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to Prevent Cognitive Decline in Neurodegenerative Diseases?
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Cumulative evidence has indicated that there is an important role for adult hippocampal neurogenesis in cognitive function. With
the increasing prevalence of cognitive decline associated with neurodegenerative diseases among the ageing population, physical
exercise, a potent enhancer of adult hippocampal neurogenesis, has emerged as a potential preventative strategy/treatment to reduce
cognitive decline. Here we review the functional role of adult hippocampal neurogenesis in learning and memory, and how this
form of structural plasticity is altered in neurodegenerative diseases known to involve cognitive impairment. We further discuss
how physical exercise may contribute to cognitive improvement in the ageing brain by preserving adult neurogenesis, and review
the recent approaches for measuring changes in neurogenesis in the live human brain.

1. Introduction

Given the overwhelming evidence showing adult neuro-
genesis in the mammalian brain [1–5] and its potential
role in cognitive function [6–11], the relationship between
adult neurogenesis, cognitive deficits, and neurodegenerative
diseases has become an emerging topic of interest. This
is of particular relevance in the ageing population, given
the increasing prevalence of cognitive deficits associated
with neurodegenerative diseases. Therefore, manipulation of
adult neurogenesis has currently been targeted as a potential
treatment for ageing-related cognitive deficits.

Newborn neurons are mainly produced from neural
stem cells in two neurogenic zones of the adult brain: the
subventricular zone (SVZ)/olfactory bulb (OB) and the sub-
granular zone (SGZ) of the hippocampal dentate gyrus (DG)
[12]. In the SVZ, neural stem cells give rise to committed

progenitor cells that migrate through the rostral migratory
stream (RMS) into the OB where they differentiate into
local interneurons, specifically granular and periglomerular
neurons. Adult neurogenesis in the hippocampus is more
locally confined, when compared to neurogenesis in the SVZ.
In theDGof the hippocampus, newbornneuronsmigrate just
a short distance (approximately 20 to 25 𝜇m, two cell nuclei
wide) from the SGZ to the granule cell layer (GCL), where
they integrate into the existing circuitry [12]. A dividing
progenitor cell gives rise to daughter cells which differentiate,
migrate, and integrate integrate into the existing circuity.
Their dendrites extend to themolecular layer of the DGwhile
their axons project to the cornus ammonis (CA) 3 region,
through the mossy fiber pathway [13] (Figure 1). Retroviral
labeling of newborn cells with green fluorescent proteins has
revealed that newborn neurons can form synaptic contact
with its target cells by the third week of neuronal maturation
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Figure 1: Development and integration of adult-born neurons in the dentate gyrus of the hippocampus. (a) The neural progenitors that
are divided from neural stem cells start expressing either neuronal or glial phenotypes after just a few days of division. Newborn neurons
gradually migrate from the subgranular zone (SGZ) into the granular cell layer (GCL) where they undergomaturation, followed by functional
integration into the existing neural circuitry in the hippocampus. This process of hippocampal neurogenesis is known to be promoted by
physical exercise and to be compromised in several neurodegenerative diseases such as AD, PD, and HD. (b) Confocal image of 4-week-old
retroviral-labeled newborn neurons with green fluorescence protein (GFP) in the GCL (scale bar: 200 𝜇m).

[14].Therefore, synaptic connections between theDGand the
CA3 hippocampal subregions (which form the mossy fiber
tract) can potentially bemodified by changes in hippocampal
neurogenesis. About 9000 new cells are generated each
day in the rodent hippocampus (hundreds of thousands of
cells each month, accounting for 6% of the total granule
neuronal population) of which about 80–90% differentiate
into neurons [15].

Clinical studies have confirmed that similar processes
also occur in the corresponding regions of the human brain
[16–19].The first evidence of adult neurogenesis in the human
brain came from a study showing the presence of positive
staining for 5-bromo-2-deoxyuridine (BrdU, a thymidine
analog) in the SVZ and the DG region of postmortem
brain sections from cancer patients who had received BrdU
injections in life [5]. These findings have since then been
confirmed and a recent study has revealed that approximately
700 new neurons are added to the adult human hippocampus
each day [20]. However, adult neurogenesis is age dependent
with the production of new neurons declining with age [21–
28].

The hippocampus plays an integral role in the consolida-
tion of declarative memory, as well as context dependent and
spatial learning processes [29, 30] in both humans [31, 32] and
rodents [33–36]. New hippocampal neurons are believed to
contribute to the functioning of the hippocampus and there
is evidence that they are recruited into hippocampal neuronal
circuits known to be involved in spatial learning [9] and

possess particular physiological properties that make them
more susceptible to behavioral-dependent synaptic plasticity
[11, 37, 38]. Thus, it is reasonable to speculate that these new
neuronsmight be integral for hippocampal-dependent learn-
ing and memory [11], and in particular pattern separation
[39–41]. In agreement with this hypothesis, numerous correl-
ative studies have shown that hippocampal neurogenesis can
bemodulated by learning and behavioural experience [6, 42–
45] and that a loss in hippocampal neurogenic function can
adversely affect memory formation [7, 8, 10, 38, 46].

Using exercise training as an upregulator for hippocam-
pal neurogenesis, an in vivo imaging study in humans
has indicated a positive association between hippocampal-
dependent cognitive performance and change of cerebral
blood volume (CBV: served as an indirectmeasure of changes
in hippocampal neurogenesis in the human brain) [47]. Fur-
thermore, exercise intervention has been shown to improve
performance in a neurogenesis-dependent cognitive test, the
visual pattern separation task in human subjects [48]. In
spite of the technical limitations associated with the direct
measurement of neurogenesis in the human brain, these two
studies have suggested that adult-born new neurons in the
hippocampus might play a functional role in learning and
memory in the human brain.

Neurodegenerative diseases such as Alzheimer’s disease
(AD), Parkinson’s disease (PD), and Huntington’s disease
(HD) share the common characteristic of progressive loss of
structure and/or function of neurons in the brain. Although
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neuronal degeneration predominantly affects specific neu-
ronal populations (i.e., dopaminergic neurons in PD, striatal
gamma-aminobutyric acid (GABA) ergic neurons inHD, and
cortical and hippocampal neurons in AD), all these neu-
rodegenerative diseases are characterized by a more or less
severe loss of certain cognitive functions including learning
and memory. Concomitantly, several lines of evidence have
shown that adult hippocampal neurogenesis might be altered
in these neurodegenerative processes [49, 50].

