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Abstract

The species Loxosceles rufescens is native to the Mediterranean but considered cosmopoli-

tan because it has been dispersed worldwide. A previous study revealed 11 evolutionary lin-

eages across the Mediterranean, grouped into two main clades, without any clear

phylogeographic pattern. The high genetic diversity within this species (p-distances of up to

7.8% in some Mediterranean lineages), together with the results obtained with different spe-

cies delimitation methods (GMYC, TCS) could indicate the existence of cryptic species.

Here we compare the mitochondrial and microsatellite diversity to elucidate if the lineages of

L. rufescens in the Mediterranean should be considered different species (cryptic species)

or populations of the same species. To do so, we analyzed the cox1 diversity of 196 individu-

als, of which, we genotyped 148, sampled from 19 localities across the Mediterranean.

STRUCTURE analyses of microsatellite data identified two genetic clusters of L. rufescens.

One cluster included individuals from Western Mediterranean localities (Iberian Peninsula,

Morocco, Balearic Islands) and Israel, while the second one grouped individuals from Italian

and Greek localities, including Sardinia, Sicily and Tunisia. These patterns suggest that geo-

graphic proximity is the more significant factor in the clustering with microsatellite data and

shows the existence of gene flow between the nearest geographic areas, even if the individ-

uals belong to different mitochondrial lineages or clades. The lack of correspondence

between both genetic markers suggests that the evolutionary lineages found within L. rufes-

cens should not be considered different species. We conclude that these phylogenetic lin-

ages and their distribution may be the result of the maternal evolutionary history of the

species and human-mediated dispersion.

Introduction

Spiders of the genus Loxosceles Heineken and Lowe, 1832 (Araneae: Sicariidae) are widely

known for their medical importance [1]. Their bite can cause a clinical condition known as

loxoscelism, which is characterized by cutaneous necrosis in mammals [2]. Loxoscelism was

not documented until the mid-twentieth century, and it has often been misdiagnosed [3]
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because its symptomatology is similar to other affections [4]. Even so, there are known cases

across the entire distribution range of the genus, including the Mediterranean Basin, where

Loxosceles rufescens (Dufour 1820) is widely distributed [1,3,5,6]. Loxosceles rufescens is

endemic to the Mediterranean; however, it has now expanded its distribution due to human-

mediated transportation, and it is considered cosmopolitan [7]. Because this species is associ-

ated with urban habitats the existence of loxoscelism cases becomes more plausible [8].

The Mediterranean Basin is considered an important biodiversity hotspot, and it is

included among the main biodiversity hotspots for conservation priorities [9–10]. Multiple

factors have promoted this biodiversity, for instance, the presence of multiple European glacial

refugia and diverse geological events [6, 11–13].

The spider genus Loxosceles comprises 127 species that are predominantly distributed in

the American continent (98 species) as well as in Africa (26 species) and Asia (3 species but see

[14]) [7]. The high species diversity of the genus in the Americas contrasts with its low diver-

sity in Africa, which is most likely due to the scarce taxonomic work that has been conducted

in the last continent [5,15–18]. Duncan et al. [19] suggested that the diversity of this genus in

Northwestern Africa could be underestimated given the greater diversity found in other

regions such as South America or North America. This diversity is starting to be recognized,

and recently, six new species of Loxosceles from the Canary Islands were described as members

of the L. rufescens group [8,20]. Given the simple morphological genitalia that characterize

Loxosceles species, genetic approaches can be very useful for delimiting species [8,19].

Its ability to expand into new territories is enhanced by its high synanthropism [3,6,21] and

resistance to starvation [3,22]. In the regions where L. rufescens has been introduced, it can be

found inhabiting infrastructures and areas related to human activities [3,22]. Similar to other

Loxosceles species, it has a low dispersal capacity because, unlike other spiders, it does not dis-

perse by ballooning [3,14]. L. rufescens individuals tend to be sedentary and show a strong

preference to stay in the same location for long periods of time or their entire life [2,3].

