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One-class classification (OCC) deals with the classification problem in which the training data have data points belonging only to
the target class. In this paper, we present a one-class classification algorithm, One-Class Classification by Ensembles of Random
Plane (OCCERP), that uses random planes to address OCC problems. OCCERP creates many random planes. 'ere is a pivot
point in each random plane. A data point is projected in a random plane and a distance from a pivot point is used to compute the
outlier score of the data point. Outlier scores of a point computed using many random planes are combined to get the final outlier
score of the point. An extensive comparison of the OCCERP algorithm with state-of-the-art OCC algorithms on several datasets
was conducted to show the effectiveness of the proposed approach. 'e effect of the ensemble size on the performance of the
OCCERP algorithm is also studied.

1. Introduction

'e one-class classification (OCC) problem is a special
class of classification problems in which only the data
points of one class (the target set) are available [1]. 'e
task in one-class classification is to make a model of a
target set of data points and to predict if a testing data
point is similar to the target set. 'e point which is not
similar to the target set is called an outlier. OCC algo-
rithms have applications in various domains [2] including
anomaly detection, fraud detection, machine fault de-
tection, and spam detection [2].

'e OCC problem is generally considered to be a more
difficult problem than the two-class classification problem as
the training data have only data points belonging to one class
[1–3], and traditional classifiers need training data from
more than one class to learn decision boundaries. 'erefore,
standard classifiers cannot be applied directly to OCC
problems. Various algorithms have been proposed to ad-
dress OCC problems [1–3].

'ere are twomain approaches to handle OCC problems
[2, 3]. In the first approach, artificial data points for the
nontarget class (outlier) are generated and combined with

the target data points and then a binary classifier is trained
on this new data. In the second approach, target data points
are used to create the OCC models [4].

Gaussian models [3], reconstruction-based methods
[1–3], nearest neighbours [1, 5], support vector machines
[6, 7] clustering based methods [1], and convex hull [8] are
some examples of the second approach.

Ensembles of accurate and diverse models generally
perform better than individual members of ensembles [9].
Ensembles of classification models have been developed to
improve the performance of one-class classification models
[5, 10–12].

In this paper, we propose an ensemble method,
OCCERP, for OCC problems. In this method, we project
data points in a random plane. 'e distance of a data point
from a pivotal point in this random plane is used as an
outlier score. We can generate various diverse models by
selecting different random planes which can be used to
create ensembles. Experiments are done to show the ef-
fectiveness of the proposed approach.

'e paper is organised as follows: Section 2 discusses
about related work. 'e OCCER algorithm is presented in
Section 3. Section 4 presents experiments and discussion.

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 4264393, 7 pages
https://doi.org/10.1155/2022/4264393

mailto:amirahmad@uaeu.ac.ae
https://orcid.org/0000-0002-9062-8170
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4264393


Section 5 discusses the conclusion and suggests future
developments.

2. Literature Survey

As previously discussed there are two types of OCC algo-
rithms, and OCCERP belongs to the second type, which will
be discussed in this section.

Generative methods are useful for OCC as the target
class may directly be modelled from the available training
target data points. Density-basedmethods, such as Gaussian,
kernel density estimators, Parzen windows, and mixture
models are widely used for OCC problems [3, 13]. Density-
based methods estimate the probability density function of
the underlying distribution of the training target data points.
'en, these methods determine if a new data point comes
from the same distribution. 'e selection of appropriate
models and large-scale training data are the problems of this
approach.

Nearest neighbour-based (NN-based) approaches are
other widely used methods to address OCC problems
[1, 3, 5]. 'is approach assumes that an outlier point will be
far away from neighbour target points as compared to a
target point from other neighbour target points [1, 5].

'e local outlier factor (LOF) method is a density-based
scheme for OCC [14], in which a LOF is computed for each
data point by taking the ratios of the local density of the
point and the local densities of its neighbours. An outlier
point has a large LOF score.

Tax and Duin [15] propose the support vector domain
description method for OCC. 'e method finds a hyper-
sphere with a minimum volume around the target class data
such that it encloses almost all the points in the target class
dataset. Scholkopf et al. [7] propose the use of support vector
machines for one class classification. A hyperplane is con-
structed such that it separates all the data points from the
origin and the hyperplane’s distance from the origin is
maximised.