Physical activity has been repeatedly shown to improve
cognition and prevent age-related cognitive decline in
humans [51], particularly in individuals affected with certain
neurodegenerative diseases [52, 53]. However, the underlying
mechanisms responsible for the beneficial effects of physical
exercise are still unclear. Nevertheless, animal studies have
suggested that an increase in hippocampal neurogenesis may
mediate, at least in part, the exercise-induced increase in
cognitive function [54, 55].

Here, we review the functional role of adult neurogenesis
in cognitive function and the emerging association between
adult hippocampal neurogenesis and cognitive impairment
in neurodegenerative diseases. We further discuss physical
exercise-induced hippocampal neurogenesis and its relation-
ship with cognitive improvement. Finally, we address the
emerging techniques formeasuring adult neurogenesis in live
human brain.

2. Adult Neurogenesis in
Learning and Memory

The functions of adult neurogenesis in the adult brain have
been extensively investigated in the past decade. Numerous
studies have suggested that neurogenesis in the DGmay play
an important role in hippocampal-dependent learning and
memory [6–11, 56], as well as affective disorders such as
depression and anxiety [56–59], while neurogenesis in the
SVZ may be involved in olfactory learning and discrimina-
tion [60] and sexual behavior [61, 62].

Importantly, newly generated neurons have particular
physiological properties that make them more susceptible
to behavioral-dependent synaptic plasticity [11]. Using retro-
viral labeling of newborn neurons with green fluorescence
protein, Toni and colleagues have demonstrated that new-
born neurons could form synapses and receive synaptic input
from existing neurons [14]. Furthermore, immature neurons
exhibit a lower threshold for long-term potentiation (LTP)
induction in response to theta-burst stimulation [37], which
might be due to their specific membrane properties such as
greater N-methyl-D-aspartate (NMDA) receptor sensitivity
and calcium entry upon synaptic activation [63].On the other
hand, LTP has also been shown to induce adult hippocam-
pal neurogenesis [64], which further strengthens the link
between structural and functional hippocampal plasticity.

Since these newly generated neurons are linked to
the functioning of the hippocampus, it is reasonable to
speculate that they might play a role in mechanisms of
hippocampal-dependent learning andmemory. In agreement
with this hypothesis, it has recently been shown that new

neurons are indeed recruited into neuronal circuits involved
in spatial learning and memory in the hippocampus [9].
Furthermore, other studies have shown that disrupting or
ablating adult hippocampal neurogenesis results in im-
paired hippocampal-dependent learning and memory. Ex-
perimental reduction of adult neurogenesis impaired hip-
pocampal-dependent trace eye-blink conditioning but not
hippocampal-independent delay conditioning [7]. Similar
results were obtained with other hippocampal-dependent
tasks, including place-recognition tasks [46], contextual fear
conditioning [8, 38], and a non-matching-to-sample task,
which measured conditional rule learning and memory for
specific events [8].

Although details of how newborn neurons modulate
learning and memory are still unclear, recent findings have
suggested that adult born neurons in the DG play a critical
role in pattern separation, preventing memory interference
from overlapping contexts [39, 65, 66]. Garthe and colleagues
have demonstrated that inhibiting neurogenesis in mice
results in impairments in the reverse protocol of the Morris
Water Maze test (i.e., an increased preference for the old
position of the hidden platformand failure to identify the new
position). These results suggest that adult neurogenesis in
the DG prevents memory interference from similar contexts,
thus allowing formation of a new memory that is similar to a
previously acquired one [67]. In agreement with this finding,
two recent studies have demonstrated an association between
lower levels of hippocampal neurogenesis and impairments
in spatial pattern separation in mice [39, 68]. Conversely,
exercised mice with enhanced neurogenesis perform better
in spatial pattern separation tasks [66].

To test the hypothesis concerning the functional role
of neurogenesis on pattern separation in the human brain,
Dery and colleagues used the visual pattern separation
task, a cognitive test that is believed to be neurogenesis-
dependent and that uses some objects that are repeatedly
presented across trials and some objects that are new but
highly similar to previously presented ones. They observed a
significant enhancement in performance on the visual pattern
separation task together with lower depression scores in
subjects who participated in exercise training a well-known
enhancer of neurogenesis [48]. This finding corroborates
the hypothesis that adult hippocampal neurogenesis may be
involved in learning and memory in the human brain.

In summary, it is currently believed that hippocampal
new neurons are required for the separation of events based
on their spatial and temporal characteristics (a process that
preserves the uniqueness of a memory representation), as
well as space representation, long-term memory retention,
and flexible inferential memory expression [69].

3. Altered Adult Neurogenesis in
Neurodegenerative Diseases

The contribution of altered adult hippocampal neurogenesis
to the cognitive deficits that are characteristic of various
neurodegenerative conditions such as AD, PD, andHD is still
not fully elucidated. Nevertheless, since alterations in adult
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Table 1: Modulation of adult neurogenesis by neurodegenerative diseases and physical exercise.

Neurodegenerative disease Alteration of adult neurogenesis Effect of physical exercise on adult
neurogenesis

AD

Rodent models ↑ or ↓ SGZ neurogenesis depending on the transgenic model
[78–88]

↑ Learning and memory in various
transgenic models [189, 190, 192–195]
↑ or no effect on proliferation and
neuronal differentiation in APP23
transgenic mice

Human patients
↑ Proliferation/differentiation in human SGZ from AD
patients [89]
↓Maturation in human SGZ from AD patients [90]

—

PD

Rodent models
↓ SGZ proliferation in lesion models [108]
↑ SGZ proliferation in MPTP lesion model [107]
↓ SGZ proliferation and survival in 𝛼-synuclein transgenic
mice [111, 112]

Rescue of behavioral deficits in lesion
models [175, 204, 205, 207]

Human patients ↓ Proliferation/differentiation in human SGZ from PD
patients [108]

↑Motor and cognitive function in human
PD patients [209, 210]

HD

Rodent models ↓ SGZ neurogenesis in HD transgenic and knock-in models
[128–131, 136, 141, 143]

No effect on SGZ neurogenesis in
transgenic models [132, 211, 212]
↓ Behavioral and cognitive deficits in
transgenic models [158, 213]

Human patients No changes in cell proliferation in human SGZ from HD
patients [159] —

neurogenesis have been repeatedly shown in various animal
models of these disorders [70] (Table 1), it is speculated
that cognitive decline in neurodegenerative diseases could
be partly due to alterations in the neurogenic process.
Within this scenario, therapeutic strategies such as physical
exercise that can restore or increase adult neurogenesis might
be of therapeutic value for the treatment of the cognitive
deficits associated with these devastating neurodegenerative
disorders.

