sequences in a putative CRE and where
alterations to the sequence may have significant impact
on function.
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Figure 4. Disruption of retinal TF motifs dramatically reduces deltaSVM scores. (A–A′ ′) Numbers of motifs as scored by FIMO in reference
and variant sequences for bins highlighted in Figure 3A. Motifs shown are OTX2 (A), MEF2D (A′), and CREB (A′ ′). (B–B′ ′) Line plots showing
the average deltaSVM for SNVs± 25 bp around the core motifs shown in (A) to (A′ ′) in blue. Scores for the samemotifs in the shuffledmodel
are shown in gray. (C–C′ ′) Bar plots showing the average deltaSVM for SNVs on a base-pair resolution within the core motifs of those shown
in (A) to (A′ ′). *P < 0.02; **P < 0.002 (ANOVA with post hoc Tukey).
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Prediction Scores Across a Conserved CRE
Match Changes in Reporter Expression

Prior studies have demonstrated the ability to exper-
imentally test the impact of every possible SNV within
a retinal CRE using a massively parallel reporter assay
(MPRA)-based approach. Kwasnieski et al.39 used
SNV saturation mutagenesis of the mouse rhodopsin
promoter to test the impact of every possible variant
with base-pair resolution (Fig. 5A). This analysis
highlighted the unique importance of CRX and NRL
motif sequences within the larger CRE. As a final test
of our predicted variant impact scores, we used our
human retinal CRE-trained model to assign predicted
variant impact scores to every possible SNV within
this mouse sequence (Fig. 5B). Although the human
ortholog of this CRE was not included in the origi-
nal 80% training set and despite being tested against
reporter data generated in the mouse retina, the
model predicted markedly negative deltaSVM scores
overlapping the previously identified TF binding sites,
highlighted in Figures 5A and 5B, as well as similar-
ities in the region between the CRX(2) and NRL
binding motifs (Fig. 5B, Supplementary Table S4).
When relative expression from Figure 5A was plotted
against deltaSVM scores in Figure 5B, these values
were found to be positively correlated, with a Pearson
correlation coefficient of 0.506. Altogether, this corre-
lation and consistency across TF motifs suggested to
us that our CRE variant prediction strategy is robust.

VISIONS: A Resource for Human Retinal
Regulatory Variant Interpretation

The analyses described above suggested that this
variant impact scoring strategy using the GKM-
SVM/deltaSVM workflow trained on human retinal
ATAC-seq data has several biologically relevant
features. We therefore extended these scores to include
a more inclusive set of 39,437 putative retinal CREs
as defined by both our original ATAC-seq regions and
the top 10,000 peaks of retina-associated, previously
generated38 TF ChIP-seq data by MACS2 score. This
analysis, entitled “Variant Impact Scores in Ocular
Non-coding Sequences” (VISIONS), is available on
the UCSC genome browser to query and to compare
with human retinal DNA-accessibility, transcription
factor binding, and histone modifications (http://
genome.ucsc.edu/s/CherryLab/VISIONS_TrackHub).
It is our hope that these predicted impact scores can
assist other researchers in identifying and interpret-
ing variants of interest within non-coding retinal
regulatory elements.

Discussion

The identification and characterization of non-
coding variants in CREs can be a resource-intensive
process. This study demonstrates the value of machine
learning to identify highly impactful SNVs and to
generate an exhaustive analysis of retinal CRE variant
impact scores. These scores were generated through
training a GKM-SVM model on adult human retinal
ATAC data. By utilizing this machine learning–based
approach, large epigenomic sequencing datasets can
be analyzed, and, with the GKM-SVM and deltaSVM
approaches, sequence variations can be easily screened.
This SVM-based method has been previously used to
highlight specific sequence features in themouse retinal
epigenome and to predict retinal reporter expres-
sion post hoc.34–37 Together these previous studies
and our current work demonstrate the potential of
this approach to characterize human retinal CRE
sequences for the identification of crucial features and
their variants. Although this approach can be applied
to many types of sequencing data, the use of general
chromatin accessibility via ATAC-seq allows the model
to incorporate the sequence features of diverse regula-
tory elements in a less biased approach than usingmore
specific ChIP-seq data. Ultimately, we hope that the
model generated in this study can be used to identify
non-coding sequence variants that are likely to disrupt
retinal CRE function to guide deeper analyses of non-
coding variants. Currently, single nucleotide variant
scores for sequences in 39,000 putative retinal CREs
can be accessed via ourUCSCgenome browser track to
identify variants with large predicted impacts on retinal
CRE function (http://genome.ucsc.edu/s/CherryLab/
VISIONS_TrackHub).