In reconstruction-based methods [1–3, 16, 17], a model
like an autoencoder is trained on the given target class data.
'e reconstruction error which depends on a testing data
point and the system output is used to define the outlier score.
An outlier point is likely to have more reconstruction errors.

Clustering-based approaches use a clusteringmethod, like
k-means clustering to create clusters [1].'e distance between
a data point and its nearest cluster centre is used as the outlier
score.'e number of clusters and cluster initialization are the
problem of k-means type clustering algorithms.

Rahimzadeh Arashloo and Kittler [18] present a nonlinear
one-class classifier formulated as the Rayleigh quotient cri-
terion optimisation that projects the target class points to a
single point in a new feature space, the distance between the
projection of a testing point to that point is the outlier score of
the testing point. Leng et al. [19] use a similar approach but
use extreme learning machines for the projection.

Ensembles have also been developed for the OCC
problems. 'ere are two approaches for creating ensembles.
In the first approach, one OCC algorithm is employed and a
randomisation process is used to create diverse OCC

models. Lazarevic and Kumar [20] propose the creation of
multiple datasets by using feature bagging. 'e LOF algo-
rithm is then used on these multiple datasets, hence multiple
OCC models are created. 'e outputs of these models are
combined to get the final output. Khan and Ahmad [5] use
random projection to create multiple datasets. An NN-based
OCC algorithm is applied to these multiple datasets. Arthur
et al. [21] introduce noise to the dataset to create multiple
datasets. Experiments with different OCC algorithms show
the effectiveness of the proposed approach. Chen et al. [11]
use randomly connected autoencoders to create ensembles
of autoencoders. 'ese ensembles outperformed other state-
of-the art OCC methods. Khan and Taati [22] train different
autoencoders using different features to create ensembles of
autoencoders. 'ey show that ensembles perform better
than single autoencoders. Isolation forests consist of many
decision trees [10]. 'ese trees are created by using random
partitioning. 'e authors argue that anomalies are suscep-
tible to isolation and therefore have short path lengths. 'e
method has produced excellent results on various datasets.
Kanag [23] uses the clustering technique to many clusters.
'erese clusters are used using the one-against-rest method
to create many binary-classifiers. 'eir classifiers are used as
an ensemble to handle OCC problems. Mohammeda and
Kora [24] propose ensembles of deep learning models for
text classification problems.

3. One Class Classification by Ensembles of
Random Planes (OCCERPs)

For OCC problems, the training data have points from one
class. In this section, we will call this class as the negative
class. A class consisting of outlier points will be called as the
positive class. 'e motivation of the proposed approach is
that if data points are projected on a plane, the distance from
a properly selected pivot point to the projection of a given
point can be used as an outlier score. 'e projections of
negative class points are expected to be nearer to this pivotal
point as compared to the projections of positive class points.
Many random planes can be generated. Each plane will
generate one outlier score for a given point, and all the scores
will be combined to get the final outlier score for a point.

Creating appropriate random planes and selecting ap-
propriate pivotal points on these random planes are very
important steps of the proposed approach. We use the
random linear oracle approach [25] to create random planes
and pivotal points. Kuncheva and Rodriguez [25] propose a
random linear oracle approach for classifier ensembles. In
this approach, they divide the training data points into two
groups using a random linear oracle (RLO). 'is RLO is a
random hyperplane which is created by using two randomly
selected points from the training data. We use the same
approach to generate random planes. To create a random
plane, two points are randomly selected from the given
negative class. 'e random plane will pass from the mid-
point of the two selected data points and will have the
normal going through these two data points (Figure 1). As
these two data points are part of the negative class, the
midpoint is expected to be within the boundary of the
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negative class. 'is point will act as a pivotal point to
compute the outlier score of a given data point. RLO ap-
proach makes sure that there are points on both sides of the
hyperplane.

We will discuss the mathematical formulas used in the
proposed approach. In a n dimension space
(X1, X2, X3, . . . , Xn), two randomly selected points are
R(r1, r2, r3, . . . , rn) and S(s1, s2, s3, . . . , sn).