3.1. Hippocampal Neurogenesis in Alzheimer’s Disease (AD).
AD is manifested by progressive cognitive deterioration,
memory loss, behavioural changes, and eventually dementia.
At the pathological level, AD is characterized by acetylcholine
depletion, the accumulation of amyloid (or senile) plaques,
and the formation of neurofibrillary tangles (NFT), which
can lead to neuronal loss by apoptosis particularly in the
cortex and hippocampus and severe brain atrophy [71].While
the majority (95%) of cases of AD are sporadic, complex
arrays of environmental and genetic factors have also been
linked to the etiology of this disorder. Gene mutations in
the presenilin (PS) 1 and/or 2 genes or the apolipoprotein
(APO) E gene can increase the risk of developing AD [72, 73].
PS1 and PS2 are key components of 𝛾-secretase, the enzyme
responsible for cleaving the amyloid precursor protein (APP)
into toxic amyloid-𝛽 (A𝛽) peptides, the building blocks of
senile plaques [74].

While the exact neurobiological mechanisms underlying
the symptoms of AD are still unclear, severe neuronal loss
in areas of the brain involved in learning and memory,

such as the hippocampus and prefrontal cortex, is evident
in the AD brain. Transgenic mouse models of AD show
impairments in several hippocampal-dependent learning and
memory tasks, such as spatial learning, object recognition,
and contextual fear conditioning [75]. Additionally, adult
hippocampal neurogenesis has been investigated in several
of these models and contradictory results have been obtained
[50, 76, 77]. Briefly, while a decrease in neurogenic function
has been reported in transgenic or knock-in mice carrying
the Swedish mutation in the APP gene [78–81], the PDAPP
mutation [82], mutations in the PS1 gene [80, 81, 83, 84],
as well as in double-transgenic mice for APP and PS1
[80, 81], and in triple-transgenic mice for APP, PS1, and
tau protein [85], others have found increased hippocampal
neurogenesis in transgenic mice that express APP with the
Swedish and the Indiana mutations [86, 87], or with the
Swedish, Dutch, and London mutations [88]. Differences
among the various transgenic mouse models used, the stages
of disease progression when neurogenesis was evaluated, and
differences in the protocols used to evaluate neurogenesis
are factors that might have contributed to the discrepancies
reported in the literature [50].

In human AD patients, the expression of several imma-
ture neuronal markers (doublecortin (DCX), polysialylated
nerve cell adhesion molecule (PSA-NCAM), neurogenic
differentiation factor (NeuroD), and 𝛽III-tubulin) appears
to be increased [89], while the expression of the mature
neuronal marker microtubule-associated protein (MAP) was
found to be dramatically decreased [90] in the DG of
the hippocampus. These results suggest that, regardless of
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an increase in neuronal differentiation, the later stages of
neuronal maturation during the neurogenic process might
be compromised in the human AD brain. While the exact
mechanism responsible for this dysregulation is still unclear,
A𝛽 aggregates have been found to accumulate near neural
precursor cells in the hippocampal DG [91, 92] suggesting
that these aggregates can influence hippocampal neurogen-
esis in the AD brain. Furthermore, many of the molecules
involved in the development of AD can also play a role
during the neurogenic process; for example, PS1 is thought to
regulate neuronal differentiation [93], whereas soluble APP𝛼
may be important during cell proliferation [94].

3.2. Hippocampal Neurogenesis in Parkinson’s Disease (PD).
PD is caused by death of dopaminergic neurons that project
from the substantia nigra (SN) pars compacta to the striatum
of the basal ganglia. PD is manifested by (1) severe motor
symptoms characterized by a progressive impairment of
movement control, akinesia, rigidity, and tremor; and (2)
nonmotor symptoms such as cognitive decline, olfactory
dysfunction, anxiety [95], and depression [96]. At the neu-
ropathological level, the disease is also characterized by the
presence of 𝛼-synuclein-positive Lewy bodies and dystrophic
Lewy neurites throughout the brain, which initially occur in
the vagal nerve and OB and thereafter spread to other nuclei
and cortical areas [97].

The neurogenic regions of the adult brain are innervated
by dopaminergic projections from the SN and the ventral
tegmental area (VTA) [98–100]; therefore, the reduction of
dopamine (DA) levels that occurs in PD may potentially
affect the production of new neurons in the SVZ and DG.
Moreover, some of the nonmotor symptoms linked to PD
that are not directly associated with neurodegeneration in the
SN such as olfactory dysfunction or depression and cognitive
alterations [101, 102] may be related to deficits in the stem
cell populations of the SVZ/OB system and the hippocampus,
respectively [103, 104].

The animalmodels that have beenmostwidely used in PD
research are the unilateral 6-hydroxydopamine (6-OHDA)
lesion rat model and the bilateral 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) lesion mouse model, which
develop PD-like symptoms [105]. Park and Enikolopov
showed that experimental ablation of dopaminergic neurons
in the MPTP mouse model of PD resulted in a transient
increase in cell division in the SGZ of the DG [106]. These
findings are in agreement with the ones by Peng et al., who
reported an increase in the incorporation of BrdU aswell as in
the number of cells that coexpressed BrdU and the immature
neuronal marker DCX in the DG, SVZ, and striatum, but
not in the SN of MPTP-treated mice [107]. Despite these
results, various studies have also shown a decrease in adult
neurogenesis in the SGZ and SVZ of MPTP-treated animals.
For example, Höglinger et al. demonstrated that proliferation
of C cells (which are targeted by dopaminergic innervations)
was impaired both in the SVZand SGZofMPTP-treatedmice
[108]. Furthermore, using both the 6-OHDA and the MPTP
models to induce DA depletion in rats andmice, respectively,
the same group also found a marked decrease in precursor

cell proliferation in both the SGZ of the DG and the SVZ,
a deficit that was completely reversed by the administration
of the selective agonist of D2-like DA receptors [108, 109],
further supporting the idea that the dopaminergic depletion
observed in PD brainsmight result in impaired neurogenesis.

Several in vivo studies have also evaluated how hip-
pocampal neurogenesis is altered by the expression of 𝛼-
synuclein. Transgenic mice overexpressing human wild-type
𝛼-synuclein showed significantly fewer neurons both in the
OB as well as in the DG of the hippocampus as compared
to their control littermates, an effect that seems to result
from a decrease in neuronal precursor survival [110], whereas
transgenic mice expressing mutant 𝛼-synuclein were shown
to have impaired hippocampal neurogenesis due to a decrease
in proliferation and survival of neural precursor cells [111].
In a different study, Nuber and collaborators also showed
reduced hippocampal neurogenesis and cognitive deficits
in a conditional 𝛼-synuclein mouse model. Turning off
the transgene expression did halt the progression of these
symptoms, although no regression was observed [112].