Studying the genetic diversity of L. rufescens in the Mediterranean Basin Planas et al. [6]

proposed the existence of eleven mitochondrial lineages based on an analysis of the first sub-

unit of cytochrome c oxidase (cox1). They also point out that these 11 lineages could be consid-

ered as putative species based on the results obtained with different methods of species

delimitation (GMYC, TCS). The lineages were grouped into two clades: A and B. The first

clade is a combination of six lineages (A1 to A6), and the second clade is composed of five (B1

to B5). However, the lineages were adjusted to two completely different phylogeographic pat-

terns: while some lineages from Morocco and the Iberian Peninsula were well structured, the

remaining lineages were distributed all over the Mediterranean without a definite geographical

pattern. The authors [6] proposed that the current genetic diversity probably originated in

allopatry and was promoted by successive glaciations during the Pleistocene and that pro-

tracted human activities impacted the current distributional patterns of L. rufescens within the

Mediterranean Basin and mixed the geographic structuration of the lineages. The same

authors indicated that the uncovered phylogeographic patterns should be strengthened with

additional nuclear data.

In this contribution, we compare the mtDNA and the microsatellite diversity within L.

rufescens to elucidate if the mitochondrial lineages of L. rufescens that exist in the Mediterra-

nean should be considered different species (cryptic species) or if these are populations of the

same species. To do so, we sampled numerous populations of L. rufescens throughout the Med-

iterranean by considering the geographical distribution and the representation of the mito-

chondrial lineages.

If the mitochondrial lineages must be considered different species, we would expect to find

a correspondence between the mitochondrial and microsatellite clusters, which would suggest
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that alleles of individuals from different lineages or clades would remain distinctive after sec-

ondary contact. In contrast, if the microsatellite information does not match with the outlook

provided by mitochondrial data, the microsatellite loci would delimitate geographically struc-

tured genetic clusters whose individuals could belong to different mitochondrial lineages.

Since alleles would be able to mix, we expect that the allelic frequencies would show more simi-

larity between nearer populations than distant ones and favoring the hypothesis that the cur-

rent genetic variability would have originated in several glacial refugia during the Pleistocene

and that their posterior mixture around the Mediterranean Basin would have been facilitated

by human-mediated dispersion.

Materials and methods

Phylogenetic analysis

Our dataset includes a total of 196 terminals (S1 Table), 128 cox1 sequences obtained in Planas

et al. [6], and (following the same procedures) 68 new sequences. This allowed us to identify

the lineages of individuals that previously lacked a mitochondrial sequence. The cox1 partial

sequences were aligned in GENEIOUS v6.1.6 [23] using ClustalW [24] with default parame-

ters. We partitioned the data by the codon position and simultaneously explored the best parti-

tioning schemes and substitution models for RAxML using PartitionFinder v1.0.1 [25] under

a Bayesian information criterion.

To infer the mitochondrial lineage of each individual, a maximum likelihood (ML) analysis

was performed using RAx-ML 7.0.3 [26] with the graphical front-end RAxMLGUI 1.3 [27].

We applied an ML plus thorough bootstrap in one run with 1000 replicates by applying the

GTRG model. Position of the root of the tree was estimated implicitly in BEAST v.1.7.4 [28]

and used for rooting RAxML trees as in Planas et al. [6].

The dataset of microsatellites

We genotyped 148 individuals sampled from 19 localities across the Mediterranean Basin

(Fig 1) for seven microsatellite loci developed specifically for L. rufescens [29]. We conducted

PCR reactions in a final volume 10 μl using Biotools Pfu DNA Polymerase (Biotools). The

PCR conditions were 94 ˚C for 1 min followed by 35 cycles of 94 ˚C for 30 s; the annealing

temperatures ranged between 42 ˚C and 66 ˚C according to the microsatellite loci for 20 to

35 s, followed by 72 ˚C for 30 s and a final extension at 72 ˚C for 3 min. We pooled the PCR

products according to dye type and expected allele range to genotype them in an ABI 3730XLs

automated sequencer at Macrogen (Seoul) with an internal size standard of 500 LIZ. For allele

scoring, we used Microsatellite Plugin 1.4 in GENEIOUS v6.1.6 [23]. We calculated the miss-

ing data percentages for each individual, population, locality and mitochondrial cox1 linage in

R [30] using custom scripts that are available upon request.