'e equation of the plane in n dimension is

A1X1 + A2X2 + A3X3 + · · · + AnXn + B � 0, (1)

where A1, A2, A3, . . . , An are directions and B is a constant.
'e values of Ai and B of a plane for which the normal is

going through two points R and S and a point
Z(z1, z2, z3, . . . , zn) is on the plane

Ai � ri − siB � − A1z1 + A2z2 + A3z3 + · · · + Anz( . (2)

In random linear oracle, the plane goes from the mid-
point of X and Y, therefore Z is defined as follows:

zi �
ri + si( 

2
. (3)

'e perpendicular distance D1 from a point P1(p1,

p2, p3, . . . , pn)

D1 �


n
1 Aip1 + B


n
1 Ai( 

2 . (4)

'e distance between the point P and. ZD2 �


n
1 (pi − zi)

2

From Figure 2.(D3)
2 � (D2)

2 − (D1)
2

D3 will be used as an outlier score.
Figure 2 shows that D3 will be small negative class points

whereas this value will be large for positive class points.

3.1. Combination of Results. Researchers use different ap-
proaches to combine the results of different outlier models
such as mean, median, maximum, and minimum [26, 27].
'ere is no proper justification in literature for selecting one
over the other. We did a small experiment with five-fold

H

S

Z

R

Figure 1: A plane, H created by two points using two data points R
and S. 'e plane is the random plane that will pass from the
midpoint, Z of R and S points and will have the normal going
through these two data points.
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Figure 2: P1′ and O1′ are the projected points of P1 and O1 on the
plane H. Z is the pivotal point. P1′Z is the outlier score of point P1′,
and O1′Z is the outlier score of point O1′. 'e outlier score of the
positive point is larger.

Input- An n-dimensional training dataset T.
Output- Outlier score of a data point, C.
Begin
Training phase
Normalise data compute z-score for each feature value using the mean and standard deviation for each feature)
for i� 1. . . M do
Select a random pair (R, S) of points from T
Create a hyperplane, Hi, perpendicular to the line segment between R and S and running through the middle point, Zi, of R and S.

end for
Testing phase
To compute the outlier score of a data point, C, normalise the data point using the steps as the training data points are normalised.
for i� 1. . . M do
Compute outlier score (Oi) by computing the distance betweenZi and the projected point ofC on hyperplaneHi using themethod

discussed in Section 3.
end for
Combine M outlier scores (Oi) by minimum approach discussed in Section 3.1 to get the final outlier score.
End

ALGORITHM 1: OCCER algorithm.
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cross validation with three datasets to understand their
performances. We found that there is no approach which
performed consistently best for all the runs. However, we
found that the minimum approach has an advantage over
other approaches. 'erefore, we selected the minimum
approach to combine the results. To avoid the effect of
extreme value, instead of minimum value, we took the mean
of five minimum values. All the experiments were done
using this combination approach. We did not experiment
with numbers other than five. It is noted that the combi-
nation of different outlier models in an ensemble is an
important research problem. We do not claim that the
minimum approach is best. 'is research problem requires
more experimental and theoretical analysis which is beyond
the scope of this paper.

4. Experiments

We conducted experiments by using the scikit-learn py-
thon package (https://scikit-learn.org/stable/) and PyOD (a
Python toolbox for scalable outlier detection) [30]. Dif-
ferent standard OCC algorithms, Isolation Forests (IFs),
One-class SVM (OCSVM), LOF, and autoencoders were
used for the comparative study. PyOD was used for these
methods. 'e default parameters for these methods given
in PyOD were used in the experiments. For the OCCERP
algorithm, the same size and the fixed combination ap-
proach was used. 5 × 2-fold cross-validation was used for
the experiments. Stratified k-fold was implemented using
scikit-learn to ensure that the folds were made by pre-
serving the percentage of the samples for each class. Only
the negative class points in the training data were used to
train the OCC algorithms. z-normalisation was used to
normalise the data. As classification accuracy is not a
correct performance matrix due to the highly-imbalanced
testing data, we used the average area under the curve
(AUC) for the receiver operating characteristics(ROCs)
curve as it is generally used to measure the performance of
OCC algorithms [10, 11]. We carried out experiments with
the OCCERP algorithm with 500 random planes (OCCERP
(500)). We applied a statistical test, the Sign test [31] to
compare the performance of OCCERP (500) against other
one-class classifiers. It is based on counts of wins, losses,
and ties. If the number of wins is at least N/2 + 1.96

�
n

√
/2,

the classifier is significantly better with p< 0.05. In our
experiments, the total number of datasets is 26, therefore if
the number of wins is 18, the classifier is statistically better
than the other classifier.