Finally, a decrease in the number of proliferating cell
nuclear antigen (PCNA) positive cells (a marker of cell pro-
liferation) in SVZ and a reduction in the number of nestin-
and 𝛽III-tubulin-positive cells in the DG of the hippocampus
have also been found in postmortem tissue from PD patients,
presumably as a consequence of dopaminergic denervation
of these neurogenic regions [108], providing further evidence
of altered hippocampal neurogenesis in the human PD brain.

3.3. Hippocampal Neurogenesis in Huntington’s Disease (HD).
HD is caused by an expansion of cytosine-adenine-guanine
(CAG) trinucleotide repeats in the HD gene, which results
in an expanded polyglutamine tract in the NH

2
-terminal

of the protein huntingtin [113]. In most cases the onset of
the disease occurs in midlife, between the ages of 35 and
50 years. The disease progresses over time and is invariably
fatal 15 to 20 years after the onset of the first symptoms.
Motor disturbances, associated with the loss of voluntary
movement coordination, are the classical symptoms of HD,
with bradykinesia and rigidity appearing in later stages of the
disease. Cognitive capacities are also severely affected during
the course of the disease with the slowing of intellectual
processes being the first sign of cognitive impairment in HD
patients [114]. In fact, deficits in some cognitive functions can
in some cases be detected decades before the onset of motor
symptoms. These cognitive impairments worsen over time
and late-stage HD patients show profound dementia [115–
120].

Mutant huntingtin is ubiquitously expressed throughout
the organism. However, cell degeneration occurs mainly in
the brain, particularly in the striatum and certain layers of the
cortex [114, 121]. Nevertheless, cell loss can also be detected
in other brain regions, including the hippocampus [121–123],
raising the possibility that HD might also be associated with
alterations in the endogenous neurogenic capacity.

Several rodent models are currently available to study the
effects of the altered HD gene. These models primarily differ
in the size of the expressed huntingtin fragment, the number
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of CAG repeats, the promoter driving the transgene, and
consequently the expression of the mutant protein, as well as
the background strain.As a consequence, eachmodel exhibits
unique phenotypes. Nevertheless,most demonstrate progres-
sive neurological phenotypes (e.g., progressive dysfunction
in motor ability and cognitive decline) that mimic well the
human condition [124–127]. The first studies that analyzed
how adult hippocampal neurogenesis is altered in HD used
R6/1 [128, 129] andR6/2 [130–132] transgenicHDmice, which
express exon 1 of the human HD gene (corresponding to
approximately 3% of the entire gene) with 115 and 150 CAG
repeats, respectively [133], and show cognitive impairments
[134, 135]. In both cases a dramatic and progressive reduction
in adult hippocampal neurogenesis was found. Of note and in
accordance with the faster disease progression characteristic
of the R6/2 line [133], a reduction in hippocampal cell prolif-
eration can be detected in these HD mice as early as 2 weeks
of age, before the onset of any behavioral abnormalities. This
decrease progresses with the course of the disease [131] and
by 12 weeks of age (i.e., when animals reach the end stage
of the disease), R6/2 mice show a 70% reduction in the
number of new cells present in the DG [130]. In agreement
with the results obtained with the R6 lines, it has recently
been demonstrated that adult hippocampal neurogenesis is
also selectively affected in yeast artificial chromosome (YAC)
128 mice [136]. This transgenic mouse model expresses the
full-length human HD gene with 128 CAG repeats [137]
and replicates the slow progression of the human condition
[138] while also displaying depressive-like behavior [139]
and hippocampal-dependent cognitive deficits [140]. In this
study, a significant decrease in cell proliferation, neuronal
differentiation, and overall neurogenesis was detected in the
DG of early symptomatic to end-stage YAC128 mice [136],
once again demonstrating the progressive nature of this
neurogenic deficit. Additionally, Kandasamy and colleagues
[141] also found a significant and progressive decline in adult
hippocampal cell proliferation in a rat model of HD that
expresses a truncated cDNA fragment of the HD gene with
51 CAG repeats under the control of the endogenous rat Hdh
promotor [142]. Finally, a recent study using knock-in Hdh
(Q111) mice, which carry an expanded polyglutamine stretch
in the mouse huntingtin protein, has also observed altered
DG neuronal maturation along with increased anxiety-like
phenotypes [143].

Although it is still unclear how the expression of mutant
huntingtin gene might lead to a dysregulation of the neu-
rogenic process, various mechanisms have been proposed
to contribute to this disturbance [127]. These include (1)
transcriptional dysregulation of key genes known to play a
role in neurogenesis such as NeuroD [144]; (2) decreased
neurotrophic support, including a reduction in the levels of
brain-derived neurotrophic factor (BDNF) [145–152]; as well
as (3) deficits in neurotransmission, namely, alterations in the
dopaminergic [125, 153] and serotonergic [154–158] systems.

Taken together, these studies support the possible role
of mutant huntingtin in disrupting the process of adult
hippocampal neurogenesis in the HD brain. These neuro-
genic deficits can in turn contribute, at least in part, to the
cognitive decline and depressive-like symptoms found in HD

transgenic models. However, studies in postmortem human
HD brains have shown no changes in hippocampal cell
proliferation [159] and an actual increase in SVZ neurogene-
sis [160–163]. Methodological considerations and differences
in the numbers of CAG repeats and the levels of expression
of the mutant gene might account for the discrepancies
observed between the human and the rodent studies [50, 127].
Future studies are thus warranted in order to fully elucidate
the role of adult neurogenesis in the development of the
cognitive symptoms associated with HD.

4. Physical Exercise Prevents Cognitive Decline
and Increases Adult Neurogenesis

Even though tremendous advances have been made over
the past few decades with regard to our understanding of
the etiology of age-related neurodegenerative disorders, to
date no effective treatments are available for individuals
afflicted with these devastating neurodegenerative diseases.
In recent years, physical exercise has emerged as the most
effective, low-cost, and low-tech way for successful ageing,
and therefore, it has the potential to represent a preventive
or disease-slowing therapeutic strategy for age-related neu-
rodegenerative diseases [53].