To identify the genetic clusters, we used microsatellite data with a method based on Bayes-

ian clustering, which is implemented in the program STRUCTURE [31]. With this methodol-

ogy, we detected genetic clusters that minimize departures from Hardy-Weinberg equilibrium

using allelic frequencies [31]. We conducted the analyses by considering the admixture model

and uncorrelated allele frequencies among the populations and performing 20 independent

runs with 100000 iterations and 50000 burn-ins for each K between K = 1 and K = 19 (the total

number of localities). We inferred the most likely number of clusters using Evanno’s method

[32] implemented in Structure Harvester [33]. We combined the twenty independent results

for the most likely K-value with the software CLUMPP [34] and this was graphically repre-

sented with Distruct [35]. We arranged the localities based on the longitudinal position (from

west to east).
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To evaluate the effect of the missing data in the previous analysis, we tested five additional

subsets of the most complete dataset. First (subset 1), we removed individuals lacking informa-

tion for two out of seven microsatellites loci. In subset 2, we removed all the individuals with

missing data. In subset 3, we removed the microsatellite locus with the highest value of missing

data. In subset 4, we removed the locus with the highest value of missing data and individuals

without information for two of the remaining six loci. Finally, in subset 5, we again removed

the locus with the highest value of missing data and all the individuals with missing data.

Results and discussion

Cox 1 Phylogenetic analysis

The cox1 alignment included a total of 196 sequences, 148 of which came from individuals that

were also used in the microsatellite’s analyses. The phylogenetic ML tree (Fig 2) shows the

same topology reported by Planas et al. [6] grouping the individuals of L. rufescens in two

main clades: A and B. The bootstrap values for each node were comparable to the values

obtained in Planas et al. [6].

The geographic distribution of the haplotypes is comparable to Planas et al. [6]. It is note-

worthy that in Planas et al. [6] the lineage B3 included exclusive representatives from the Ibe-

rian Peninsula, whereas in our dataset and by including new data, it also contained Sicilian

representatives (SC1). This finding suggests that lineages found in a restricted number of local-

ities could be detected in more localities with thorough sampling. Thus, even lineages distrib-

uted in a few close localities could have a wider geographic distribution.

Fig 1. Sampling of Loxosceles rufescens throughout the Mediterranean basin. Circles represent the proportional assignation of microsatellite loci to each genetic

cluster. Abbreviations: GR (Greece), IB (Balearic Islands), IP (Iberian Peninsula), IT (Italy), LE (Israel), MA (Morocco), SA (Sardinia), SC (Sicily), TN (Tunisia).

https://doi.org/10.1371/journal.pone.0210093.g001
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Fig 2. Maximum likelihood tree based on the cox1 sequences. Node circles represent the bootstrap values as shown

in the legend. The clade A is indicated by green, and the clade B by blue. Colored bars on the right indicates the

different lineages from each clade. Spots on the terminals indicates individuals with microsatellites information.