4.1. Standard Datasets and Domain Datasets. Various kinds
of datasets were used in the experiments [28, 29, 32–35],
Some datasets are created as imbalanced datasets [28, 29].
Information on these datasets is presented in Table 1. 'e
domain datasets [32–35] belong to two different domain
datasets: normal activity-fall activity datasets and software
engineering-related datasets. 'e domain datasets [32–35]
are naturally imbalanced datasets. Mobilfall data [32] were
collected using Samsung Galaxy S3 mobile employing the

integrated 3D accelerometer and gyroscope. 'e data have
two classes normal activity and fall activity. We used the data
collected from 11 subjects who performed various normal
and fall activities. We grouped the German Aerospace
Centre (DLR) data [33] into normal activity and fall activity

Table 1: Information on the datasets that were taken from [28, 29].
'e datasets presented before the separating line in the table are
taken from [28] whereas the datasets presented after the separating
line are taken from [29].

Dataset Number of
features

Number of data
points in

negative class

Number of data
points of

positive class
Pima 8 500 268
segment0 19 1979 329
yeast1 8 1055 429
yeast3 8 1321 163
yeast4 8 1433 51
Winequality-
red-4 11 1546 53

Winequality-
red-8_vs_6 11 638 18

Winequality-
white-3_vs_7 11 880 20

Aloi-
unsupervised 27 48492 1508

Annthyroid-
unsupervised 21 6666 250

Breast-cancer-
unsupervised 30 357 10

Letter-
unsupervised 32 1500 100

Satellite-
unsupervised 36 5025 75

Shuttle-
unsupervised 9 45586 878

Speech-
unsupervised 400 3625 61

Pen-local-
unsupervised 16 6714 10

Pen-global-
unsupervised 16 719 90

Table 2: Information on the domain datasets.

Dataset Number of
Features

Number of data
points in

negative class

Number of data
points in

positive class
MF 31 488 5430
COV 31 908 12392
DLR 31 84 26576
Class-level-kc1-
defectornot 94 60 85

kc2 21 105 415
kc1 21 326 1783
cm1 21 49 449
Datatrieve 8 11 119
pc1 21 77 1032
Class-level-kc1-
defect-count-
ranking

94 8 137
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and only used the data from the accelerometer and gyro-
scope. Only data from those subjects who performed both
the activities were used. Coventry dataset (COV) [34] also
has two classes normal activity and fall activity, and the
complete information of these domain datasets is presented
in detail in [5]. Information on these domain datasets is
presented in Table 2.

Software engineering-related datasets were taken from
NASA’s metrics data program data repository. 'is repos-
itory has defect data of various software projects written
using different programming languages. cm1 and pc1 are
written in C. kc1 and kc2 are implemented using C++.
Datatrieve is composed of C functions and BLISS subrou-
tines. class-level-kc1-defect-or-not and class-level-kc1-de-
fect-count-ranking use only larger modules of kc1 data.
class-level-kc1-defect-count-ranking data has two classes
based on if the defects are in the top 5% in defect ranking or
not. 'e software projects are described using different
features such as McCabe measures [36] and Halstead
measures [37]. Information on these software engineering-
related datasets is presented in Table 2.

4.2. Results. 'e results (average AUCROC) for datasets
presented in Table 1 are provided in Table 3, which suggest
that out of 16 datasets, OCCERP (500) performed best for
eleven datasets. LOF method performed best for eight
datasets. Both achieved the joint best results for three
datasets.

'e results (average AUC) for domain datasets (pre-
sented in Table 2) are provided in Table 4. 'e OCCERP
(500) performed best for seven datasets out of ten datasets,
whereas other OCC algorithms were best for three datasets.
If performed best for two datasets, whereas LOF performed
best for one dataset. 'e results suggest the superior per-
formance of OCCERP (500) over other standard OCC
algorithms.