In support of this hypothesis, a meta-analysis study has
shown that 1 to 12 months of exercise in healthy adults
brings behavioral benefits, including significant increases in
memory, attention, processing speed, and executive function
[164]. Moreover, regular engagement in physical exercise
in midlife is associated with reduced risks of developing
dementia later on in life [52], suggesting that physical exercise
might indeed have preventative effects with regard to the
development of age-related cognitive decline. In agreement, a
prospective observational study has found a reduction in the
risk for AD and other forms of dementia in individuals who
exercise regularly as compared to those who did not actively
engage in physical activity [165].

Evidence from animal studies has suggested that an
enhancement in hippocampal neurogenesis may underlie the
reported beneficial effects of exercise on cognitive function.
Indeed, pioneer studies by van Praag and collaborators
showed that physical running not only increased hippocam-
pal neurogenesis [42, 43] but can also improve Morris water
maze performance and selectively increase LTP in the DG of
three-month-oldmice [43].Thus, in addition to upregulating
the neurogenic process, physical activity can also increase the
capacity for neurons in the hippocampus to sustain synaptic
plasticity and facilitate hippocampal-dependent learning
in the same animals. Similarly, in humans three months of
physical exercise were shown to correlate with increased
blood volume in the DG as assessed by functional magnetic
resonance imaging (fMRI) as well as an improvement in
cognitive scores [47]. Indeed, exercise is known to increase
cerebral blood flow [166], the permeability of the blood brain
barrier [167], and angiogenesis [168–171]. Given the possible
positive relationship between angiogenesis and neurogenesis
found in animal studies [172, 173], the observation that
three months of exercise resulted in improved cognition is



BioMed Research International 7

therefore speculated as a result of increased hippocampal
angiogenesis and hence neurogenesis in the human brain
[47].

These beneficial effects of physical exercise on cognitive
function suggest that exercise might indeed be used as a
strategy to prevent cognitive decline in age-related neurode-
generative diseases. Physical exercise has been shown to
prevent the age-induced decrease in hippocampal cell pro-
liferation, neurogenesis [174], LTP, and neurotrophin levels
[175], as well as enhance hippocampal-dependent learning
[55] in aged mice. Moreover, submitting rats to a regime of
physical exercise during postnatal development was shown
to increase hippocampal neurogenesis and spatial memory
later on during adult life [176], highlighting the long-lasting
benefits of physical exercise on brain plasticity [176].

The exact unerlyingmechanisms of how physical exercise
promotes adult hippocampal neurogenesis is still unclear.
Neurotrophins such as BDNF, insulin-like growth factor 1
(IGF-1), and vascular endothelial growth factor (VEGF) have
been recognized as primary mediators of adult neurogenesis
[172, 177–179]. Age-related decline in neurogenesis [21–28]
has been associated with decreases in the levels of these
trophic factors [180, 181]. Expression of BDNF and IGF-1
genes in hippocampal neurons has been shown in response
to exercise training [182]. Both peripheral levels of IGF-1 and
VEGF are increased following exercise and enter into the
brain by crossing the blood brain barrier [183–185]. VEGF
[184] and IGF-1 [183, 186] appear to have an important
role in physical exercise-induced hippocampal neurogenesis,
since blocking one of these neurotrophic factors substantially
diminishes running-induced neurogenesis in rodent studies.
Similarly, the knock-out of the BDNF receptor (tyrosine
receptor kinase B; TrkB Receptor) in hippocampal progenitor
cells diminishes the running-induced increase in hippocam-
pal neurogenesis in mice [187]. Therefore, it is thought
that these three neurotrophin factors were suggested to
work in concert formediating exercise-induced hippocampal
neurogenesis [188].

5. Hippocampal Neurogenesis in Animal
Models of Neurodegenerative Diseases
following Physical Exercise

Animal models of neurodegenerative diseases constitute
valuable tools to unmask the underlying mechanisms by
which exercise enhances adult neurogenesis, brain plasticity,
and hence cognitive function in the diseased brain (Table 1).

5.1. Alzheimer’s Disease. Several mouse models of AD have
shown that running can promote neurogenesis and cognitive
function in the AD brain. Short-term running is able to
enhance cognitive function in aged Tg2576 mice [189].
Long-term voluntary running for five months not only
decreases extracellular A𝛽 plaques in the frontal cortex and
hippocampus of TgCRND8 AD mice but also enhances
their hippocampal-dependent learning in the Morris water
maze [190]. Similar results were obtained with the APP/PS1
double-transgenic AD mouse model, where treadmill

exercise improved learning and memory function and LTP
[191], while also ameliorating some of the neuropathological
characteristics of the disease, including a reduction in
A𝛽 deposition and tau phosphorylation as well as a
decrease in APP phosphorylation and PS1 expression
in the hippocampus [192]. However, since hippocampal
neurogenesis was not examined in these studies, it is unclear
whether the observed behavioral improvements are linked
to an increase in hippocampal neurogenesis in these AD
transgenic mice.

On the other hand, studies using the APOE-e4 transgenic
mouse model have demonstrated the effect of running on
restoring hippocampal plasticity and improving cognitive
functions in this AD transgenic mouse model [193–195].
Additionally, the effects of physical exercise on hippocampal
neurogenesis have also been evaluated in the APP23 AD
transgenic mouse model. In one study, mice were allowed
access to a running wheel for 10 days at the ages of 6 and
18 months. In the 6-month-old cohort, proliferation was
decreased as compared to control animals and no effect of
running was observed. However, at the 18-month time point,
a running-induced increase in proliferation and neuronal
differentiation was detected in APP23 runners [196], indi-
cating that the AD brain retains the ability to upregulate
cell proliferation and neuronal differentiation in response to
physical exercise. However, in a different study where APP23
transgenic mice were given access to a running wheel for 11
months starting at 10 weeks of age, the authors failed to detect
an increase in cell proliferation and neuronal differentiation
in the running group [197]. It is possible that by the time of
analysis (i.e., at 17 months of age) the disease progression was
already too advanced to allow for detection of any changes
in endogenous neurogenesis. Alternatively, these findings
might also be a consequence of the well-known age-induced
decrease in adult hippocampal neurogenesis [21–26, 28].
However, since previous studies have shown that voluntary
physical exercise can still increase hippocampal neurogenesis
in wild-type aged mice [55, 174, 198], it is likely that the
advancement of the disease was a more prominent factor.

Epidemiological studies have reported a reduced risk of
developing dementia in elderlies with higher physical activity
[199–201]. Neuroimaging studies indicate that elderlies with
higher aerobic fitness have larger hippocampal volumes and
perform better on a spatial memory task [202]. Furthermore,
a longitudinal study has shown that in cognitively normal
adults, participation in greater amounts of physical activity 9
years earlier was associated with greater gray matter volume
in several brain areas such as the frontal cortex, parietal
cortex, and temporal cortex including the hippocampus,
which in turn was associated with a reduced risk of cognitive
impairment [203].