This study presents a machine learning model
of putative human retinal CREs and the predicted
impact of all possible SNVs in a set of tested
sequences. This model behaves in a tissue-specific
manner and accurately identifies the enrichment of
well-characterized TF binding motifs. Through the
analysis of related datasets and knownmotif databases,
the model trained on human retinal ATAC data versus
genomic background can clearly identify sequences
of interest in a biologically relevant manner, specif-
ically scoring retina-associated sequences above non-
retinal CRE sequences. Further, in the generation of
variant impact deltaSVM scores, the scores for the
model follow known conservation, and the distribu-
tion of scores as compared to SNV allele frequency
implies that variants predicted to have a strong impact
on CRE function may be deleterious because they
are rare in the human population. These variants

http://genome.ucsc.edu/s/CherryLab/VISIONSTrackHub
http://genome.ucsc.edu/s/CherryLab/VISIONSTrackHub
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Figure 5 The deltaSVM scores for SNVs in RhoCRE3 correlate to changes in reporter expression. (A) Relative expression (log2[mutant/wild-
type]) of fluorescent reporter for variants in RhoCRE3 inmouse retina from Kwasnieski et al.39 Identified TF binding sites of CRX (1 and 2) and
NRL are highlighted. (B) The deltaSVM variant impact scores of the same SNVs as in (A) along the RhoCRE3 locus. Identified TF binding sites
of CRX (1 and 2) and NRL are highlighted. (C) Scatterplot of relative expression and deltaSVM scores in (A) and (B) with linear regression and
95% confidence intervals. Pearson = 0.506.
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specifically identify where disrupted sequences inter-
sect canonical transcription factor binding motifs to
potentially affect CRE activity. The enrichment of
negative deltaSVM scores around knownmotifs specif-
ically highlights well-characterized core sequences and
key base positions in motifs and thus the ability of
the model to recognize the value of these sequences.
Additionally, it becomes apparent that distinct motifs
contribute differently to model relevancy. Potentially,
the motif disruption and severity of the deltaSVM
score may be an indicator of the severity of impact
on CRE and therefore retinal function. Those SNVs
with the most negative deltaSVM scores were associ-
atedwith the highest level of conservation, demonstrat-
ing that these sequences may have a distinct role in
retinal function.

When observing these deltaSVM scores in the
general context of the CRE, trends become apparent
as to where the most impactful variants are found,
confirming known features of CREs. The trend of
deltaSVM scores across putative CREs demonstrates
both the known density of true TF binding sites near
the summit and the depletion at the summit itself.
This is consistent with findings from other studies,
which show that TF motifs are most enriched around
the center of CREs but are somewhat depleted at the
direct summit.55 These data indicate that disruptions
to these TF motifs have the most dramatic impact
on CRE scoring. Previous studies have performed
massively parallel reporter assays to test the function
of specific CRE sequences.39,60,61 The results of these
studies emphasize the impact of specific TF motif
disruption and also serve as an important resource
for the validation of machine learning predictions of
variant impact. The characterization of these motifs
is highly conserved, as negative deltaSVM scores from
this model specifically correlate with MPRA-based
approaches.33,39 These results demonstrate both the
ability of this model trained on human retinal epige-
nomic data to identify variants with notable relevance
to changes in gene expression and its ability to operate
across species in a conserved manner. This ability of
the model to identify sequences of interest, especially
variants that correlate to losses in gene expression,
demonstrates the ability of this model to predict non-
coding variants with relevance to retinal disease.

This model has unique value in the retina, in that
it can specifically evaluate sequences associated with
CREs, lending itself to a wide variety of applications.
The deltaSVM impact scores can be used in the identifi-
cation of crucial TF binding sites in a high-throughput
manner. In particular, the in silico saturation mutage-
nesis approach to generating a database of deltaSVM
scores means that variants can be pre-screened by

their predicted change in regulatory function. In the
screening of regions identified via GWASs, such data
can specifically narrow down regions of interest and
locations of variants of functional value to the retina.
In more precise applications, variants identified in
patients can be quickly ranked by their relevance to this
model and prioritized for further functional investiga-
tion. This model can be further refined via integration
of new epigenomic datasets, in particular single-cell
epigenomic datasets, to refine the sensitivity and speci-
ficity of these predictions. In the rapidly moving field
of artificial intelligence, new machine learning strate-
gies will also likely enable characterization of new and
different sequence-based features within CREs.

In sum, this workflow and the resulting predic-
tion scores serve as a promising genomic tool for
guiding the interpretation of non-coding sequence
variation and for narrowing the search space for poten-
tially pathogenic regulatory variants in visual disorders.
Validation of the model demonstrates its capacity for
tissue specificity and the identification of crucial CRE
features. By applying a deltaSVM approach to putative
CRE sequences, it is possible to pre-screen variant
sequences of interest for further in vivo analyses. With
further model validation, the presented database of
SNV scores could be used in the identification of clini-
cally relevant sequence variations and have applications
beyond the bench.
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