Abbreviations: CR (Crete), GR (Greece), IB (Balearic Islands), IP (Iberian Peninsula), IT (Italy), LE (Israel), MA

(Morocco), SA (Sardinia), SC (Sicily), TN (Tunisia), TR (Turkey). The position of the root was estimated implicitly in

BEAST v.1.7.4 and used for rooting RAxML trees.

https://doi.org/10.1371/journal.pone.0210093.g002
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The dataset of microsatellites

We obtained the genotype of seven microsatellite loci for 148 individuals of L. rufescens. Six

individuals were dismissed because of their excessively high values of missing data. We

obtained a total of 56 alleles across the seven loci, and the number of alleles per locus ranged

between five in the loci ME031 and ME067 and 12 in the locus ME012. This dataset includes

individuals with information of at least five of the seven loci and shows 6.44% of the missing

data. The number of alleles per locus and the values of missing data per locus are found in

S2 Table. The values of missing data per locality range between 0% in IB2 and TN1 and 12.5%

in LE1 (S3 Table), and the values of missing data per linage range between 3.57% in B3 and

28.57% in A5 (S4 Table). The missing data values per loci range between 0% in ME113 and

16.2% in ME031.

The missing data for the five additional datasets amounted to 5.12% for subset 1, 4.81% for

subset 3 (ME031 removed), 4.2% for subset 4 and 0% for subsets 2 and 5. The number of alleles

in subset 1 was reduced to 54, that in subsets 2, 3 and 4 was reduced to 51, and in subset 5, the

number was reduced to 48. The number of alleles per locus ranged between five in ME067 and

ME031 and 11 in ME012 in subset 1, between five in ME067 and 11 in ME067 in subsets 2 and

5, and between five in ME067 and 12 in ME012 in the subsets 3 and 4.

Genetic clusters

We obtained K = 2 as the optimal number of clusters in the STRUCTURE analysis following

Evanno’s method (Fig 3). The majority of the individuals of the Iberian localities (IP1, IP2, IP3

and IP4), Morocco (MA2), Balearic Islands (IB2) and Israel (LE1) were grouped into cluster 1,

whereas most individuals of the Greek (GR1, GR2 and GR3) and Italian (IT1, IT2 and IT3)

localities, including Sardinia and Sicily (SA1 and SC1) and Tunisia (TN2), were grouped into

cluster 2. Individuals from TN1, IB1 and MA1 were assigned to both clusters (1 and 2). It

Fig 3. A: STRUCTURE results based on microsatellite loci for K = 2. Verticals lines represent proportional assignation to each

genetic cluster. Black lines delimit the different localities; yellow—cluster 1, red—cluster 2. B: Representation of the phylogenetic

clades based on the cox1 sequences to which each individual belongs; green—clade A, blue—clade B. C: Representation of the

lineages to which each individual belongs; Same colors for the lineages as colored bars in Fig 2. Abbreviations: GR (Greece), IB

(Balearic Islands), IP (Iberian Peninsula), IT (Italy), LE (Israel), MA (Morocco), SA (Sardinia), SC (Sicily), TN (Tunisia).

https://doi.org/10.1371/journal.pone.0210093.g003
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should be noted that 13 of the 142 analyzed individuals show an assignation value close to 50%

and thus have an indefinite affiliation.

These results show moderate geographical structuration of the genetic clusters obtained

based on the microsatellite information (Figs 1 and 3). Cluster 1 includes roughly the individu-

als of the western localities (Morocco and Iberian Peninsula), and cluster 2 includes the indi-

viduals of the eastern localities (Italy and Greece). However, individuals from the easternmost

locality, LE1, were assigned to cluster 1. We interpret this fact as a consequence of lower sam-

pling in North Africa and the Eastern Mediterranean; therefore, more thorough samplings

could better define the range of both genetic clusters.

The results obtained with subsets 1 to subset 5 did not greatly differ from the results

obtained with the complete dataset. The assignment value of individuals closest to 50% only

changed in some datasets (S1 Fig), which supported that missing data are not substantially

affecting our results.

Must all mitochondrial lineages be considered the same species?