Despite the fact that there is abundant evidence suggest-
ing that physical activity might be effective in reducing the
risk of developing AD in humans, the exact mechanisms
by which physical exercise reduces the risk of AD are still
unknown. Animal studies have suggested that physical exer-
cise might result in structural changes in the hippocampus
that in turn may reduce the risk for AD future research
linking the possible changes of the brain (e.g., changes in
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hippocampal neurogenesis) with functional outcomes in AD
patients or individuals with higher risk for AD will shed light
on how physical exercise benefits these individuals.

5.2. Parkinson’s Disease. Several studies have shown that
physical exercise can be beneficial in ameliorating some of
the neuropathological and behavioural deficits characteristic
of various PD rodent models [204–207]. However, to date
only a single study has evaluated how physical exercise
modulates the endogenous neurogenic capacity in PD by
submitting 6-OHDA-lesioned rats to a regime of treadmill
exercise (30min/day, 5 days/week for 4 weeks) [208]. Forced
exercise resulted in the upregulation of the trophic factors
BDNF and glial cell-derived neurotrophic factor (GDNF)
in the striatum as well as an increase in cell proliferation
and the migration of neural stem cells towards the lesion
site. Additionally, exercise promoted the preservation of
tyrosine hydroxylase (TH; the rate-limiting enzyme during
the synthesis of DA) positive fibres in the striatum and
TH-positive neurons in the SN [208]. These results suggest
that exercise can be a promising noninvasive therapeutic
intervention to minimize neuronal degeneration in the PD
brain. Despite these promising findings, there are currently
no studies evaluating how physical exercise modulates the
neurogenic capacity in the DG of the hippocampus of PD
rodent models.

A few clinical studies have reported that physical exercise
can improve motor function and cognitive performance
in human PD patients [209, 210]. There is, however, a
paucity of studies addressing the possible interaction among
hippocampal neurogenesis, cognitive function, and physical
exercise in both lesion and transgenic rodent models of PD.
Thus, whether the beneficial effects that physical exercise
was shown to have in human PD patients [209, 210] are
mediated, at least in part, through a decrease in SN neuronal
degeneration and/or an increase in hippocampal neurogene-
sis is a hypothesis that remains to be elucidated. Nevertheless,
these findings suggest that physical exercise may constitute a
noninvasive therapeutic option to improve cognition in PD
patients.

5.3. Huntington’s Disease. The use of voluntary physical
exercise as a means to promote adult neurogenesis was
initially tested in 5-week-old R6/2 HD mice [132]. However,
access to a running wheel during an uninterrupted period of
4 weeks was unable to induce an increase in neurogenesis
(i.e., cell proliferation and neuronal survival) in these HD
transgenic mice. Similarly, running also failed to rescue the
deficits in hippocampal neurogenesis observed in R6/1 HD
mice [211] and presymptomatic N171-82Q HD mice [212].
Although it is feasible that the cellular pathways underlying
the proneurogenic effects of physical exercisemight be altered
by mutant huntingtin, it is also possible that the development
of motor deficits (which appear early on particularly in
the R6/2 line [133]) might have incapacitated these mice to
actively engage in physical exercise. Additionally, the housing

conditions involving social isolation that were employed in
some of these studies might have also had a negative impact
on the running activity of the mice [211], thus contributing
to the ineffective effect of exercise on adult hippocampal
neurogenesis.

Nevertheless, other authors have found that exposure of
R6/1 mice to physical exercise delayed the onset of rear-
paw clasping and improved cognition in adulthood [158],
while also delaying the onset of locomotor deficits that
can be detected in the juvenile period [213]. In addition,
although Pang and collaborators observed that running did
not alter the protein levels of the neurotrophin BDNF both
in the striatum and the hippocampus of R6/1 HD mice
[158], a subsequent study by Zajac and colleagues reported a
running-induced increase in bdnf gene expression that was
specifically observed in R6/1 females but not in their male
counterparts [151]. Sex-specific differences in the amount of
running the animals engaged in might underlie, at least in
part, the dichotic effect that physical exercise had on bdnf
expression levels in R6/1 females versus males. Of note, it is
reasonable to speculate that the inability of physical exercise
to consistently upregulate bdnf gene expression and protein
levels in the hippocampus of R6 mice [151, 158] may be
responsible for the lack of proneurogenic effects that was
observed in the hippocampus of theseHDmice upon exercise
[132].

Of note, it has also been reported that R6/1HDmice show
decreases in dendritic spine density and spine length both in
striatal and cortical neurons [214]. However, it is unknown
whether a similar dendritic pathology could be found in the
hippocampus of theseHDmice. Nevertheless, it is reasonable
to speculate that the running-induced cognitive improve-
ment that was observed in this HD transgenic mouse model
[158] may result, at least in part, from structural remodeling
of the existing hippocampal neurons. In agreement with this
hypothesis, physical exercise is known to increase dendritic
complexity, spine density, and synaptic plasticity [43, 215,
216].

In contrast to physical exercise, treatment of R6/1 mice
with fluoxetine, a selective serotonin reuptake inhibitor
(SSRI) antidepressant, was shown to abolish the impairment
in adult hippocampal neurogenesis while also increasing cog-
nitive performance (hippocampal-dependent spatial learning
and memory) [155]. These preclinical findings highlight the
fact that increasing hippocampal neurogenic capacity in the
HD brain might result in improved cognition.

6. Assessment of Adult Hippocampal
Neurogenesis in Live Human Brain

6.1. In Vivo Imaging of Neurogenesis. The first evidence for
the occurrence of adult neurogenesis in the human brain
came from a study by Eriksson and colleagues showing the
presence of BrdU-positive cells in postmortem hippocampal
and SVZ human tissue obtained from cancer patients that
received BrdU injections in life for diagnostic purposes
[5]. However, due to technological limitations, it is virtu-
ally impossible to evaluate adult neurogenesis in the live
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human tissue. This has in turn halted the analysis of the
functional role of adult neurogenesis in humans. Indeed,
the current methods employed to examine adult human
neurogenesis mainly rely on immunostaining of postmortem
fixed tissues obtained in the clinical setting [5] or on the
isolation of human neural progenitor cells from tissue biop-
sies [17, 18, 217]. However, these methods cannot provide
further information on the possible roles of adult neuro-
genesis during neurodegenerative processes in the human
brain.