Wins, losses, and ties for OCCERP (500) against other
OCC algorithms for all 26 datasets are presented in Table 5.
As discussed earlier, if the win is equal to or more than 18 the
OCCERP (500) is statistically better than that algorithm.'e
number of wins is at least 18 for OCCERP (500) against all
other OCC algorithms. 'is shows that OCCERP (500) is
statistically better than other OCC algorithms.

Table 3: Average AUCROC of various OCC algorithms against the OCCERP (500) algorithm on various datasets [28, 29] presented in
Table 1. Bold numbers indicate the best performance.

Dataset If LOF OCSVM Autoencoder OCCERP (500)
Pima 0.731 0.709 0.700 0.648 0.738
segment0 0.474 0.815 0.294 0.342 0.923
Winequality-red-4 0.584 0.651 0.615 0.609 0.655
Winequality-red-8_vs_6 0.667 0.592 0.647 0.681 0.716
Winequality-white-3_vs_7 0.849 0.866 0.853 0.851 0.928
yeast1 0.543 0.615 0.548 0.534 0.589
yeast3 0.673 0.807 0.725 0.728 0.788
yeast4 0.734 0.665 0.733 0.745 0.745
Aloi-unsupervised 0.539 0.748 0.549 0.549 0.556
Annthyroid-unsupervised 0.737 0.907 0.727 0.702 0.766
Breast-cancer-unsupervised 0.982 0.985 0.985 0.982 0.985
Letter-unsupervised 0.627 0.862 0.615 0.526 0.872
Satellite-unsupervised 0.949 0.977 0.937 0.895 0.977
Shuttle-unsupervised 0.995 0.999 0.996 0.993 0.999
Pen-global-unsupervised 0.947 0.957 0.972 0.869 0.998
Pen-local-unsupervised 0.778 0.985 0.589 0.440 0.966
Best performance 0 8 0 1 11

Table 4: Average AUCROC of various OCC algorithms against the OCCERP (500) algorithm on various domain datasets presented in
Table 2. Bold numbers indicate the best performance.

Dataset If LOF OCSVM Autoencoder OCCERP (500)
MF 0.969 0.890 0.978 0.941 0.992
COV 0.831 0.912 0.804 0.769 0.883
DLR 0.947 0.988 0.955 0.978 0.991
Class-level-kc1-defectornot 0.797 0.762 0.705 0.607 0.801
kc2 0.839 0.632 0.806 0.754 0.827
kc1 0.792 0.634 0.708 0.634 0.807
cm1 0.704 0.661 0.636 0.518 0.787
Datatrieve 0.728 0.690 0.692 0.572 0.753
pc1 0.697 0.689 0.676 0.599 0.719
Class-level-kc1 0.903 0.884 0.864 0.780 0.891
-Defect-count-ranking
Best performance 2 1 0 0 7

Computational Intelligence and Neuroscience 5



4.3. Effect of Size of OCCERP Ensembles. OCCERP is an
ensemble of many OCCmodels. An ensemble is accurate if it
consists of many accurate and diverse models. If models are
diverse, the performance of an ensemble improves with the
size. To study the effect of the size on the performance of the
OCCERP algorithm, we created OCCERP with 200 random
planes (OCCERP (200)) and compared OCCERP (200) with
(OCCERP (500)).'e results are presented in Tables 6 and 7.
For most of the datasets, OCCERP (500) performs better
than OCCERP (200). It suggests that more models are useful
for OCCERP. It shows that OCCERP is able to create diverse

OCC models. OCC models are based-on random planes.
RLO creates random planes which in turn generate diverse
OCC models.

5. Conclusion

OCC is a challenging task due to the absence of the outlier
class data points in the training dataset. In this paper, we
presented OCCERP to address OCC problems. OCCERP
creates many OCC models. In each model, a random plane
and a pivot point are used to compute an outlier score for a
given data point. Outlier scores for the data point are
combined using a novel minimum approach. Experiments
suggested that OCCERP performed better than or similar to
other OCC methods. 'is shows the effectiveness of the
OCCERP method.

In this paper, the RLO approach is used to create random
planes and pivot points. In the future, we will develop other
approaches to generate random planes and pivot points. 'e
combination of OCCERP with other ensemble approaches,
such as bagging [38] (to create different training datasets), is
another future research direction. We will also study the
performance of OCCERP in the feature space created by
random projections and principal component analysis.
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