In this study, we observed a general incongruity between the microsatellite clusters and the

mitochondrial lineage, that is, not all the individuals that belong to one mitochondrial lineage

correspond to the same microsatellite clusters as inferred by STRUCTURE (Fig 3). In both

microsatellite clusters, there are individuals of the same mitochondrial lineage (Fig 3). For

example, while the individuals from localities IB2 and SA1 were assigned to different microsat-

ellite clusters, most of them belong to the mitochondrial lineage (i.e., B4). Similarly, individuals

from the three Italian localities (IT1, IT2 and IT3) and assigned to the same microsatellite clus-

ter belong to different mitochondrial lineages (i.e., A6, B1 and B4).

We observed a general geographic pattern by considering the microsatellite clusters. As

noted above, one genetic cluster is compounded by the individuals from the western Mediter-

ranean localities (Morocco and Iberian Peninsula) and others by individuals from Italy and

Greece. This pattern suggests that geographic proximity is a more significant factor in the clus-

tering with microsatellite data. This is despite the fact that in some cases, the assignation of the

individuals is not markedly homogeneous for the individuals of the same locality, for example,

TN1 (n = 6), where half of the individuals were assigned to cluster 1 and the other half to clus-

ter 2. However, the west-east geographic pattern obtained by microsatellites is broken by the

assignation of the easternmost individuals (LE1) to the western cluster. This fact is probably a

consequence of scarce sampling in North Africa and the Eastern Mediterranean, or a conse-

quence of human-mediated dispersal, since 7 of the 8 individuals analyzed belong to clade B2,

where most of them are from Iberian Peninsula. If we exclude this exception, the results show

a clear west-east geographic pattern.

Overall, our results suggest that neither the mitochondrial lineages nor the clades should be

considered different species. Our dataset included several localities (IP2, IP3, IB1, IB2, SA1,

TN1, SC1, IT2, IT3, GR1, GR2, GR3 and LE1) with individuals belonging to different mito-

chondrial clades or lineages. Since the individuals were clustered together with the microsatel-

lite data and thus were not structured according to the mitochondrial lineages or clades, the

hypothesis of the existence of cryptic species is not supported. Several localities (i.e., IP4, LE1

and GR1) included individuals of a single mitochondrial lineage, (i.e., lineage B2) and were

assigned to different microsatellite clusters, again not supporting the hypothesis of the exis-

tence of different cryptic species.

Planas et al. [6] proposed that the different mitochondrial lineages originated in several gla-

cial refugia by divergence during the Pleistocene. The same authors also explained the complex

phylogeographic pattern and the lack of strong geographic structuration in L. rufescens as a

Phylogeography of the Mediterranean recluse spider
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consequence of external factors and mostly the influence of human-mediated dispersal. These

external factors would have altered (and they probably would still be altering) the phylogeo-

graphic structuration of this species, which allows populations from different Mediterranean

regions to resume interaction. This hypothesis is supported by the results obtained by micro-

satellite data, which show the existence of gene flow between the nearest geographic areas even

if the individuals belong to different mitochondrial clades. Therefore, the different mitochon-

drial linages could have been mixed up in the Mediterranean Basin.

Conclusions

In the present study, we analyzed multiple microsatellite loci from different localities of L.

rufescens around the Mediterranean Basin. Using STRUCTURE, we detected the presence of

two different genetic clusters. These two clusters are approximately geographically structured

in a way such that the individuals from Morocco and the Iberian Peninsula would be differen-

tiated from representatives of Italy and Greece.

The mitochondrial lineages and clades inferred from cox1 do not correspond to those

obtained from microsatellites clusters. Our interpretation of the lack of correspondence

between the two genetic markers is that the different evolutionary lineages found within L.

rufescens should not be considered different species. The different lineages originated in dis-

tinct glacial refugia during the Pleistocene and were distributed through human-mediated dis-

persion. However, the employment of a higher number of microsatellites and more localities

with larger sample sizes would be necessary to be able to conclusively determine the existence

of these genetic clusters and resolve how the populations of L. rufescens are structured in the

Mediterranean Basin. Additionally, the analysis of other nuclear genetic markers would be

beneficial to increase our knowledge regarding the evolutionary history of this species.
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