The development of alternate methods that can be used
to assess adult human neurogenesis in vivo has emerged as an
essential research area within the neurogenesis field. Within
this scenario, the recent detection of adult neurogenesis
in live human brains using magnetic resonance imaging
(MRI) [47] has provided a possible method to discover
the functional role of adult neurogenesis in the human
brain. In this study, Pereira and colleagues measured cerebral
blood volume (CBV, known to correlate with angiogenesis
in the brain) as an indirect measure of neurogenesis [47],
based on the positive correlation between neurogenesis and
angiogenesis reported in animal studies [172, 173]. Addi-
tionally, using physical exercise as a well-known upregulator
of hippocampal neurogenesis and angiogenesis [55, 218],
this group also demonstrated that the increase in CBV
was specifically observed in the human hippocampus and
correlated with cognitive improvement following a 12-week
regime of physical training. The results from human subjects
were consistent with the observation that a similar process
occurred in mice, where there was a positive correlation
between a specific increase in CBV and an increase in the
number of BrdU-positive cells in the DG following physical
exercise [47]. An alternate in vivo imaging method that has
been employed to detect neurogenesis in humans consists
in using proton nuclear magnetic resonance spectroscopy
(1H-NMR). This technique uses the magnetic properties of
protons to detect a specific biomarker of neural progenitor
cells, N-acetylaspartate (NAA, a small metabolite produced
by neural progenitor cells), in living tissue [219]. Since these
two methods have not yet been validated by other studies so
far, further clinical studies would help to validate the feasi-
bility and reliability of using these emerging in vivo imaging
methods as indirect ways to measure adult neurogenesis in
the live human brain.

6.2. Peripheral Neurotrophins as Biomarkers for Adult Neuro-
genesis. Another indirect and noninvasive measure of adult
neurogenesis in humans might be the measurement of
peripheral biomarkers that correlate well with changes in
adult neurogenesis. However, such peripheral biomarkers
have not yet been clearly identified.

6.2.1. Brain-Derived Neurotrophin Factor. As mentioned
above, BDNF, IGF-1, and VEGF have been recognized as
primary mediators of adult neurogenesis [172, 177–179].
Indeed, BDNF is considered to be the most downstream
factor mediating the upregulation of hippocampal neuro-
genesis by exercise [188]. In agreement with this idea,

Erickson and colleagues reported that exercise training
as a fitness intervention for the aging population effec-
tively attenuates the age-related loss in hippocampal vol-
ume while also increasing serum levels of BDNF [220].
Additionally, increases in hippocampal BDNF levels are
thought to contribute to the upregulation of adult hippocam-
pal neurogenesis that is observed following antidepressant
treatment [221]. Indeed, clinical studies have shown that
serum BDNF levels are decreased in depressive patients
and that antidepressant treatment can ameliorate this deficit
[222].

Given this well-established relationship between var-
ious neurotrophins and adult hippocampal neurogenesis,
it is reasonable to speculate that the peripheral levels of
these trophic factors might be reliable biomarkers of adult
hippocampal neurogenesis. However, the exact relationship
between peripheral levels of neurotrophins and levels of
hippocampal neurogenesis is still unclear. Rachman and
colleagues have provided the first evidence that brain BDNF
is the major contributor to the increase in plasma BDNF
that is observed in response to exercise [223]. Yau and
colleagues have also investigated the relationship between
levels of hippocampal neurogenesis, plasma neurotrophins
levels, and cognitive performance in a rat model of stress.
They reported that acute stress-induced enhancement in
spatial learning and increase in hippocampal BDNF levels
were accompanied by a correspondent increase in plasma
BDNF levels. However, this effect was independent of adult
hippocampal neurogenesis [224]. Furthermore, exposure to
chronic stress significantly decreased hippocampal BDNF
levels, neurogenesis, and impaired spatial learning, without
affecting plasma BDNF levels [224]. Additionally, a period
of 28 days of running was also shown to increase hip-
pocampal neurogenesis and improve spatial learning without
significantly changing plasma BDNF levels in rats [224].
Thus, the relationship between peripheral BDNF levels and
hippocampal neurogenesis appears to be far from linear, and
changes in peripheral levels of BDNF may only be detected
upon substantial changes in brain levels of this neurotrophin.

In agreement with the findings from animal studies, a
dissociation between central and peripheral BDNF levels has
also been shown in the clinical setting. Thus, an increase
in the brain levels of BDNF was detected in blood sam-
ples from the internal jugular vein following 3 months of
endurance training in healthy subjects, but no changes in
peripheral BDNF levels were observed in these individuals
[225]. Indeed, the responses of plasma or serum BDNF
levels to exercise vary considerably among studies, with the
majority reporting a transient increase in the plasma/serum
levels of this neurotrophin following acute exercise [226].The
timing of blood collection after exercise may contribute to
these discrepancies, as elevated BDNF levels seem to return
to baseline within 10–60 minutes after exercise and then
decrease to a level lower than baseline [226]. In agreement,
others have found that peripheral levels of BDNF significantly
drop below baseline 2 and 3 hours following acute exercise
[227, 228], while a significant decrease in resting serum
levels of BDNF was found in trained subjects [229, 230].
Additionally, Lee and colleagues have recently reported a
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significant reduction in resting serum levels of both BDNF
and VEGF in adolescent athletes, who showed improved
brain function (specifically in the medial-temporal and
frontal areas) when compared to their age-matched controls
[231].

6.2.2. Insulin-Like Growth Factor 1. IGF-1 is secreted primar-
ily in the liver [232] and can enter into the brain via trans-
port across the blood-brain and blood-cerebrospinal fluid
barriers [233]. Transgenic overexpression of IGF-1 promotes
neurogenesis and synaptogenesis in the hippocampus during
postnatal development [234]. Furthermore, administration of
exogenous IGF-1 (after 6 and 20 days) increases the number
of hippocampal proliferative cells [178]. Animal studies have
shown that physical exercise could stimulate the release of
IGF-1 from the liver and increase the brain uptake and levels
of IGF-1 in rodents [186] with a concomitant enhancement of
neurogenesis and cognitive function [183].

A positive correlation between serum levels of IGF-1 and
cognitive function has also been demonstrated in several clin-
ical studies [235–237]. For example, an increase in peripheral
levels of IGF-1 following acute exercise training has been
shown in middle-aged men after two trials of 60min cycling
exercise [238] and in road cyclist athletes [239]. However,
the exact relationship between changes in IGF-1 levels and
hippocampal-dependent cognitive function following acute
physical interventions has not yet been elucidated. In contrast
to acute exercise, sustained exercise training was shown to
have no effect [240] or even a negative effect [241] on IGF-
1 levels in healthy subjects. Decreased IGF-1 levels were also
found in athletes [231] and subjects after 6 weeks of low
intensity cycling [242]. Indeed, the relationship between IGF-
1 and sustained physical exercise is equivocal.

6.2.3. Vascular Endothelial Growth Factor. VEGF, a 45 kDa
heparin-binding homodimeric glycoprotein, is secreted by
skeletal muscle and could be released into the circulation
[243]. Acute exercise has been shown to increase levels of
VEGF in skeletal muscle [244, 245]. An animal study has
demonstrated that expression of VEGF mRNA reaches the
peak levels immediately after exercise training and grad-
ually declines within 2 hours and then returns to basal
levels within 8 hr [246]. In human muscle, VEGF mRNA
expression has been shown to be elevated after 30min of
cessation of exercise [244]. Interestingly, circulating VEGF
levels were increased immediately after a marathon run in a
moderate-altitude condition [247] but were decreased after
a marathon run in high-altitude condition [248]. A different
study has also shown that plasma VEGF proteins levels were
decreased in the femoral vein following 3 hours of two-legged
kicking training, though this training paradigm significantly
increased VEGF mRNA levels in the skeletal muscle [249].
Similarly, plasma arterial VEGF is lower following exercise
training for 10 levels following acute systemic exercise imme-
diately and 2 hours after exercise in well-trained endurance
athletes, but not in sedentary controlswith regards to the peak
response obtained after exercise. These results suggest that
peripheral levels of VEGF are differently affected in trained

and sedentary subjects following physical exercise at any time
point [250]. However, they found a significant elevation in
VEGF levels in both groups.

Voss and colleagues have shown the first link between
exercise-induced functional connectivity in the temporal
cortex and changes in BDNF, IGF-1, and VEGF in healthy
elderlies [251]. They reported that increased temporal lobe
connectivity between the bilateral parahippocampus and
the bilateral middle temporal gyrus was associated with
increased peripheral levels of BDNF, IGF-1, and VEGF in
elderlies following 7 weeks of aerobic aerobic walking. Simi-
larly, Lee and colleagues reported a significant improvement
of brain function specifically in the frontal and temporal brain
regions in teens who regularly exercise when compared to
age-matched controls [231]. However, this group observed
a negative correlation between neurotrophic factors (BDNF
and VEGF) and frontal and medial temporal lobe function.
These two studies indicate that the duration of the physical
intervention an the age of the individuals may affect how
exercise modulate the levels of certain trophic factors.

In conclusion, the relationship between exercise-induced
changes in peripheral and central levels of neurotrophic
factors has not yet been fully validated, and as such, it is
still not feasible to use peripheral levels of neurotrophins
as biomarkers for predicting changes in adult neurogenesis
in human subjects. Further investigations will be needed
to discern the interactions between hippocampal neuroge-
nesis and peripheral and central changes in the levels of
neurotrophic factors in animal models and humans, both in
basal conditions and following different intervals of physical
exercise.

7. Conclusion

Several animal studies have provided evidence for a func-
tional role of adult hippocampal neurogenesis in specific
forms of hippocampal-dependent learning and memory.The
multifactorial nature of adult neurogenesis implies that this
complex process can be compromised by a variety of disease
conditions and mounting evidence from rodent models
over the last two decades suggests that alterations in the
normal neurogenic capacity can either contribute to or be
a consequence of a wide range of neurological disorders
including AD, PD, and HD. Despite some inconsistencies in
the literature, there seems to be an overall trend towards a
decrease in neurogenesis with neurodegeneration. However,
in some cases an upregulation of the endogenous neurogenic
function has also been found, which may reflect an intrinsic
attempt of the brain to regenerate itself and replace the neu-
rons that are lost during the degenerative process. Further-
more, discrepancies between studies performed in animal
models and postmortem human brains are also present in
the literature and may reflect differences in the amount of
progenitor cell proliferation present in the diseased human
brains and the respective rodent models [252].

Nevertheless, the discovery that adult neurogenesis is
altered in these chronic neurodegenerative conditions sug-
gests that some of the cognitive deficits associated with
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these disorders could be caused, at least in part, by these
alterations and that therapies aimed at restoring or improving
the endogenous neurogenic capacity might be of therapeutic
value. As such, various studies have now used rodent models
of these disorders to test the potential beneficial effects of
therapeutic strategies that are known to promote neuroge-
nesis. In particular, physical activity is a noninvasive and
relatively inexpensive strategy that has repeatedly been shown
to upregulate adult neurogenesis. Numerous preclinical stud-
ies have now demonstrated that these strategies have the
potential to mitigate several aspects of the neuropathology
and behavioural abnormalities (including cognitive decline)
characteristic of various animal models of these disorders
while also promoting neurogenesis. Further clinical stud-
ies are warranted to further elucidate the exact relation-
ship between adult hippocampal neurogenesis and cognitive
decline in various neurodegenerative diseases within the
human population. The development and refinement of the
current in vivo imaging techniques for measurement of adult
neurogenesis in the live human brain as well as the discovery
of peripheral biomarkers that can be used to determine
changes in hippocampal neurogenesis will certainly open
new avenues to not only answer these questions but also to
diagnose and follow the progression of cognitive decline in
various neurodegenerative conditions as well as to measure
the effectiveness of treatments aimed at manipulating adult
hippocampal neurogenesis. The in vivo imaging techniques
are promising and applications of these methods in clinical
populations with neurodegenerative diseases merit future
research to validate their reliability in clinical settings. On
the other hand, with emerging knowledge about the func-
tional significance of hippocampal neurogenesis in pattern
separation of learning andmemory formation, neurogenesis-
dependent cognitive tasks (e.g., visual pattern separation task
[48]) would be an alternatemethod for studying alterations in
hippocampal neurogenesis in clinical studies.

To conclude, although the exact links between physi-
cal exercise, increase adult hippocampal neurogenesis and
improved cognition are still unclear due to the current
technical limitations, it is undisputable that exercise has
a positive impact in the brain both during ageing and
neurodegenerative processes that are associated with poor
cognitive function including dementia. Therefore, physical
exercise has now emerged as the most effective way to delay
the aged-related cognitive decline associated with various
neurodegenerative diseases. Finally, the development of new
pharmacological cognitive enhancers that mimic the effects
of physical exercise on the brain may also emerge as a
new teherapeutic strategy to prevent cognitive decline in the
ageing population.
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